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Abstract
Gangavati sona (GS) is a high-yielding, fine-grain rice variety widely grown in the Tungabhadra command area in Karna-
taka, India; however, it is susceptible to bacterial blight (BB). Therefore, the present study was conducted to improve the GS 
variety for BB resistance. Three BB-resistant genes (xa5, xa13, and Xa21) were introgressed into the genetic background 
of susceptible cultivar GS through marker-assisted backcrossing (MABB) by using Improved samba Mahsuri (ISM), a 
popular, high-yielding, bacterial blight resistant rice variety as a donor parent. Foreground selection was carried out using 
gene-specific markers, viz., xa5FM (xa5), xa13prom (xa13), and pTA248 (Xa21), while background selection was carried 
out using well-distributed 64 polymorphic microsatellite markers. The true heterozygote  F1 was used as the male parent 
for backcrossing with GS to obtain  BC1F1. The process was repeated in  BC1F1 generation, and a  BC2F1 plant (IGS-5-11-
5) possessing all three target genes along with maximum recurrent parent genome (RPG) recovery (86.7%) was selfed to 
obtain  BC2F2s. At  BC2F2, a single triple gene homozygote plant (IGS-5-11-5-33) with 92.6% RPG recovery was identified 
and advanced to  BC2F5 by a pedigree method. At  BC2F5, the seven best entries were selected, possessing all three resistance 
genes with high resistance levels against bacterial blight, yield level, and grain quality features equivalent to better than GS. 
The improved versions of GS will immensely benefit the farmers whose fields are endemic to BB.
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Introduction

Globally, rice is one of the most important staple food 
crops and is a primary food source for more than half of 
the world’s population. It provides 21% of the energy and 

15% of the protein requirements of human beings (Ken-
nedy et al. 2002). Estimates have projected that rice pro-
duction must be increased by 0.6–0.9% annually by 2050 
to meet the food demand of the anticipated 9.8 billion 
people (Carriger and Vallee 2007). Nevertheless, rice has 
witnessed yield plateauing in the last two decades due to 
several production constraints and biotic and abiotic stress 
factors (Peng et al. 2004). Among the biotic stresses that 
affect rice crops bacterial blight (BB) disease caused by 
Xanthomonas oryzae pv. oryzae (Xoo) (Swings et al. 1990) 
is the most destructive one, which has a major impact on 
yield loss ranging from 50 to 90% (Ou 1985; Sere et al. 
2005). The disease occurs in the host plant at the seedling, 
vegetative, and reproductive stages, but infection at the 
tillering stage causes severe blighting of leaves, resulting 
in yield loss (Shivalingaiah 2011). Chemical control of 
this disease is complicated and limited due to the concerns 
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over health hazards (Guvvala et al. 2013). Managing the 
disease using host plant resistance is the most effective, 
environmentally safe, and economical option (Khush et al. 
1989). Therefore, the preferred bacterial blight disease 
management strategy is developing resistant rice varie-
ties by deploying resistance genes.

Globally, more than 45 BB resistance genes have been 
identified from diverse sources, which offer resistance to 
various strains of Xoo (Neelam et al. 2020). Many of these 
resistance genes have been tagged by closely linked molec-
ular markers (Sonti 1998; Rao et al. 2002). Through con-
ventional breeding, a few of these genes, including Xa4, 
have been integrated into numerous high-yielding varieties 
(Khush et al. 1989). However, the widespread cultivation 
of these varieties has led to the prevalence of isolates that 
overcome Xa4 (Mew et al. 1992). Therefore, deploying 
multiple BB resistance genes into rice cultivars results in 
a broad spectrum and more durable level of resistance than 
varieties with only a single BB resistance gene.

