Deposited data |
|
The Genotype-Tissue Expression Z score data |
Wei Wang and Matthew Stephens, Empirical Bayes Matrix Factorization, 20211
|
https://github.com/ysfoo/sparsefactor |
Genome-scale Perturb-seq experiment data |
Joseph Replogle and Jonathan Weissman, Mapping information-rich genotype-phenotype landscapes with genome-scale Perturb-seq, 20222
|
https://plus.figshare.com/articles/dataset/_Mapping_information-rich_genotype-phenotype_landscapes_with_genome-scale_Perturb-seq_Replogle_et_al_2022_processed_Perturb-seq_datasets/20029387 |
|
Software and algorithms |
|
Scikit-learn library: sparse principal component analysis |
Python library scikit-learn |
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.SparsePCA.html; RRID:SCR_002577
|
R Package: Factors and Loadings by Adaptive SHrinkage in R (flashr) |
Wei Wang and Matthew Stephens, Empirical Bayes Matrix Factorization1
|
https://stephenslab.github.io/flashr/index.html |
Variational algorithm in SuSiE PCA |
This paper |
http://www.github.com/mancusolab/susiepca |
Python 3.9 |
Python Software Foundation |
https://www.python.org/ |
R 4.0.0 |
R Software |
https://www.r-project.org |
ShinyGO v0.77 |
Ge SX, Jung D & Yao R3
|
http://bioinformatics.sdstate.edu/go/; RRID:SCR_019213
|