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A B S T R A C T   

HBV infection profoundly escalates hepatocellular carcinoma (HCC) susceptibility, responsible for a majority of 
HCC cases. HBV-driven immune-mediated hepatocyte impairment significantly fuels HCC progression. Regret
tably, inconspicuous early HCC symptoms often culminate in belated diagnoses. Nevertheless, surgically treated 
early-stage HCC patients relish augmented five-year survival rates. In contrast, advanced HCC exhibits feeble 
responses to conventional interventions like radiotherapy, chemotherapy, and surgery, leading to diminished 
survival rates. This investigation endeavors to unearth diagnostic hallmark genes for HBV-HCC leveraging a 
bioinformatics framework, thus refining early HBV-HCC detection. Candidate genes were sieved via differential 
analysis and Weighted Gene Co-Expression Network Analysis (WGCNA). Employing three distinct machine 
learning algorithms unearthed three feature genes (HHIP, CXCL14, and CDHR2). Melding these genes yielded an 
innovative Artificial Neural Network (ANN) diagnostic blueprint, portending to alleviate patient encumbrance 
and elevate life quality. Immunoassay scrutiny unveiled accentuated immune damage in HBV-HCC patients 
relative to solitary HCC. Through consensus clustering, HBV-HCC was stratified into two subtypes (C1 and C2), 
the latter potentially indicating milder immune impairment. The diagnostic model grounded in these feature 
genes showcased robust and transferrable prognostic potentialities, introducing a novel outlook for early HBV- 
HCC diagnosis. This exhaustive immunological odyssey stands poised to expedite immunotherapeutic cura
tives’ emergence for HBV-HCC.   

1. Introduction 

Primary liver cancer is among the most prevalent malignant tumors 
worldwide [1–3], and HCC constitutes 90% of primary liver cancers [4]. 
HCC ranks sixth in terms of incidence and third in terms of mortality 
among all types of malignancies worldwide [5], causing 6 million deaths 
annually worldwide [6]. However, most patients with HCC are 

diagnosed at an advanced stage due to the lack of early signs and 
symptoms [7]. Patients in the early stages of HCC have the option of 
surgical resection and have a 5-year survival rate of 30–70% [8]. In 
contrast, for patients with advanced HCC, surgical resection is not a 
viable option and 90% of them are left with the only options of radio
therapy or chemotherapy. Unfortunately, the 5-year survival rate for 
these patients is less than 10% [9–14]. This results in many HCC patients 
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not receiving effective treatment. Therefore, early prevention and 
diagnosis of HCC are crucial to enhance the prognosis of patients with 
HCC [15]. About 2 billion people worldwide are infected with HBV [16]. 
HBV infection is a major contributor to hepatocellular carcinoma, and 
more than 50% of HCC is caused by HBV infection [17,18]. Therefore, it 
is particularly important to prevent HBV patients from progressing to 
HBV-HCC. Currently, various serological tests are of clinical value for 
the early diagnosis of HBV-HCC, but the drawback of their low diag
nostic sensitivity and specificity is also very obvious [19]. In the disease 
progression of HBV-HCC, HBV directly contributes to the development 
of HCC by increasing viral load and integrating DNA into the host 
genome [20]. However, HBV DNA integration is considered oncogenic 
in85% of tissue samples from patients with HBV-HCC, and the differ
ences caused by this DNA integration can be detected at the transcrip
tional level [20,21]. Therefore, the search for new diagnostic feature 
genes at the genetic level is crucial to improve the early diagnosis and 
prognosis of HBV-HCC patients. 

The synergy between high-throughput sequencing and machine 
learning not only helps to fully explore intricate biological processes, but 
also has the potential to reveal new insights not available through 
traditional methods [22–25]. This integrated approach leverages the 
ability of high-throughput sequencing to generate large amounts of 
biological data and the ability of machine learning to decipher complex 
patterns, thus paving the way for transformative advances in biomedical 
research [26–28]. While some studies have focused on serological di
agnostics of HBV-HCC, such as serum pentraxin 3 and 
Des-gamma-carboxyprothrombin, few have analyzed and searched for 
diagnostic feature genes associated with HBV-HCC at the genetic level 
[29,30]. Therefore, the primary objective of this study was to identify 
novel diagnostic feature genes to enhance the effectiveness of early 
detection in HBV-HCC patients, as well as to elucidate the potential 
molecular mechanisms underlying its development. Additionally, im
mune infiltration analysis was performed to understand the role played 
by the immune microenvironment in the progression of HBV to 
HBV-HCC. Consensus clustering of HBV-HCC was also performed, and 
immune infiltration analysis was conducted to investigate differences in 
the immune microenvironment among different subtypes of HBV-HCC. 

The aim of this study was to perform differential analysis to identify 
differentially expressed genes (DEGs) between HBV and HBV-HCC. We 
employed a weighted gene co-expression network analysis (WGCNA) to 
screen for genes that are associated with HBV-HCC, and identified the 
intersection of these two sets of genes as the candidate gene pool. From 
this pool, we used three machine learning algorithms to obtain three 
HBV-HCC-related feature genes. To gain insight into the role played by 
these feature genes in the HBV-HCC process, we conducted correlation 
tests, GeneMANIA and single gene GSEA analyses. Subsequently, we 
constructed and validated a diagnostic model for HBV-HCC using the 
three feature genes. Furthermore, We conducted an analysis of immune 
infiltration to examine the variations in the immune microenvironment 
between HBV and HBV-HCC. Lastly, we utilized feature genes to classify 
HBV-HCC into subtypes and investigated dissimilarities in the immune 
microenvironment and fundamental molecular mechanisms between 
these subtypes. Our findings offer novel ideas and perspectives for the 
diagnosis and treatment of HBV-HCC. 

2. Materials and methods 

2.1. Collection and processing of raw data 

The primary objective of this investigation was to explore the early 
detection of HBV-HCC and the contribution of the immune microenvi
ronment in the disease progression. To achieve this, we retrieved two 
datasets, namely GSE121248 and GSE55092, from the NCBI Gene 
Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih. 
gov/geo/) for the analysis. The training set GSE121248 consisted of 
37 paraneoplastic HBV samples and 70 HBV-HCC samples, while the 

validation set GSE55092 comprised of 91 paraneoplastic HBV samples 
and 49 HBV-HCC samples. We utilized GSE121248 for the preliminary 
investigation before identifying the feature genes and subsequently 
constructing the diagnostic model, which we validated using GSE55092. 
Additionally, we combined the two datasets, GSE121248 and 
GSE55092, to investigate the immune microenvironment profile be
tween HBV and HBV-HCC. We also pooled HBV-HCC samples from both 
datasets to classify the subtypes of HBV-HCC and to explore the immune 
microenvironmental differences among the subtypes and the underlying 
molecular mechanisms. 