In the Tungabhadra command area of Karnataka state, 
India, rice is grown extensively in 3.5 lakhs ha. In the 
northern districts of Karnataka, rice is grown both in Kha-
rif and the summer seasons by utilizing the water resources 
of the Tungabhadra River. Since extensive rice cultiva-
tion is carried out in these areas, this region is known as 
the “Rice Bowl” of Karnataka state. Gangavati sona (GS) 
is a major rice variety cultivated in these regions. GS is 
known for its high yield (Kharif: 6.5–7.0 t/ha and sum-
mer: 7.0–7.5 t/ha), excellent cooking and eating qualities, 
and suitability to grow in wet and dry seasons without 
compromising yield levels. Despite its popularity in most 
rice-growing regions, farmers are facing the problem of 
moderate to severe BB infection in GS, which leads to 
significant yield loss, and the Tungabhadra command area 
is known to be endemic for BB disease.

Previously, Joseph et al. (2004) introduced xa13 and 
Xa21 into the popular basmati rice variety Pusa Basmati1 
and released them as Improved Pusa Basmati1 in India for 
commercial cultivation. Similarly, Sundaram et al. (2008) 
incorporated three major BB resistance genes (xa5, xa13 
and Xa21) in the background of a highly popular rice 
variety, Samba Mahsuri. The “Improved Samba Mahsuri” 
(ISM) possesses high grain yield and elite grain qual-
ity traits of Samba Mahsuri with a high resistance level 
against BB disease. Therefore, ISM was released for com-
mercial cultivation across India in Samba Mahsuri grow-
ing areas in 2008. With this background, in the present 
study, we employed a marker-assisted backcross breeding 
(MABB) strategy to incorporate three major BB resist-
ance genes, viz., xa5, xa13, and Xa21, into the genetic 
background of Gangavati sona intending to increase the 
durability and spectrum of resistance of this highly pre-
ferred, premium quality rice variety.

Materials and methods

Plant materials

Gangavati sona (GS), a high-yielding, medium, slender, 
fine grain, BB susceptible, elite rice variety developed and 
released for commercial cultivation in the year 2012 by 
Agricultural Research Station, Gangavathi of University 
of Agricultural Sciences, Raichur, Karnataka, was used as 
a recurrent parent (RP). Improved Samba Mahsuri (ISM; 
also known as RPBio-226), a high yielding, medium slen-
der fine grain, low glycemic index (50.99), BB resistant 
possessing three major BB resistance genes, viz., xa5, 
xa13 and Xa21 (Sundaram et al. 2008), developed from 
the cross SS1113/Samba Mahsuri through marker-assisted 
backcross breeding (MABB) developed by ICAR-Indian 
Institute of Rice Research (ICAR-IIRR) Hyderabad in 
association with CSIR-Centre for Cellular and Molecular 
Biology (CSIR-CCMB), Hyderabad, India and currently 
occupied more than 6,00,000 hectares was used as the 
donor parent (DP) for bacterial blight resistance.

Development and selection of improved 
BB‑resistant lines through the MABB strategy

The recurrent parent GS was crossed with Improved Samba 
Mahsuri, and the  F1s were analyzed for their heterozygo-
sity (i.e. true  F1s) using the target resistance gene-specific 
markers, namely, xa5FM specific for xa5, xa13prom spe-
cific for xa13 (Hajira et al. 2016) and pTA248 specific for 
Xa21 (Ronald et al. 1992) (Fig. 1). True  F1s thus identi-
fied were then backcrossed to the recurrent parent, GS, to 
generate  BC1F1s. Then, they were subjected to foreground 
selection using gene-specific markers, and plants that are 
triple gene heterozygous were subjected to background 
selection to identify a single plant with maximum recur-
rent parent genome (RPG) recovery using a set of 64 SSR 
parental polymorphic markers, which are evenly distrib-
uted across the 12 rice chromosomes (Table 1). The extent 
of recurrent parent genome (RPG) recovery among the 
selected backcross-derived plants was assessed utilizing 
the software tool Graphical Genotype V 2.0 (Van Berloo 
1999).

