ERGODIC PROPERTY OF THE BROWNIAN MOTION PROCESS

By G. KALLIANPUR AND H. ROBBINS*

THB INSTITUTE FOR ADVANCED STUDY AND UNIVERSITY OF NORTH CAROLINA

Communicated by J. von Neumann, April 16, 1953

1. Introduction.-In a previous paper ("On the Equidistribution of Sums of Independent Random Variables," to appear elsewhere; an abstract will appear in Bull. Am. Math. Soc., 59, (May, 1953); we shall refer to this paper as [1]) we considered some properties of the sequence S_n of partial sums of independent and identically distributed random variables or random vectors in two dimensions. Here we show in Theorems 1-4 that the results of [1] carry over to the Brownian motion process in one and two dimensions.

2. The Two-Dimensional Case.—Let $X(t)$ denote the Brownian motion (Wiener) process on the line: $X(0) \equiv 0, X(t)$ is continuous for all t with probability 1, and for any $t_0 < t_1 < \ldots < t_n$ the random variables $X(t_i)$ – $X(t_{i-1}), j = 1, \ldots, n$, are independent and normally distributed with zero means and variances $t_i - t_{i-1}$. Let $V(t) = (X(t), Y(t))$ denote the Brownian motion process in the plane, the two components of $V(t)$ being independent one-dimensional Brownian motion processes. Suppose that $f(x, y)$, $g(x, y)$ are real valued functions which are bounded and summable in the plane $-\infty < x < \infty$, $-\infty < y < \infty$, and set $\bar{f} = \int \int f(x, y) dx dy$, $\bar{g} = \int \int g(x, y) dx dy$, where here and in the sequel an integral sign without limits denotes integration over $(-\infty, \infty)$. We shall prove the following two theorems for plane Brownian motion. The corresponding results for the one-dimensional case involve no essentially new arguments and will be stated without proof at the end of the paper.

THEOREM 1. If $\bar{f} \neq 0$ then for every u,

$$
\lim_{T \to \infty} \Pr \left[\frac{2\pi}{f \log T} \int_0^T f(V(t)) \, dt \le u \right] = G(u), \tag{2.1}
$$

where $G(u) = 1 - e^{-u}$ for $u \ge 0$, $= 0$ for $u < 0$. THEOREM 2. If $\bar{g} \neq 0$ then

$$
\lim_{T \to \infty} \frac{\int_0^T f(V(t)) \, dt}{\int_0^T g(V(t)) \, dt} = \frac{f}{\bar{g}} \text{ in probability.}
$$
\n(2.2)

Proofs of Theorems 1 and 2: Assume $\bar{f} \neq 0$ and $\bar{g} \neq 0$ and define

$$
Z_n(f) = \frac{2\pi}{f \log n} \int_0^n f(V(t)) dt, \qquad W_n(f) = \frac{2\pi}{f \log n} \sum_{j=1}^n f(V(j)),
$$

with corresponding definitions for $Z_n(q)$ and $W_n(q)$. For any positive

integer *n*, each component of $V(n)$ is the sum of *n* independent random variables, each distributed normally with zero mean and unit variance, since

$$
X(n) = \sum_{j=1}^{n} [X(j) - X(j-1)], \qquad Y(n) = \sum_{j=1}^{n} [Y(j) - Y(j-1)].
$$

A theorem in [1] gives

$$
\lim_{n \to \infty} \Pr[W_n(f) \le u] = G(u). \tag{2.3}
$$

We shall later prove as Lemma ¹ that

$$
\lim_{n \to \infty} E[Z_n(f) - W_n(f)]^2 = 0. \tag{2.4}
$$

It follows from (2.4) that $Z_n(f) - W_n(f)$ tends to zero in probability, and hence from (2.3) that $Z_n(f)$ has the same limiting distribution, $G(u)$, as $W_n(f)$. This proves (2.1) as $T \to \infty$ through integer values, and the extention to arbitrary T is immediate, proving Theorem 1.