2.2. Identification of differential genes 

To discern the DEGs between HBV and HBV-HCC, we conducted 
differential gene expression analysis on the training set using the 
“limma” R package, applying filter parameters of |log2FC|>1 and 
FDR<0.05. The identified DEGs were presented in the form of heat maps 
and volcano maps created with the R packages “pheatmap” and 
“ggplot2″, respectively. 

2.3. Gene set enrichment analysis (GSEA) 

The R packages “clusterProfiler” and “enrich” were utilized for the 
GSEA enrichment analysis of genes. The top five functional pathways 
with the highest and lowest enrichment levels were selected for visu
alization. The biological significance of the genes in various functional 
pathways was elucidated by their respective enrichment levels. 

2.4. Weighted gene co-expression network analysis (WGCNA) 

To identify co-expressed genes associated with HBV-HCC, we utilized 
the WGCNA method. Firstly, the expression matrix of GSE121248 was 
used as input data, and co-expression networks were constructed using 
the R package “WGCNA”. Cluster trees and trait heat maps of the sam
ples were created to detect any significant abnormal samples. To ensure 
a good average connectivity of the co-expression network, we set the 
scale-free topology index R^2 to 0.9. When the soft threshold β was set to 
9, the network met the scale-free condition with good average connec
tivity. The genes were clustered hierarchically based on their similarity, 
and multiple modules were obtained by combining those with high gene 
similarity. A total of 18 modules were identified through the heat map of 
modules and traits. The gene co-expression modules with the strongest 
correlation with HBV-HCC were identified by plotting the module 
affiliation (MM) vs. gene significance (GS) scatter plot of the core co- 
expression module, revealing a high correlation with HBV-HCC. 

2.5. Identification and enrichment analysis of candidate genes 

To identify candidate genes associated with HBV-HCC, we obtained 
the intersection of DEGs and highly correlated modular genes with HBV- 
HCC using a Venn diagram. We then performed Disease Ontology (DO) 
enrichment analysis on the candidate genes using the R package “DOSE” 
to gain insight into their role in the HBV-HCC process by examining their 
level of enrichment in different diseases. Additionally, We utilized the R 
packages “clusterProfiler” and “enrich” to conduct Gene Ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses to gain 
a deeper understanding of the molecular mechanisms involved in the 
progression of HBV to HBV-HCC. This was achieved by evaluating the 
enrichment levels of candidate genes in various biological processes and 
pathways. 

2.6. Construction of protein-protein interactions (PPI) network 

PPI prediction was performed to explore the interrelationships be
tween candidate genes. The STRING database version 11.5 (https://cn. 
string-db.org) was used, and the minimum required interaction score 
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was set to medium confidence (0.400). Disconnected nodes were hidden 
to obtain the final PPI network constructed by the candidate genes. This 
network was visualized using Cytoscape, An open-source software 
platform was used for the visualization of molecular interaction net
works and integration with gene expression profiles and other state data. 
The PPI network provided insights into the potential functional re
lationships and pathways involved in the development of HBV-HCC, 
which could be further explored using functional enrichment analysis. 

2.7. Three machine learning algorithms to screen for HBV-HCC feature 
genes 

To further discern the feature genes linked to HBV-HCC, we 
employed three sophisticated machine learning techniques: random 
forest (RF), selected support vector machine recursive feature elimina
tion (SVM-RFE), and least absolute shrinkage and selection operator 
(LASSO) logistic regression [31–33]. The RF algorithm was utilized to 
screen the feature genes, and the R package “randomForest” was 
leveraged to compute the number of decision trees and the error rate. 
The optimal number of decision trees was chosen when the error rate 
stabilized, and the importance of the candidate genes was ranked. We 
selected 16 genes with importance scores exceeding 1.5 for RF algorithm 
screening. The SVM-RFE algorithm screened the feature genes through 
the R packages “e1071″ and “caret” to train the candidate genes, and 
computed the highest correct rate and the lowest error rate of 17 for 
cross-validation. Consequently, the top 17 genes were regarded as the 
feature genes of SVM-RFE. The LASSO algorithm was employed to filter 
the feature genes. We utilized the R package “glmnet” to identify the 
optimal penalty parameter λ for 10-fold cross-validation, and obtained 
14 feature genes. We obtained the three feature genes related to 
HBV-HCC by intersecting the three machine learning feature genes 
utilizing the Venn diagram. 

2.8. GeneMANIA constructs feature gene interaction networks 

To elucidate potential biological processes and pathways related to 
HBV-HCC, a co-expression network of feature genes and their corre
sponding similar genes was constructed using GeneMANIA (http:// 
www.genemania.org/). The intrinsic association of genes was 
analyzed to gain insight into their potential biological roles. 

2.9. Construction of a diagnostic model for HBV-HCC 

An ANN model was developed as a diagnostic tool for HBV-HCC. To 
build the ANN model, “GeneScore” was used to score each sample of 
feature genes within the training set [34]. The scoring rule was based on 
the median value of the expression of all samples of each feature gene. 
For genes upregulated in the HBV-HCC group, a score of 1 was assigned 
above the median and 0 below, while genes downregulated in the 
HBV-HCC group had expression levels that scored 0 above the median 
and 1 below. The training set feature gene “GeneScore” scores were 
utilized as input data for the ANN model, which was constructed using 
the “neuralnet” package in R. The ANN model comprises of an input 
layer, a hidden layer, and an output layer. The input layer encompasses 
the feature gene “GeneScore”, the hidden layer represents the gene 
weight of the feature gene, and the output layer represents the sum of 
the product of the gene score and the gene weight (output layer calcu
lation formula: Neural HBV-HCC = Σ(Gene Score*Gene Weight)). To 
assess the predictive performance of the ANN model, we generated a 
receiver operating characteristic (ROC) curve of the model utilizing the 
“PROC” package in R, which was measured by the area under the ROC 
curve (AUC) value. To validate the stability and generalizability of the 
ANN model built with the feature genes, we employed GSE55092 for 
validation. The validation set was scored by “GeneScore” in the same 
manner, and the ROC curve was plotted to obtain the AUC. The stability 
and generalizability of the ANN model could be determined by the size 

of the AUC. 