A single positive  BC1F1 plant with maximum RPG 
recovery was selected and backcrossed with GS to gen-
erate  BC2F1s, and the process of marker-assisted back-
crossing was repeated as mentioned above, and a single 
 BC2F1 plant with all the three target resistance genes with 
maximum RPG recovery was selfed to develop  BC2F2s. 
Finally, a  BC2F2 plant possessing xa5, xa13, and Xa21 
genes in homozygous condition along with maximum 
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RPG and closely resembling GS based on morphological 
features along with a high level of resistance against BB 
was identified and advanced through the pedigree method 
of breeding to  BC2F5. The  BC2F5 lines were also further 
evaluated for BB resistance under controlled conditions 

and for grain and cooking quality, key agro morphological 
traits, including yield parameters under field conditions.

The background genome recovery ‘G’ was calculated using 
the below formula (Sundaram et al. 2008).

Fig. 1  Outline of the marker-assisted backcross breeding scheme to develop BB resistance in Gangavati sona

Table 1  Microsatellite markers polymorphic between Gangavati sona (recurrent parent) and Improved Samba Mahsuri (donor parent)

S.N. Chromo-
some no.

Total no. of 
markers analysed

No. of polymor-
phic markers

Polymorphic markers

1 1 65 8 RM 10009, 4554, 10167, 10078, 6324, 4959, 10115, 10695
2 2 39 5 RM 13155, 14140, 13131, 13045, RMES2-1
3 3 38 5 RM 14735, 15630, 15004, 15404, HRM15679
4 4 94 8 RM 16606, 17345, 17377, 16868, 3524, 16373, 16855, 6997
5 5 61 5 RM 169, 18516, 592, 17920, 19147
6 6 75 5 RM 19367, 19410, 1369, 589, 20583
7 7 106 4 RM 6697, 3583, 20923), chr7-1.2
8 8 88 3 RM 6925, 5933, 22565
9 9 50 3 3RM 3769, 3808), RMES9-2
10 10 45 3 RM 5271, chr10-22.1, ESSR 10–22.7
11 11 78 8 RM 21, 26352, 27369, 26558, 26868), chr11-8.9, chr11-25.5, chr11-28.1
12 12 50 7 RM 2877, 28481, 28441, RMS 10060, SSR12-7.4, JGT12-20.24, ESSR12-20.2
Total no. of markers 789 64



 3 Biotech (2023) 13:393

1 3

393 Page 4 of 12

 where N = total number of parental polymorphic markers 
screened, X = number of markers showing homozygosity 
for recurrent parent allele, Y = number of markers showing 
heterozygosity for parental alleles.

Phenotypic screening for bacterial blight

The seven pyramided breeding lines of GS at  BC2F5 genera-
tion and parents were challenged with BB pathogen. IXo-20, 
a virulent isolate of Xanthomonas oryzae pv. oryzae (Xoo) 
(collected from Telangana) during Kharif 2022 in the experi-
mental field of ICAR-IIRR farm located at Rajendranagar, 
Hyderabad, India, to assess their resistance against BB. 
The pathogen was multiplied on modified Wakimoto’s agar 
media at  280C for 72–96 h, harvested after incubation, and 
diluted with sterile distilled water to get a final concentra-
tion of  108 cfu/ml. Inoculation was done at the maximum 
tillering stage following the leaf clip method of Kauffman 
et al. (1973) by clipping the leaf tip (about 1 to 2 cm) of the 
uppermost leaves with a sterilized scissor dipped in the bac-
terial suspension. Disease reactions were recorded 15 days 
post-inoculation by measuring the lesion length and follow-
ing the SES scale (standard evaluation system for rice) (IRRI 
2013) for resistance/susceptibility.