To prove Theorem ² we shall later prove as Lemma ² that

$$
\lim_{n \to \infty} E[Z_n(f)Z_n(g) - W_n(f)W_n(g)] = 0, \qquad (2.5)
$$

and we make use of the fact, proved in [1], that

$$
\lim_{n \to \infty} EW_n^2(f) = \lim_{n \to \infty} EW_n^2(g) = \lim_{n \to \infty} EW_n(f)W_n(g) =
$$

$$
\int_0^\infty u^2 dG(u) = m_2 \text{ say.} \quad (2.6)
$$

From $(2.4)-(2.6)$ it follows that

$$
\lim_{n \to \infty} EZ_n^2(f) = \lim_{n \to \infty} EZ_n^2(g) = \lim_{n \to \infty} EZ_n(f)Z_n(g) = m_2,
$$

and hence $\lim_{n \to \infty} E[Z_n(f) - Z_n(g)]^2 = 0.$ (2.7)

As in [1], given $\epsilon > 0$ we choose $\delta = \delta(\epsilon) > 0$ such that $\delta \leq \epsilon$, $G(\delta) \leq \frac{1}{2}\epsilon$, and $N = N(\epsilon)$ (by (2.1) with f replaced by g) such that

$$
n \geq N \text{ implies } \Pr[Z_n(g) > \delta] \geq 1 - G(\delta) - \frac{1}{2}\epsilon \geq 1 - \epsilon.
$$
\n
$$
\text{Since } \Pr[\{Z_n(f) - Z_n(g)\}^2 < \delta^3] \geq 1 - \frac{E[Z_n(f) - Z_n(g)]^2}{\delta^3},
$$

if we choose (by $(2.7)K = K(\epsilon)$ such that

$$
n \geq K \text{ implies } E[Z_n(f) - Z_n(g)]^2 \leq \delta^4,
$$

then if $n \geq \max$. (N, K) ,

$$
\Pr[Z_n(g) > \delta] \ge 1 - \epsilon, \qquad \Pr[\{Z_n(f) - Z_n(g)\}^2 < \delta^3] \ge 1 - \epsilon.
$$

which in turn imply that

$$
\Pr\left[\left\{\frac{Z_n(f)}{Z_n(g)}-1\right\}^2<\epsilon\right]\geq \Pr[Z_n(g)>\delta,\, \{Z_n(f)-Z_n(g)\}^2<\delta^3]\geq 1-2\epsilon.
$$

Since ϵ was arbitrary this proves (2.2) as $T \to \infty$ through integer values. Again, the extension to arbitrary T is immediate. Finally, the restriction that $\bar{f} \neq 0$ can be dropped by a simple argument and the proof of Theorem 2 is complete.

3. Proof of the Lemmas.—We shall prove Lemma 2 first. We have

$$
Z_n(f) = \frac{2\pi}{f \log n} \sum_{j=1}^n \int_{j-1}^j f(V(t)) dt, \ W_n(f) = \frac{2\pi}{f \log n} \sum_{j=1}^n \int_{j-1}^j f(V(j)) dt.
$$

Set $D_n = E[Z_n(f)Z_n(g) - W_n(f)W_n(g)]$

$$
= \frac{4\pi^2}{\bar{f}\bar{g}} \frac{\pi^2}{(\log n)^2} \sum_{j, k=1}^n \int_{j-1}^j \int_{k-1}^k E[f(V(t))g(V(u)) - f(V(j))g(V(k))] \, du dt
$$
\n
$$
= \frac{4\pi^2}{\bar{f}\bar{g}} \frac{\pi^2}{(\log n)^2} \sum_{j, k=1}^n a_{jk},
$$

where

$$
a_{jk} = \int \int \int \left[\theta(t, u) - \theta(j, k)\right] du dt, \qquad R_{jk} = \{j - 1 < t < j; k - 1 < k, k \}.
$$

 $1 < u < k\}, \qquad \theta(t, u) = E[f(V(t))g(V(u))].$

We want to show that $D_n \to 0$ as $n \to \infty$, i.e., that

$$
\lim_{n \to \infty} (\log n)^{-2} \sum_{j, k=1}^{n} a_{jk} = 0.
$$
 (3.1)