2.10. Construction and evaluation of nomogram 

In order to provide a more comprehensive evaluation of HBV-HCC 
from a clinical perspective, we developed a nomogram related to 
HBV-HCC that utilizes the R package “Rms” and feature genes. Each 
element of the nomogram is assigned a corresponding scoring scale, and 
the scores are summed to calculate the total score. Calibration curves 
and decision curve analysis (DCA) were utilized to visualize the results 
and evaluate the predictive performance of the nomogram. 

2.11. Immune infiltration analysis 

In order to investigate the immune microenvironment differences 
between HBV and HBV-HCC, we merged the expression matrices of both 
training and validation sets. The gene expression matrix was then uti
lized to estimate immune cell infiltration and immune function expres
sion via the CIBERSORT algorithm. We quantified the proportion of the 
22 immune cells infiltrating HBV and HBV-HCC samples using a stacked 
histogram generated with the R package “ggplot2”. We also generated a 
correlation heat map using the R package “corrplot” to examine the 
relationship between the 22 immune cells. To compare differences in 
immune cell infiltration and immune function expression across groups, 
we generated box plots to visualize these differences between HBV and 
HBV-HCC. Additionally, to investigate the association between immune 
cells and feature genes, we used “ggplot2″ to generate visualizations of 
the immune infiltration analysis. Finally, we performed immune infil
tration analysis of HBV-HCC after subtyping, using the combined 
expression matrix of HBV-HCC samples from the training and validation 
sets as input data. 

2.12. Consensus clustering of HBV-HCC 

The expression matrices of HBV-HCC samples from the GSE121248 
and GSE55092 datasets were integrated. The merged expression matrix 
was then used to extract the gene expression of HBV-HCC samples cor
responding to the feature genes. Subsequently, the subtyping of HBV- 
HCC based on the expression of the feature genes was carried out 
using the “ConsensusClusterPlus” R package. To determine the optimal 
number of subtypes, the consensus matrix, consensus cumulative dis
tribution function (CDF) and trace map were plotted, and the optimal 
number of clusters “k" was determined by assessing the cleanliness of the 
blank area between the blue modules and the relative change between 
the CDF trace map and the trace map. The scatter plots of samples be
tween different subtypes were created using the “ggplot2″ R package to 
verify the effectiveness of the consensus clustering and to observe if the 
scatter plots were distinguishable between subtypes. The expression and 
expression differences of the feature genes among different subtypes 
were investigated using heat maps and box plots. 

2.13. Gene set variation analysis (GSVA) of different subtypes of HBV- 
HCC 

The analysis utilized the “c2. cp.kegg.symbols” gene set from the 
Molecular Feature Database (MSigDB) as a reference set. GSVA analysis 
was conducted on the various HBV-HCC subtypes to determine the ab
solute degree of their enrichment in different pathways. Pathway 
enrichment analysis was performed to shed light on the possible bio
logical functions and pathways associated with the subtyping of HBV- 
HCC. 

2.14. Statistical analysis 

All statistical analyses in this study were executed through utilization 
of R software version 4.2.2. In this study, statistical significance was 
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determined to exist when p-value was less than 0.05 and the false dis
covery rate (FDR) was less than 0.05. To compare the proportion of 
immune cell infiltration and levels of immune function expression be
tween distinct groups, the application of the Wilcoxon rank sum test was 
utilized. 

3. Results 

3.1. Identification of differential genes between HBV and HBV-HCC 

Fig. 1 depicts the study’s workflow. The GSE121248 dataset was 
employed to identify DEGs between HBV and HBV-HCC. Initially, the 
expression matrix of the GSE121248 dataset was merged and batch- 
corrected to eliminate batch effects, and this process was visually 
demonstrated before and after correction (Fig. 2A and B). The batch- 
effect-corrected expression matrix was analyzed and visualized using 
heat and volcano plots (Fig. 2C and D), revealing a total of 344 genes 
with significant differences in expression between HBV patients and 
HBV-HCC patients (|log2FC|>1,FDR<0.05). Among these genes, 94 
were up-regulated, and 250 were down-regulated. To determine the 
degree of enrichment of the screened DEGs in different functional 
pathways, GSEA for functional enrichment analysis was executed on the 
expression matrix following batch effect correction. The most and least 
significant enrichment pathways were reported as the top five pathways 
(Fig. 2E). The outcomes revealed that differential genes were enriched in 
pathways related to DNA replication, Homologous recombination, 
Mismatch repair, Proteasome, and Ribosome biogenesis in eukaryotes, 
all of which are related to genetic material replication and cell cycle 

regulation. The remaining five down-regulated pathways were all 
associated with the metabolism of substances linked to genetic material. 
Based on the enrichment outcomes, these differential genes may have a 
close relationship with the progression to HBV-HCC in HBV patients. 

3.2. WGCNA construction of a gene co-expression network between HBV 
and HBV-HCC 

In order to identify co-expressed genes that are associated with HBV- 
HCC, a Weighted Gene Co-expression Network Analysis (WGCNA) was 
performed on the dataset. Firstly, a sample clustering tree with trait heat 
map display was conducted for HBV and HBV-HCC (Fig. 3A). Outliers 
were detected and removed. To ensure that the co-expression network 
had good average connectivity, a scale-free topology fit index R^2 > 0.9 
was set, and the network displayed good average connectivity with a soft 
threshold β > 9 (Fig. 3B). A clustering height of 0.25 was set, and 
strongly associated modules were merged to produce a module clus
tering tree for the genes. The results showed that there were 18 modules 
with clustering height greater than 0.25 after clustering, which were 
used for the next step of the study (Fig. 3C). The 24 original modules 
were visually compared before and after merging of strongly associated 
modules, along with the sample clustering tree, which showed the 18 
merged modules (Fig. 3D). To identify the gene co-expression modules 
that were strongly associated with HBV-HCC, a module-disease corre
lation heat map was plotted (Fig. 3E). The outcomes demonstrated that 
the blue module, composed of 4140 genes, exhibited the most robust 
correlation among the 18 modules with HBV-HCC (r = 0.77, p = 4e-22). 
In the MM versus GS scatter plot of the blue module for HBV-HCC, it was 

Fig. 1. The workflow diagram of this study.  

S. Zhang et al.                                                                                                                                                                                                                                   



Tumour Virus Research 16 (2023) 200271

5

observed that the blue module displayed a high correlation of 0.86 and 
statistical significance (p-value < 1e-200) with HBV-HCC genes 
(Fig. 3F). All genes in this module will be used in the next step of the 
study. 