Evaluation of improved GS lines 
for agro‑morphological traits

Seven improved backcross derived lines of  BC2F5 genera-
tion, possessing BB-resistant genes in the background of GS 
along with recurrent parent and donor parent, were space 
planted in the main fields during the wet season of 2021–22 
of ICAR-IIRR farm, Hyderabad, India, at a spacing of 
15 × 20 cm in four replicates. The field was maintained with 
the recommended dose of fertilizers (120:60:60 kg NPK per 
hectare). Phenotypic data of the selected plants for key agro-
morphological traits were collected, including days to 50% 
flowering (DFF), plant height (cm), number of productive 
tillers per plant, panicle length (cm), number of grains per 
panicle, grain yield per plant (g), 1000-grain weight (g), 
L/B ratio, grain type and type of panicle exertion among ten 
plants for each replication (n = 4) as explained in Abhilash 
et al. (2016). The data were statistically analyzed for genetic 
parameters, and the Coefficient of variation (CV) was cal-
culated using standard errors of the mean (S.Em. ±) as per 
the procedure described by Freeman (1973). An analysis of 
variance (ANOVA) was performed using the R Studio ver-
sion 4.3.1 to determine the variation among the improved 
breeding lines of GS.

G =

[(

X +
1

2
Y

)

∗ 100

]

N
,

Results

Introduction of xa5, xa13 and Xa21 genes 
into Gangavati sona background

The male parent (ISM) and the female parent (Gangavati 
sona) were sown staggered to match the flowering period for 
crossing to obtain  F1 seeds. The 46  F1 plants were inoculated 
with bacterial culture and scored for their disease reactions. 
The  F1 plants had disease lesion lengths ranging from 0.8 to 
1.2 cm, indicating a resistant nature (Fig. 2). A total of 36 
 F1 plants were found to be triple heterozygous (i.e. true  F1s) 
with respect to the three targets BB-resistant genes (Table 2). 
Among 142  BC1F1s screened, 13 plants were triple heterozy-
gous for target-resistant genes (i.e. xa5, xa13, and Xa21). 
These plants were analyzed through background selection to 
assess the RPG recovery using a set of 64 parental polymor-
phic markers (Table 1). The plant (IGS-5-11) with the high-
est RPG of 74.2% was identified and used as a pollen donor 
to produce  BC2F1s. A total of 137  BC2F1s were raised and 
subjected to foreground selection employing gene-specific 
markers to identify true heterozygous plants. Eight out of 
137 plants were confirmed to possess all three target genes, 
and they were then subjected to background selection using 
parental polymorphic markers. A single plant (IGS-5-11-
5) with maximum RPG recovery (86.7%) was identified 
(Fig. 3). This plant was selfed to produce  BC2F2 plants. A 
total of 286  BC2F2 plants were raised and inoculated with 
bacterial culture in the field for phenotypic screening with a 
local isolate of Xoo, IX0-20 at the maximum tillering stage. 
The disease lesion lengths varied from 0.9 to 2.2 cm. The 
phenotypically resistant plants were subjected to marker 
analysis with the help of gene-specific markers. Of the 286 
plants, a total of 4 plants (1 out of 71) were identified as 
triple homozygous for all three target genes.

Further, background selection was performed using 
the parental polymorphic SSR markers to identify a sin-
gle plant with maximum RPG. The Plant, IGS-5-11-5-33 
(Fig. 4), had the highest RPG recovery (92.6%). It was 
then advanced through the pedigree method till the  BC2F5 
generation. Seven promising  BC2F5 lines similar to GS, 
i.e. IGS-5-11-5-33-24-06-06, IGS-5-11-5-33-24-06-24, 
IGS-5-11-5-33-24-06-30, IGS-5-11-5-33-24-06-91, IGS-
5-11-5-33-24-06-93, IGS-5-11-5-33-24-06-184, and IGS-
5-11-5-33-24-06-214 were selected and evaluated for BB 
resistance, agro morphological traits, and yield analysis.