To evaluate $\theta(t, u)$ we observe that for $t_1 < t_2$ the random vector $V(t_2)$ - $V(t_1) = (X(t_2) - X(t_1), Y(t_2) - Y(t_1))$ has the joint probability density

$$
\frac{1}{2\pi(t_2-t_1)}e^{-\frac{x^2+y^2}{2(t_2-t_1)}}.
$$

Hence for $0 < t < u$,

$$
\theta(t, u) = \frac{1}{4\pi^2 t(u - t)} \iiint \iiint f(x, y)g(x + x', y + y')
$$

$$
e^{-\frac{x^2 + y^2}{2t} - \frac{x'^2 + y'^2}{2(u - t)}} dxdydx'dy'
$$

$$
= \frac{1}{4\pi^2 t(u - t)} \iiint \iiint f(x, y)g(\zeta, \eta) e^{-Q(t, u)} dxdyd\zeta d\eta,
$$

where we have set

$$
Q(t, u) = \frac{1}{2} \left\{ \frac{x^2 + y^2}{t} + \frac{(x - \zeta)^2 + (y - \eta)^2}{u - t} \right\}.
$$

In what follows C will denote any constant whose numerical value is immaterial, and $F = \sup |f(x, y)|$, $G = \sup |g(x, y)|$. Then if (t, $u) \in R_{ij}$ or $\in R_{ij}$, $j+1$ $(j \geq 2)$,

$$
|\theta(t, u)| \leq \frac{G}{4\pi^2 t(u - t)} \int \int |f(x, y)| e^{-\frac{x^2 + y^2}{2t}} dx dy.
$$

$$
\int \int e^{-\frac{x'^2 + y'^2}{2(u - t)}} dx' dy' \leq \frac{G}{2\pi t} \int \int |f(x, y)| dx dy \leq \frac{C}{j - 1}.
$$
 (3.2)

Also, for $0 < t < u$,

$$
|\theta(t, u)| \leq \frac{1}{4\pi^2 t(u - t)} \int \int \int \int |f(x, y) \cdot g(\zeta, \eta)|
$$

$$
e^{-\frac{x^2 + y^2}{2t}} dx dy d\zeta d\eta \leq \frac{F}{2\pi(u - t)} \int \int |g(\zeta, \eta)| d\zeta d\eta \leq \frac{C}{u - t}.
$$
 (3.3)

We write $\sum_{j,k=1}^{n} a_{jk}$ as the sum of the following terms:

(a)
$$
\sum_{j=2}^{n} a_{jj}
$$
, (b) $\sum_{k=3}^{n} a_{1k}$, (b') $\sum_{i=3}^{n} a_{j1}$, (c) $\sum_{j=2}^{n-1} a_{j,j+1}$,
\n(c') $\sum_{k=2}^{n-1} a_{k+1,k}$, (d) $\sum_{2 \le j \le k-2 \le n-2} a_{jk}$, (d') $\sum_{2 \le k \le j-2 \le n-2} a_{jk}$, and
\n(e) $a_{11} + a_{12} + a_{21}$.

To prove (3.1) it will suffice to show that each of (a) , (b) , (c) , (d) is $o\{(\log n)^2\}$.

(a) From (3.2), if
$$
(t, u) \in R_{jj}
$$
, $j \ge 2$, $|\theta(t, u)| \le \frac{C}{j - 1}$.
\nAlso, $|\theta(j, j)| = \frac{1}{2\pi j} \left| \int \int f(x, y)g(x, y)e^{-\frac{x^2 + 1}{2j}} dx dy \right| \le \frac{C}{j - 1}$.
\nHence $\left| \sum_{j=2}^{n} a_{jj} \right| \le C \cdot \sum_{j=2}^{n} \frac{1}{j - 1} = O(\log n)$. (3.4)

 \sim \sim

 $\sim 10^{-11}$

(b) From (3.3), if
$$
(t, u) \in R_{1k}
$$
, $k \ge 3$,
\n
$$
\left| \theta(t, u) \right| \le \frac{C}{u - t} \le \frac{C}{k - 2}.
$$
\nAlso, $|\theta(1, k)| \le \frac{C}{k - 2}$.