3.3. Identification and functional enrichment analysis of candidate genes 
and PPI network construction 

To further discern the feature genes distinguishing HBV from HBV- 
HCC, we utilized a Venn diagram to determine the intersections of 
DEGs with significantly correlated co-expression module genes. Subse
quently, 149 genes were identified as candidate genes for further 
investigation (Fig. 4A). To elucidate the role of candidate genes in the 
progression from HBV to HBV-HCC, we conducted three enrichment 
analyses (DO, GO, KEGG) on the screened candidate genes. To 
comprehend the involvement of candidate genes in various diseases, we 
conducted DO enrichment analysis (Fig. 4B), revealing that candidate 
genes were predominantly enriched in a variety of cancers, implying 
their role in cancer development and formation. To obtain a more 
comprehensive comprehension of the biological mechanisms and 
signaling pathways associated with potential genes, we executed GO and 
KEGG enrichment analyses. GO enrichment analysis demonstrated that 
candidate genes were mainly involved in biological processes such as 
chromosome replication, segregation, and cell cycle regulation. 
Regarding molecular functions, candidate genes were mainly associated 
with functions related to chromosome and DNA replication, which are 
imperative in the formation of genetic material. As for cellular compo
nents, candidate genes were predominantly involved in the formation of 
cellular components regulating cell formation, metabolism, growth, and 
differentiation (Fig. 4C and D). The KEGG enrichment analysis results 
indicated that the candidate genes were primarily linked with the 

process of cellular senescence, cell cycle regulatory signaling pathways, 
and various cancer-related regulatory pathways (Fig. 4E and F). Addi
tionally, we performed PPI network construction for the candidate 
genes, utilizing a medium confidence level of 0.4 as the minimum 
interaction score. Disconnected nodes were concealed to analyze the 
PPI, and the PPI network was found to contain 101 nodes and 624 edges 
(Fig. 4G). 

3.4. Machine learning algorithms to screen for feature genes 

To further refine the list of candidate genes and identify the feature 
genes specific to HBV-HCC, our study employed three machine learning 
algorithms. The RF algorithm utilized the number of decision trees in 
combination with the error rate, which stabilized around 200 trees 
(Fig. 5A). The candidate genes were then ranked by importance and 
displayed in a graph (Fig. 5B), with 16 genes having relative importance 
greater than 1.5 selected as feature genes. The SVM-RFE algorithm 
calculated and ranked the average risk of candidate genes, achieving the 
highest accuracy rate (Fig. 5C) and lowest error rate (Fig. 5D) when 
selecting the top 17 genes. Therefore, 17 feature genes were screened by 
the SVM-RFE algorithm. Finally, using LASSO logistic regression, 14 
genes were selected as feature genes from the statistically significant 
variables (Fig. 5E). The intersection of the three machine learning al
gorithms was obtained using a Venn diagram, resulting in the identifi
cation of HHIP, CXCL14, and CDHR2 as the three feature genes specific 
to HBV-HCC (Fig. 5F). 

3.5. Feature gene expression differences, correlation and enrichment 
analysis 

To further comprehend the variations in the expression of the three 

Fig. 2. Identification and enrichment analysis of differential genes between HBV and HBV-HCC. (A) Raw data of the training set without batch correction. (B) 
Expression matrix of the training set after batch correction to remove batch effects. (C) Heat map of differential genes between HBV and HBV-HCC. The blue module 
represents HBV and the red module represents HBV-HCC, and the red color in the heat map represents up-regulated gene expression and blue color represents down- 
regulated gene expression. (D) Volcano plot of differential genes. Expression is up-regulated when |log2FC|>0,p < 0.05 and gene expression is down-regulated when 
|log2FC|<0,p < 0.05. Differential genes were screened by |log2FC|>1,p < 0.05, blue indicates down-regulation and red indicates up-regulation. (E) GSEA 
enrichment analysis of differential genes was performed, and the five pathways with the strongest enrichment significance were selected for display with the five 
weakest pathways. 
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Fig. 3. Construction of gene co-expression network. (A) Cluster tree with heat map display for all samples in the training set, and the cluster tree samples corre
sponding to the red heat map belong to this clinical trait. (B) The left panel is set when the scale-free topological fit index R^2 = 0.9, and the best soft threshold β = 9 
is chosen to obtain the best average connectivity of the co-expression network on the right panel. (C) The clustering height was set to 0.25 and the modules were 
clipped. The modules with high gene similarity were merged together to get 18 modules. (D) Sample clustering tree with the modules before and after merging, 
Dynamic Tree Cut for the original modules and Merged dynamic for the result after merging the strongly associated modules. (E) Heat map of correlations between 
modules and clinical traits. Red indicates positive correlation, blue indicates negative correlation, and the darker the color, the stronger the correlation. The numbers 
in parentheses are the p-values of correlations between modules and traits to test whether they are statistically significant with each other. The numbers above the 
brackets indicate the magnitude of correlation between modules and traits. (F) Scatter plot between blue module affiliation and HBV-HCC gene significance with a 
correlation between each other of cor = 0.86,p < 1e-200. 
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examined feature genes between HBV and HBV-HCC, we illustrated the 
expression of the feature genes among the distinct groups. The outcomes 
demonstrated that the expression of the 3 feature genes, namely HHIP, 
CXCL14, and CDHR2, was reduced in the HBV-HCC group as opposed to 
the HBV group, and the differences were all statistically significant 
(Fig. 6A–C). In order to understand the correlation among the feature 
genes, we executed a gene correlation test. The results displayed positive 
and statistically significant correlations among all three feature genes 
(Fig. 6D), indicating a significant functional resemblance among the 
three genes. The PPI network of the feature genes was established uti
lizing GeneMANIA to predict the genes with analogous functions to the 
feature genes. The findings revealed that the 3 feature genes were cen
trally located, while 20 analogous genes were peripherally located 
(Fig. 6E). Their functions were primarily enriched in cytokine activity, 
chemokine receptor binding, cellular response to chemokine, antimi
crobial humoral response, humoral immune response, and T cell 
migration, implying that the feature genes and their analogs are impli
cated in microbial clearance and the corresponding immune response. 
We performed a single-gene GSEA enrichment analysis to investigate the 
role of each feature gene in disease progression. The results illustrated 
that all three feature genes were upregulated in various metabolic 
pathways, including beta-Alanine metabolism, Retinol metabolism, and 
Tyrosine metabolism, all of which are related to liver metabolism. In 
contrast, all three feature genes were enriched for downregulation in 
DNA replication, Homologous recombination, Mismatch repair, and 
Proteasome, which are all pathways associated with replication of cy
togenetic material or protein regulation of the cell cycle (Fig. 6F–H). 
Nevertheless, upon analyzing the differences in gene expression be
tween HBV and HBV-HCC, the expression of these feature genes was 
lower in the HBV-HCC than in the HBV. Therefore, the expression of 
these genes was anticipated to have a role in HBV-HCC, despite the re
sults of the GSEA enrichment analysis. 