Evaluation of pyramided lines for BB resistance

The pyramided lines were evaluated for BB reaction under 
field conditions using IXo-20 strain (Table 3). The donor 
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Fig. 2  Disease reaction of parents,  F1’s and derived  BC2F5 for Xoo 
strain. R: Recurrent Parent; D: Donor Parent; 1–7: Derived  BC2F5 
plants (1: IGS-5-11-5-33-24-06-06, 2: IGS-5-11-5-33-24-06-24, 3: 

IGS-5-11-5-33-24-06-30, 4: IGS-5-11-5-33-24-06-30, 5: IGS-5-11-5-
33-24-06-93, 6: IGS-5-11-5-33-24-06-184, 7-IGS-5-11-5-33-24-06-
214)
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Table 2  Number of plants confirmed for foreground and background selection in each backcross population

S.N. Generation Total no. of plants 
analysed

Total No. of plants with 
all three genes

% Recurrent parent genome 
(RPG) recovery

Plant with maximum RPG%

1 F1 46 36 –
2 BC1F1 142 13 74.2% IGS-5-11
3 BC2F1 137 8 86.7% IGS-5-11-5
4 BC2F2 286 4 92.6% IGS-5-11-5-33
5 BC2F5 98.3% IGS-5-11-5-33-24-06-06

IGS-5-11-5-33-24-06-24
IGS-5-11-5-33-24-06-30
IGS-5-11-5-33-24-06-91
IGS-5-11-5-33-24-06-93
IGS-5-11-5-33-24-06-184
IGS-5-11-5-33-24-06-214

Fig. 3  Graphical representation of genome recovery in selected 
 BC2F1 population through graphical genotype analysis. a Extent of 
background genome recovery in the genomic regions in the vicinity 
of xa5 on chromosome 5. b Extent of background genome recovery 

in the genomic regions in the vicinity of xa13 on chromosome 8. c 
Extent of background genome recovery in the genomic region in the 
vicinity ofXa21 on Chromosome 11
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parent ISM was highly resistant to BB with a disease 
lesion length of 0.5 ± 0.13 cm, and the recurrent parent, 
GS, was highly susceptible, with a disease lesion length of 
8.0 ± 0.39 cm. All seven pyramided  BC2F5 lines were wit-
nessed to be resistant to BB, with average lesion lengths 
ranging from 1.1 to 1.7 cm.

Assessment of pyramid lines for yield 
and agro‑morphological characters

Among the seven  BC2F5 pyramided lines, the IGS-5-11-
5-33-24-06-30 exhibited significantly better performance 

over the RP, and GS concerning yield and other agro-mor-
phological traits (Table 4). IGS-5-11-5-33-24-06-06 was 
early (93.4 days to 50% flowering) compared to others, and 
GS and also exhibited the highest value for plant height 
(101.2 cm). IGS-5-11-5-33-24-06-214 also produced more 
productive tillers per plant (12.1). All the pyramided lines 
were found on par or better than both parents in terms of 
panicle length, number of grains per panicle, grain yield per 
plant, and 1000-grain weight. Further, all the improved lines 
had an LB ratio equivalent to GS (~ 3.8), and all the lines had 
full exerted panicles similar to the recurrent parent.

Estimation of genetic variability parameters

Genotypic coefficient of variation (GCV) and phenotypic 
coefficient of variation (PCV) estimates (Table 4) were 
found to be lower (1.04–8.02%) for traits days to 50% flow-
ering, plant height, panicle length, number of grains per 
panicle, grain yield per plant, 1000 seed weight, L/B ratio 
and were moderate (18.27–20.63%) for number of produc-
tive tillers per plant revealed the presence of variability for 
the traits under study. Similarly, estimates for heritability 
in a broad sense were high (78.41–94.59%) for all the traits 
except for the trait L/B ratio (moderate-60%). The genetic 
advance as a per cent of mean (GAM) was recorded to be 
lower (1.66–9.78%) for days to 50% flowering, plant height, 
panicle length, number of grains per panicle, 1000 seed 
weight, L/B ratio; moderate (14.55%) for grain yield per 
plant and was high (33.35%) for number of productive till-
ers per plant.