3.6. Construction and validation of artificial neural network (ANN) 
models, construction of nomogram models 

The ANN diagnostic model was constructed utilizing the GSE121248 
dataset combined with the screened 3 feature genes. The model 
comprised an input layer, a hidden layer, and an output layer (Fig. 7A). 
To validate the constructed model, GSE55092 dataset was utilized. The 
ROC curve analysis indicated that the constructed model had an AUC of 
0.948 (95% CI = 0.909–0.979) (Fig. 7B). These results demonstrated 
that the ANN model had good predictive performance using HHIP, 
CXCL14, and CDHR2 as feature genes. To further validate the model, the 
dataset GSE55092 was used, and the ROC curve analysis was performed, 
demonstrating an AUC of 0.849 (95% CI = 0.773–0.916) (Fig. 7C). This 
validated the stability and generalizability of the model. To assess the 
risk of HBV conversion to HBV-HCC in a clinical setting, a nomogram 
model was constructed using the 3 feature genes (Fig. 7D). A scoring 
scale was assigned to each element in the nomogram, and the scores 
were added to predict the risk of morbidity based on the expression of 
each sample. The predictive performance of the nomogram was assessed 
using calibration curves, indicating that the nomogram exhibited 
favorable predictive capability for HBV-HCC (Fig. 7E). The decision 
curve analysis (DCA) showed that the nomogram model had the best 
prediction for the conversion of HBV to HBV-HCC at a threshold value of 
0–1 (Fig. 7F). 

3.7. Analysis of immune cell and immune function infiltration between 
HBV and HBV-HCC 

We combined the training and validation sets to acquire the merged 
expression matrix, and employed the CIBERSORT algorithm to scruti
nize immune infiltration between HBV and HBV-HCC. Stacked histo
grams were used to visualize the percentage of 22 immune cells in each 
sample (Fig. 8A). By generating a heat map of infiltration correlation 
between 22 immune cells, we identified a significant positive correlation 
between B cells naive and T cells regulatory (Tregs), Macrophages M2 
and Eosinophils. Additionally, we discovered a significant negative 
correlation between Mast cells resting and Mast cells activated, Macro
phages M1 and Dendritic cells activated (Fig. 8B). Differential expres
sion of 22 immune cell infiltrates was presented in box plots. T cells 
follicular helper and Macrophages M0 expression were found to be 
higher in the HBV-HCC group than in the HBV group, while Plasma cells, 
NK cells resting and Mast cells resting were higher in the HBV group 
than in the HBV-HCC group (Fig. 8C). We performed 12 immune func
tion infiltration analyses to further investigate the immune infiltration 
between HBV and HBV-HCC. The results indicated that the expression 
level of APC_co_stimulation was greater in the HBV-HCC group 
compared to the HBV group. On the other hand, APC_co_inhibition, CCR, 
Check-point, Cytolytic_activity, HLA, Inflammation-promoting, and 
Parainflammation, Type_I_IFN_Reponse and Type_II_IFN_Reponse were 
expressed at higher levels in the HBV group than in the HBV-HCC group 
(Fig. 8D). All discrepancies were statistically significant with a p-value 
of less than 0.05. 

3.8. Correlation analysis of immune cell infiltration of feature genes 

To investigate the correlation between the feature genes and immune 
cell infiltration, we presented heat maps depicting the correlations of 
CDHR2, HHIP, and CXCL14 with 22 immune cell types based on size and 
statistical significance. CDHR2 was positively correlated with Plasma 
cells, Dendritic cells resting, Macrophages M1 Monocytes, and NK cells 
activated, while being negatively correlated with NK cells activated 
(Fig. 9A). HHIP was positively correlated with Plasma cells and Macro
phages M1, while being negatively correlated with T cells regulatory 
(Tregs), T cells follicular helper, and Macrophages M0 (Fig. 9B). CXCL14 
was positively correlated with Plasma cells, NK cells resting, and T cells 
CD4 naïve, while being negatively correlated with T cells gamma delta, T 
cells regulatory (Tregs), T cells follicular helper, and Macrophages M0 
(Fig. 9C). T cells follicular helper and Macrophages M0 expression levels 
were higher in the HBV-HCC group than in the HBV group, while Plasma 
cells, NK cells resting, and Mast cells resting were higher in the HBV group 
than in the HBV-HCC group (Fig. 8C). Scatter plots were used to visualize 
the immune infiltration of characteristic genes in the four immune cells 
that differed between HBV and HBV-HCC and were statistically signifi
cant. CDHR2 correlated with Plasma cells r = 0.3, p = 0.0078 (Fig. 9D), 
and negatively correlated with Macrophages M0 r = − 0.35, p = 0.0015 
(Fig. 9E). HHIP correlated with Plasma cells r = 0.41, p = 0.00019 
(Fig. 9F), while being negatively correlated with T cells follicular helper 
correlation r = − 0.29, p = 0.0087 (Fig. 9G), and Macrophages M0 cor
relation r = − 0.32, p = 0.0038 (Fig. 9H). CXCL14 correlated with Plasma 
cells r = 0.41, p = 0.00016 (Fig. 9F), NK cells resting correlation r = 0.32, 
p = 0.0036 (Fig. 9F), and negatively correlated with T cells follicular 
helper correlation r = − 0.34, p = 0.0023 (Fig. 9F) and Macrophages M0 
correlation r = − 0.55, p = 1.2e-07 (Fig. 9F). 

Fig. 4. Identification and analysis of candidate genes. (A) Wayne diagram of 149 intersecting genes obtained from DEGs and co-expressed genes with the strongest 
association with HBV-HCC as candidate genes. (B) Histogram of DO enrichment analysis of candidate genes. (C) Histogram of GO enrichment analysis of candidate 
genes, the outermost circle is the GO sequence number, the second circle is the number of genes enriched by that GO, the third circle is the number of select, and the 
last circle is the corresponding GO enrichment factor.(D) Histogram of GO enrichment analysis of candidate genes. (E) KEGG network diagram of the correlation 
between some candidate genes and biological processes. (F) Histogram of KEGG enrichment analysis of candidate genes. (G) PPI network of candidate genes, the 
circles indicate protein nodes, and the lines between each other indicate the existence of interrelationship between two proteins, the PPI network has 101 nodes and 
624 edges. 
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Fig. 5. Machine learning screening of feature genes. (A) Combination of number of decision trees and error rate of random forest algorithm. (B) Random forest 
calculates the top 20 genes for gene importance for ranking. (C, D) support vector machine recursive feature elimination (SVM-RFE) algorithm to screen biologic 
feature genes, and the point with the lowest accuracy and error rate is used as the number of feature genes screened by SVM-RFE. (E) LASSO algorithm for feature 
gene screening. (F) Wayne diagram to obtain the feature genes screened by three machine learning algorithms as the feature genes for HBV-HCC. 
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Fig. 6. Feature gene correlation analysis. (A–C) Box line plots of differential expression of HHIP, CXCL14 and CDHR2 in HBV versus HBV-HCC. The range of sizes of 
the box line plots indicates the range of their gene expression, while the black line in the plot indicates the mean of their expression. The values between the two box 
line plots are p-values, and the differences are statistically significant when p < 0.05. (D) Heat map of correlation between the three feature genes. Red represents 
positive correlation with each other, blue represents negative correlation with each other, and larger circles with redder colors represent greater correlation. *p <
0.05.(E) GeneMANIA network diagram of the three feature genes, the 20 genes in the outer circle are the similar genes of the feature genes, and the interconnected 
lines indicate the correlation between them, and the different color modules in the genes represent the different functional pathways enriched. (E–F) Single gene 
GSEA analysis of HHIP, CXCL14 and CDHR2, respectively, and the top five pathways with the highest and lowest enrichment significance were selected for display. 

S. Zhang et al.                                                                                                                                                                                                                                   



Tumour Virus Research 16 (2023) 200271

11

Fig. 7. Construction and validation of ANN model and nomogram model. (A) ANN model constructed using feature genes, containing input layer, hidden layer and 
output layer. (B) Training set ROC curve with AUC = 0.948, 95% CI = 0.909–0.979, used to illustrate whether the model has good prediction performance. (C) 
Validation set ROC curve, AUC = 0.849, 95% CI = 0.773–0.916, used to demonstrate whether the stability and generalization of the model are good. (D) Nomogram 
plot of the characteristic gene construction, each element followed by a scoring scale. The scores of each element are summed to obtain a total score to predict the risk 
of disease. (E) Calibration curve for the evaluation of nomogram prediction performance. The higher the overlap between the solid and dashed lines and the closer 
the diagonal line, the better the performance. (F) Decision curve analysis (DCA), which compares the clinical benefit between the nomogram model and other 
diagnostic indicators. the higher the AUC, the higher the clinical benefit in the range of possible thresholds from 0 to 1. 
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Fig. 8. Immune infiltration analysis between HBV and HBV-HCC. (A) Stacked histogram of the infiltration ratio of 22 immune cells between HBV and HBV-HCC in 
each sample. (B) Heat map of correlation between 22 immune cells, red indicates positive correlation, blue indicates negative correlation, and the values in the heat 
map are the magnitude of correlation between the corresponding immune cells. (C) Box plot of the difference in infiltration of 22 immune cells between HBV and 
HBV-HCC. (D) Box-line plot of the difference in expression of 12 immune functions between HBV and HBV-HCC. *p < 0.05, **p < 0.01, ***p < 0.001. 
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3.9. Consensus clustering of the identification of two subtypes of HBV- 
HCC 

To classify the subtypes of HBV-HCC, we obtained an expression 
matrix by combining the HBV-HCC samples from both the training and 
validation sets. Subtyping was performed uitilizing the “Consensu
sClusterPlus” R package based on the gene expression profiles of three 
feature genes: HHIP, CXCL14, and CDHR2. Through analysis of the 
consensus matrix plot, the consensus distribution function (CDF) plot, 
and the relative modification of the area under the CDF curve, we 
determined that the optimal subtyping number was k = 2, and the HBV- 
HCC samples were classified into C1 and C2 subtypes (Fig. 10A and B). 
Tracing plots from k = 2 to k = 9 were also generated to confirm the 
successful subtyping at k = 2 (Fig. 10C). PCA plots were plotted for both 
subtypes, which revealed that the two subtypes could be distinguished 
by clustering among the scatter plots (Fig. 10D). The Glyco
sylphosphatidylinositol (GPI)-anchor biosynthesis pathway played an 
important role in the subtyping of HBV-HCC, as demonstrated by the 
GSVA analysis of the two subtypes (Fig. 10E). The findings demonstrated 
that the expression levels of HHIP, CXCL14, and CDHR2 were greater in 

the C2 subtype as compared to the C1 subtype (Fig. 10F and G). 

3.10. Immune infiltration analysis of two subtypes C1 and C2 

In order to further investigate the role of the immune microenvi
ronment in the differentiation of HBV-HCC subtypes, we conducted an 
analysis of immune infiltration in HBV-HCC samples categorized into 
two subtypes, C1 and C2. The proportion of 22 immune cells infiltrating 
in both C1 and C2 subtypes was determined using the CIBERSORT al
gorithm, and presented using stacked histograms (Fig. 11A). We then 
analyzed the correlation between the 22 immune cells using a correla
tion heat map, which revealed that B cells naive and T cells regulatory 
(Tregs), Dendritic cells activated and Neutrophils, Macrophages M2 and 
Eosinophils, T cells CD4 memory resting and Macrophages M1, T cells 
CD4 naive and T cells CD4 memory activated, NK cells activated and 
Mast cells activated, Macrophages M0 and Macrophages M2 were 
significantly and positively correlated. Additionally, we found a signif
icant negative correlation between Macrophages M1 and Dendritic cells 
activated, T cells CD4 memory resting and T cells follicular helper 
(Fig. 11B). We performed a differential expression analysis of 22 

Fig. 9. Feature gene immune cell infiltration analysis. (A–C) Heat map of CDHR2, HHIP and CXCL14 with the degree of infiltration of 22 immune cells, respectively, 
with p < 0.05 being statistically significant. (D–L) Scatter plot visualization of immune cells with differential and statistically significant expression of feature genes 
between HBV and HBV-HCC. 
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immune cell infiltrates for both C1 and C2 subtypes, and observed that 
only the C2 subtype had a higher expression of T cell CD4 memory 
resting infiltration compared to the C1 subtype (Fig. 11C). Furthermore, 
we examined the expression of three feature genes in C1 and C2 sub
types. Our results indicated that, among the statistically significant 

results, HHIP was low in T cells CD4 memory activated, CXCL14 was low 
in Macrophages M2 and high in T cells CD4 memory resting, and CDHR 
was high in T cells CD4 memory resting (Fig. 11D). We also analyzed 12 
immune function infiltrations between C1 and C2 subtypes, and iden
tified that among the statistically significant results, APC_co_inhibition, 