Fig. 4  Identification of homozygous  BC2F2 (IGS-5-11-5-33) plants 
possessing xa5 + xa13 + Xa21. a Analysis of xa5 gene using xa5FM 
marker b Analysis of xa13 gene using xa13prom marker. c Analysis 

of Xa21 gene using pTA248 marker. L Ladder, R recurrent parent GS; 
D, donor parent ISM; 1-39, 40 test samples

Table 3  Disease reaction of improved pyramided lines of GS with 
bacterial blight pathogen

S susceptible, R resistant

S.N. Entry Reactions against BB 
(IX0-20)

Score (cm) Reaction

1 GS 8.0 ± 0.39 S
2 ISM 0.5 ± 0.13 R
3 IGS-5-11-5-33-24-06-06 1.1 ± 0.21 R
4 IGS-5-11-5-33-24-06-24 1.7 ± 0.79 R
5 IGS-5-11-5-33-24-06-30 1.2 ± 0.08 R
6 IGS-5-11-5-33-24-06-91 1.4 ± 0.19 R
7 IGS-5-11-5-33-24-06-93 1.2 ± 0.11 R
8 IGS-5-11-5-33-24-06-184 1.3 ± 0.18 R
9 IGS-5-11-5-33-24-06-214 1.3 ± 0.22 R
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Discussion

Recently, there has been a dramatic shift in rice production 
due to several biotic and abiotic stress factors, which not 
only reduces yield and quality but also potentially negatively 
impact the livelihood of millions of rice farmers. Many 
biotic and abiotic stress factors constantly challenge Rice 
cultivation. Among the biotic stresses, bacterial blight (BB) 
is caused by the Gram-negative bacteria Xanthomonas ory-
zae pv. oryzae (Xoo) causes significant yield loss in irrigated 
and rainfed lowland areas, accounting for 60% of rice-grow-
ing areas in India (Ismail et al. 2013). BB disease caused 
by the Xoo pathogen is highly dynamic, leading to effective 
resistance overcoming after a few years of cultivation. This 
has necessitated breeders to search for novel resistance (R) 
genes. Extensive cultivation of single R gene-containing 
cultivars leads to increased selection pressure on the patho-
gen, which results in the breakdown of resistance (Chukwu 
et al. 2019). Thus, the pyramiding of multiple R genes over 
time and space is an effective strategy to enhance the dura-
bility and spectrum of resistance. Pyramiding multiple R 
genes with conventional breeding is challenging, owing to 
potential linkage drag with other undesirable traits that are 
arduous to break even after several generations of backcross-
ing (Tanksley et al. 1989). In addition, when more than two 
genes are incorporated, it is difficult to differentiate the effect 
of each gene precisely through phenotype-based selection, 
which is adopted in conventional breeding.

Further, in the presence of a dominant and a recessive 
allele, the effect of the recessive gene is masked. The rapid 
advances and low cost of molecular markers, which are 
tightly linked to gene(s) of interest, have precisely made 
it possible to identify plants with multiple R genes. The 
past efforts to incorporate multiple genes with the help of 
molecular markers in the elite but susceptible rice cultivars 
PR106 (Singh et al. 2001), Pusa Basmati (Joseph et al. 
2004), and Samba Mahsuri (Sundaram et al. 2008) have 
been very successful.

Resistance breeding for developing improved lines 
by pyramiding multiple resistance genes with the help of 
molecular markers is effective for BB disease (Joseph et al. 
2004; Sundaram et al. 2008, 2009). At least 47 genes (Sund-
aram et al. 2014; Neelam et al. 2020) conferring resistance 
to BB have been identified in rice germplasm. Among them, 
a combination of three major genes was found to be more 
effective against the disease, viz., major recessive genes xa5 
and xa13 located on chromosome 5 and 8, respectively, and a 
major dominant, broad-spectrum resistant gene Xa21 located 
on Chr. 11 derived from O. longistaminata are known to 
confer durable resistance against BB disease (Sundaram 
et al. 2008; Lalitha et al. 2013; Pradhan et al. 2015; Ramal-
ingam et al. 2017; Rekha et al. 2018).