Fig. 10. Consensus clustering of HBV-HCC samples. (A) Consensus matrix plot, the cleaner the blank area between the blue modules indicates the more successful 
analysis. (B) Cumulative distribution function (CDF) plot of consensus clustering, showing the relative change of consensus index from k = 2 to k = 9 with the change 
of CDF value, and the k value of the curve with the most stable change is the optimal fractal number. (C) Trace plot of k = 2 to k = 9. (D) PCA plot of HBV-HCC 
samples. The scatter plot allows visualization of the characteristic genes that classify HBV-HCC into two subtypes, C1 and C2. (E) GSVA analysis between C1 and C2, 
red represents the up-regulated functional pathway and blue represents the down-regulated functional pathway. (F) Heat map between C1 and C2 and feature genes, 
red indicates up-regulated gene expression and blue indicates down-regulated gene expression. (G) Box line plot of the difference in expression of feature genes 
between C1 and C2 of two subtypes of HBV-HCC. *p < 0.05, **p < 0.01, ***p < 0.001. 
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CCR, Check-point, Cytolytic_activity, Inflammation-promoting, T_cell co 
inhibition and T_cell co-stimulation were higher in the C2 subtype 
compared to the C1 subtype (Fig. 11E). Finally, among the 12 immune 
functions among the 3 feature genes, we found that HHIP was highly 
expressed in Cytolytic_activity and Type_II_IFN_Response, CXCL14 was 
highly expressed in CCR, and CDHR2 was highly expressed in CCR and 
Type_II_IFN_Response (Fig. 11F). 

4. Discussion 

Roughly 2 billion individuals across the world have contracted HBV, 
with 257 million individuals experiencing chronic hepatitis B infection 
[35]. HBV infection is a significant contributor to the development of 
HCC, and HBV-induced HCC represents a significant threat to global 
public health [36,37]. Due to the absence of overt early symptoms and 
specific biomarkers, a majority of patients with HCC receive a late-stage 
diagnosis, leading to a bleak prognosis [38]. As a result, the 

Fig. 11. Immune infiltration analysis between the two subtypes of HBV-HCC. (A) Stacked histogram of the infiltration ratio of 22 immune cells in each sample of the 
two subtypes C1 and C2. (B) Heat map of correlation between 22 immune cells, red indicates positive correlation, blue indicates negative correlation, and the values 
in the heat map are the magnitude of correlation between the corresponding immune cells. (C) Box plot of the difference in infiltration between C1 and C2 for the 22 
immune cells. (D) Heat map of the correlation between characteristic genes and 22 immune cell infiltrates in HBV-HCC samples, red represents positive correlation 
and blue represents negative correlation. (E) Box-line plot of the difference in expression of 12 immune functions between C1 and C2. (F) Heat map of the correlation 
between feature genes and 12 immune cell infiltrates in HBV-HCC samples, red represents positive correlation and blue represents negative correlation. *p < 0.05, 
**p < 0.01, ***p < 0.001. 
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identification of validated diagnostic feature genes is imperative in 
enhancing the prognosis of patients with HBV-HCC. Furthermore, the 
chronic inflammatory response due to CHB infection constitutes a major 
risk factor for HCC [39], and this response can contribute to the pro
gression and development of HCC by disrupting the immune microen
vironment of the liver [40]. In this study, we endeavored to employ 
bioinformatics to screen for the diagnostic feature genes of HBV-HCC 
and investigate the role played by immune infiltration in the progres
sion from HBV to HBV-HCC. To further explore the role of the immune 
microenvironment in the development of HBV-HCC, we utilized feature 
genes to subtype HBV-HCC by performing immune infiltration analysis 
of different HBV-HCC subtypes. 

Our investigation ultimately identified three distinctive genes, HHIP, 
CXCL14, and CDHR2. HHIP encodes for hedgehog-interacting protein, 
which is generally down-regulated in various types of epithelial tumors 
[41]. It has been observed that the expression of HHIP is suppressed by 
promoter hypermethylation in HCC [42,43]. The up-regulation of 
miR-25-3p expression has been linked to the exosomes secreted by CHB 
patients, which suppresses HHIP expression by shifting miR-25-3p and 
promotes HCC development [44,45]. CXCL14, a member of the CXC 
chemokine family [46], acts as a tumor suppressor in specific cancer 
types and primes B cells, NK cells, dendritic cells, and monocytes to fight 
cancer [47–49]. CXCL14 expression is generally lower in HCC than in 
normal tissues, and overexpression can inhibit the migration, prolifer
ation, invasion, and angiogenesis of HCC cells [50]. Moreover, CXCL14 
expression is inhibited and reduced in advanced HBV-HCC tissues [47]. 
CDHR2, also known as procalcitonin 24 (PCDH24), belongs to the 
human non-classical calmodulin family [51]. CDHR2 is considered a 
potential tumor suppressor in hepatocellular carcinoma due to its role in 
epithelial cell contact inhibition and intercellular adhesion [52,53]. The 
expression of CDHR2 in HCC tissue samples was significantly lower than 
that in its paracancerous tissue samples [54]. The expression of these 
three feature genes was analyzed differently between HBV and 
HBV-HCC. The results showed that the expression of all three feature 
genes was lower in HBV-HCC than in HBV, and the correlation results 
showed a positive correlation between all three. GeneMANIA analysis of 
the feature genes showed that the feature genes were involved in mi
crobial clearance and corresponding humoral immune processes with 
their analogs. However, since the expression of the feature gene was 
down-regulated in HBV-HCC, the microbial clearance and immune 
processes were correspondingly suppressed, leading to the development 
of HCC. Single-gene GSEA analysis of the feature genes showed that all 
three feature genes were enriched and up-regulated in various metabolic 
pathways such as beta-Alanine metabolism, Retinol metabolism, and 
Tyrosine metabolism, all of which are associated with liver metabolism 
[55–57]. In contrast, all three feature genes are enriched for the 
down-regulated processes of DNA replication, Homologous recombina
tion, Mismatch repair, and Proteasome, pathways that are associated 
with the replication of cytogenetic material or protein regulation of the 
cell cycle [58]. Thus, the feature genes affect the course of HBV-HCC by 
regulating the replication of genetic material and the cell cycle. 