Gangavati sona is a premium fine grain medium slender 
rice variety known for its high yield and year-round cultiva-
tion in high-productivity regions of the Northern Karnataka 
region of India. It is highly preferred by farmers of the Gan-
gavati area, popularly known as the “rice bowl of Karnataka” 
due to its medium slender (MS) grain type, where MS grain 
type is the dominant market segment in south India. How-
ever, the premium quality rice variety is highly susceptible 
to BB disease. In this context, we have introgressed three 
major BB resistance genes i.e., xa5, xa13, and Xa21, into GS 
to develop durable BB-resistant lines using marker-assisted 
backcross breeding (MABB) strategy without comprising 
GS yield and quality characteristics.

In modern breeding programs, molecular markers linked 
tightly to target genes are utilized to improve the selection 
efficiency of target traits or genes in a backcross breeding 
program (Jena and Mackill 2008). This involves foreground 
selection, where gene-specific markers are used to track 
target trait introgression (Hospital and Charcosset 1997), 
and background selection to identify the backcross-derived 
plant possessing maximum recovery of the recurrent parent 
genome (RPG) using co-dominant markers, which are poly-
morphic among the parents. This study used three co-dom-
inant markers: xa5FM for the gene xa5, xa13prom for xa13 
(Hajira et al. 2016), and pTA248 for Xa21 (Ronald et al. 
1992) for foreground selection. These markers were also 
used successfully by Ramalingam et al. (2017); Rekha et al. 
(2018) and Dasari et al. (2022). Further, 64 parental poly-
morphic SSR markers were used for background selection.

The improved lines containing a combination of three 
resistant genes revealed a high level of resistance nature 
upon inoculation with the Xoo strain. The lines with only 
the xa5 gene introgressed exhibited a little to partial resist-
ance due to the presence of only one resistant gene, whereas 
lines with more resistant gene combinations (xa13 or Xa21) 
exhibited a good resistance level. Even though the lines 
with single xa13 or Xa21 and/or other lines with two gene 
combinations are resistant, we have characterized only the 
three gene pyramided lines, considering the resistance they 
provided would be more durable and long-lasting. The data 
on disease lesion lengths of improved lines (Table 3) were 
recorded post-15 days after inoculation (DAI). The inoc-
ulated leaves were also examined at 21 DAI, wherein the 
lesion lengths had expanded in single- and two-gene intro-
gressed lines but not in three-gene pyramided lines, indicat-
ing that there is a kind of quantitative complementation and 
additive nature of the resistance genes deployed. A higher 
level of resistance was also observed in improved introgres-
sion lines with multiple BB resistance genes, compared to 
those with fewer resistance genes in studies by Sundaram 
et al. (2008) and Dasari et al. (2022).

The genes xa5, xa13, and Xa21 introduced into the 
GS background are well characterized. xa5, a recessive 
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resistance gene, encodes a variant form of transcription fac-
tor γIIa (Iyer and McCouch 2004) and the xa13 gene is also 
recessive which has shown a mutation in the promoter region 
of a gene that is a homolog of the nodulin MtN3 (Chu et al. 
2006), while Xa21, a dominant gene that encodes NBS-LRR 
domains of a receptor kinase (Song et al. 1995).

Microsatellite markers (SSR) that are found to be poly-
morphic among the parents, ISM, and GS were utilized for 
background selection in our study. Marker-assisted back-
ground selection is beneficial in recovering RPG by reducing 
the number of backcrosses (Hospital and Charcosset 1997), 
and background selection in early backcross generations was 
found to help recover RPG quickly (Chen et al. 2001; Joseph 
et al. 2004). Many studies (Bai et al. 2006; Hasan et al. 2015; 
Sundaram et al. 2008; 2009) suggest that a minimum of 3–4 
backcrosses are required to recover RPG completely, while 
recent studies indicate that with stringent MABB, it is pos-
sible to get maximum RPG recovery even with two rounds 
of backcrossing (Singh et al. 2001; Basavaraj et al. 2010; 
Miah et al. 2015; Abhilash Kumar et al. 2017; Rekha et al. 
2018; Swathi et al. 2019).

In the present study, the backcrossing was restricted to 
two generations since both parents used to share the same 
Samba Mahsuri lineage. The plant with the highest RPG 
recovery in  BC1F1 was 74.2% in IGS-5-11 and 86.7% in 
 BC2F1 (IGS-5-11-5). In  BC2F2 generation, the line IGS-5-
11-5-33 exhibited 92.6% RPG recovery and 98.3% in the 
selected best improved  BC2F5 (IGS-5-11-5-33-24-06-30) 
line. The high RPG recovery obtained in this study can be 
attributed to the fact that the stringent phenotypic selection 
was carried out at every backcross generation and selfing. 
This helps in the reduction of time and resources used as 
well. Earlier, Singh et al. (2012) followed a similar strategy 
and reported increased RPG recovery. The results obtained 
in the present study are in accordance with the earlier reports 
(Sundaram et al. 2008; Pradhan et al. 2015; Dasari et al. 
2022).

When challenged with the Xoo pathogen under field 
conditions, GS's improved, bacterial blight-resistant lines 
revealed that all the pyramided lines were resistant to bac-
terial strain IXo-20. Similar results were also observed in 
earlier studies (Yoshimura et al. 1995; Huang et al. 1997; 
Sanchez et al. 2000; Singh et al. 2001; Sundaram et al. 2008; 
Dokku et al. 2013; Gitishree and Rao 2015; Dasari et al. 
2022) wherein xa5, xa13, and Xa21 were introgressed in 
combinations or singly.

The main objective of this study was to develop improved 
lines of GS with durable resistance to BB. Many studies 
(Sanchez et al. 2000; Sundaram et al. 2008) have reported 
the quantitative complementation of resistance genes when 
they are introgressed in different combinations. Deploying 
three resistant genes into the GS background may help the 
farmers to reap the yield advantages in disease-affected 

areas by providing durable resistance. Parallel results were 
reported by Sundaram et al. 2009 and Dasari et al. 2022 
in other genetic backgrounds of Indica rice cultivars. The 
improved lines using GS as a recurrent parent are expected 
to show high resistance against BB. This disease is widely 
prevalent, limiting rice production in Karnataka (Raichur, 
Koppal, and Ballari) and other Indian states (Aruna Kumari 
et al. 2016).

From the agro morphological data, the improved lines 
of GS possessing resistance against BB disease performed 
better when compared to GS without yield penalty. We 
observed that some lines were superior to Recurrent par-
ent GS. Further, the selected lines possessing BB resistance 
were found to retain medium slender grain types and other 
grain quality traits as of GS. All the improved lines exhibited 
full panicle exertion and plant height similar to GS. It can 
be anticipated that the improved GS lines for BB resistance 
developed through marker-assisted backcrossing will benefit 
the farmers who regularly grow GS as they are similar in 
quality and yield, with an added advantage of three resist-
ance genes against BB disease.

Conclusions

Through this MABB strategy, we have successfully intro-
gressed three major BB resistance genes, i.e. xa5, xa13, 
and Xa21, into the background of the susceptible variety 
Gangavati sona (GS), without yield penalty and retaining 
better grain quality and other related traits of the elite vari-
ety. The identified lines possessing resistance genes have 
very good phenotypes and high yield levels. Hence, a few of 
these lines have been nominated for All India Co-ordinated 
Crop Improvement (AICRIP) trails for varietal release to 
farmers. These introgressed lines may help the farmers of 
GS, whose fields are affected by BB disease. In addition, 
these improved lines can be used in future disease-resistance 
breeding programs as donors. Our work demonstrated the 
importance of marker-assisted backcrossing for improving 
the popular varieties to BB resistance while retaining all the 
other desirable attributes for which farmers have been grow-
ing for many years with enhanced durable broad-spectrum 
resistance to BB.
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