The immune microenvironment of patients with HBV infection and 
HBV-HCC has been compared, patients with HBV-HCC exhibit a greater 
expression of M0 macrophages and T cells follicular helper compared to 
HBV patients, indicating a state of immune tolerance [59,60]. The im
mune tolerant microenvironment may promote immune response 
damage in both HBV infection and HCC, leading to metastasis and 
development of HCC [61]. The expression of plasma cells, NK cells 
resting and mast cells resting is higher in HBV patients, suggesting that 
chronic liver injury due to immune attack is less severe compared to 
HBV-HCC patients [62]. Results of immune cell infiltration analysis of 
the feature gene are consistent with the results of infiltration between 
HBV and HBV-HCC. Furthermore, the analysis of immune function be
tween HBV and HBV-HCC showed that the APC_co_stimulation function 
is stronger in the HBV-HCC group, which may stimulate cellular immune 
processes and lead to more severe immunogenic damage to its cells [63, 

64]. In contrast, the HBV group showed upregulated expression of in
flammatory response-related functions such as CCR, 
Inflammation-promoting, and Parainflammation, suggesting a gradual 
development of inflammatory response [65]. The Type_I_IFN_Reponse 
and Type_II_IFN_Reponse functions are central to the regulation of 
antiviral response and counteracting viral infection [66], which may 
have a suppressive effect on the progression of inflammatory response. 
Therefore, the combination of inflammatory and antiviral responses 
may lead to chronic inflammation in the HBV group. Chronic inflam
matory response caused by HBV chronic infection is a significant risk 
factor for HCC [39], and it may promote the development and pro
gression of HCC by disrupting the immune microenvironment of the 
liver [40]. Thus, the immune microenvironment of HBV contributes to 
the progression of HBV-HCC. 

To gain further understanding of the differences between patients 
with HBV-HCC and provide potential directions for clinical manage
ment, our study employed three feature genes to classify HBV-HCC into 
two subtypes. Using HHIP, CXCL14, and CDHR2 as markers, we classi
fied HBV-HCC into two subtypes, C1 and C2. Our analysis revealed that 
the C2 subtype showed higher expression levels of all three genes 
compared to the C1 subtype. Furthermore, gene set variation analysis 
(GSVA) showed that the C1 and C2 subtypes were significantly enriched 
in the glycosylphosphatidylinositol anchor (GPI-anchor) pathway. In 
contrast, Glypican-3 (GPC3), a member of the glypican family that at
taches to the cell surface via the GPI-anchor, is expressed in approxi
mately 70% of HCC cases [67–69]. Therefore, differential expression of 
the GPI-anchor pathway may be an important mechanism for subtype 
delineation in HBV-HCC. 

Immune infiltration analysis was conducted to compare the immune 
microenvironments between C1 and C2 subtypes. Among the statisti
cally significant findings, only the infiltration levels of resting memory 
CD4 T cells were higher in the C2 subtype than in the C1 subtype, 
indicating that cellular immunity in the C2 subtype was relatively 
quiescent compared to that in the C1 subtype. While the expression of 
feature genes was higher in the C2 subtype than in the C1 subtype, the 
correlation between feature genes and 22 immune cells resulted in lower 
expression of activated memory CD4 T cells and M2 macrophages and 
higher expression of resting memory CD4 T cells and CDHR in the C2 
subtype. Thus, immune infiltration analysis of the feature genes showed 
that the C2 subtype had high levels of resting memory CD4 T cells and 
low levels of activated memory CD4 T cells and M2 macrophages. These 
results are consistent with the successful subtyping of the feature genes 
and indicate that the immune microenvironment differs between sub
types. Notably, there are differences in the immune microenvironment 
between C1 and C2 subtypes. For instance, in patients with HBV-HCC, T 
cells not only clear HBV but also cause damage to infected hepatocytes 
through their own specific immune response [70,71]. Therefore, pa
tients with HBV-HCC of the C2 subtype may experience less damage 
than those of the C1 subtype. 

Twelve immune function infiltrations were analyzed between C1 and 
C2 subtypes, and among the statistically significant results, APC co- 
inhibition, CCR, Check-point, Cytolytic activity, Inflammation- 
promoting, T cell co-inhibition, and T cell co-stimulation were higher 
in the C2 subtype than in the C1 subtype. Among them, the difference of 
T cell co-inhibition was greater than that of T cell co-stimulation, while 
the remaining immune functions were all associated with specific 
immunosuppression and inflammatory responses [65,72,73]. These 12 
immune functions were also among the 3 feature genes, with HHIP 
highly expressed in cytolytic activity and type II IFN response, CXCL14 
highly expressed in CCR, and CDHR2 highly expressed in CCR and type 
II IFN response. However, although the expression of characteristic 
genes was higher in the C2 subtype than in the C1 subtype, the C2 
subtype was found to be highly expressed in these immune functions, 
which are associated with the development of inflammatory and anti
viral responses [65,66]. 

Hence, the assessment from both viewpoints supports the notion that 
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HBV-HCC patients belonging to the C2 subtype are likely to experience 
lower levels of impairment compared to those in the C1 subtype. 
Consequently, the immunological analyses conducted for both C1 and 
C2 subtypes reinforce the finding that patients with C2 subtype may 
experience less impairment than those with C1 subtype. 

Despite using various bioinformatics and statistical methods to 
identify diagnostic feature genes associated with HBV-HCC and 
revealing the role of the immune microenvironment in the disease 
process, our study has some limitations that must be acknowledged. 
Firstly, our study is retrospective and requires further validation by 
future prospective studies. Secondly, the sample size used in our analysis 
was limited by the data obtained from the GEO database. Lastly, some 
potential mechanisms associated with HBV-HCC that were identified in 
our study may not have been fully elucidated, as existing research 
suggests. 

5. Conclusion 

Our study utilized a variety of bioinformatics analysis methods to 
identify and characterize three diagnostic feature genes, HHIP, CXCL14, 
and CDHR2, that are associated with HBV-HCC. The ANN and nomo
gram models we constructed based on these genes demonstrated strong 
predictive capability. Additionally, our analysis of the enrichment of the 
feature genes yielded valuable insights into the molecular mechanisms 
underlying the progression of HBV-HCC. By conducting immune infil
tration analysis, we delved into the role played by the immune micro
environment in the progression of HBV-HCC. Furthermore, we 
successfully classified the subtypes of HBV-HCC based on the expression 
of the feature genes. Furthermore, our study provides evidence of po
tential differences in severity of impairment between patients with 
different subtypes of HBV-HCC based on immunological analyses. Our 
findings have important implications for the development of improved 
diagnostic and clinical treatments for HBV-HCC, with a focus on mo
lecular mechanisms and the immune microenvironment. 
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