Hence
$$
\left| \sum_{k=3}^{n} a_{1k} \right| \le C \cdot \sum_{k=3}^{n} \frac{1}{k-2} = 0 (\log n).
$$
 (3.5)

(c) Again from (3.2),

$$
\sum_{j=2}^{n-1} a_{j, j+1} = 0(\log n). \tag{3.6}
$$

(d) If
$$
(t, u) \in R_{jk}
$$
, $2 \le j \le k - 2 \le n - 2$, then $Q(t, u) \ge 0$ and
\n
$$
\theta(t, u) - \theta(j, k) = \frac{1}{4\pi^2 t(u - t)} \int \dots \int f(x, y)g(\zeta, \eta) [e^{-Q(t, u)} - e^{-Q(j, k)}] dx \dots d\eta + \frac{1}{4\pi^2} \left[\frac{1}{t(u - t)} - \frac{1}{j(k - j)} \right] \int \dots \int \times f(x, y)g(\zeta, \eta) e^{-Q(j, k)} dx \dots d\eta = J_1 + J_2.
$$

Setting

 $R_a = \{ |x| \le a, |y| \le a, |\xi| \le a, |\eta| \le a \}, R'_a = \text{complement of } R_a,$ let $\epsilon > 0$ be arbitrary and choose $a > 0$ such that

$$
\int \ldots \int \left| f(x, y) g(\zeta, \eta) \right| dx \ldots d\eta < \epsilon.
$$

We can write

 \bullet

$$
J_1 = \frac{1}{4\pi^2 t(u-t)} \int \frac{1}{R'_a} \int + \frac{1}{4\pi^2 t(u-t)} \int \frac{1}{R_a} \int = J'_1 + J'_1,
$$

where

$$
|J_1'| \leq \frac{\epsilon}{4\pi^2 t(u-t)} \leq \frac{C\epsilon}{(j-1)(k-j-1)}.\tag{3.7}
$$

 $\hat{\phi}$

To obtain a bound for J_1' we observe that

$$
Q(t, u) - Q(j, k) = \frac{x^2 + y^2}{2} \left(\frac{1}{t} - \frac{1}{j}\right) + \frac{(x - \zeta)^2 + (y - \eta)^2}{2} \left(\frac{1}{u - t} - \frac{1}{k - j}\right) \le \frac{x^2 + y^2}{2} \left(\frac{1}{j - 1} - \frac{1}{j}\right) + \frac{(x - \zeta)^2 + (y - \eta)^2}{2} \left(\frac{1}{k - j - 1} - \frac{1}{k - j}\right) = \frac{x^2 + y^2}{2(j - 1)j} + \frac{(x - \zeta)^2 + (y - \eta)^2}{2(k - j - 1)(k - j)} = A(\ge 0), \text{ say.}
$$

Also,

$$
Q(t, u) - Q(j, k) \ge \frac{(x - \zeta)^2 + (y - \eta)^2}{2} \left(\frac{1}{k - j + 1} - \frac{1}{k - j} \right) =
$$

$$
-\frac{(x - \zeta)^2 + (y - \eta)^2}{2(k - j)(k - j + 1)} \ge -A.
$$

Hence

$$
e^{-A} - 1 \le e^{-\{Q(t,u) - Q(j,k)\}} - 1 \le e^{A} - 1, \quad \text{and}
$$

$$
|e^{-\{Q(t,u) - Q(j,k)\}} - 1| \le \max [e^{A} - 1, 1 - e^{-A}] = e^{A} - 1.
$$

Therefore

$$
|J_1''| \leq \frac{1}{4\pi^2 t(u-t)} \int \prod_{R_a} |f(x,y)g(\zeta,\eta)| \cdot e^{-Q(j,k)} \cdot |e^{-\{Q(j,k)\}} -
$$

$$
1|dx \dots d\eta \leq \frac{FG}{4\pi^2 (j-1)(k-j-1)} \int \prod_{R_a} (e^A - 1) dx \dots d\eta.
$$

Since $e^x \le 1 + xe^b$ for $0 \le x \le b$, we have in R_a

$$
e^A - 1 \leq A e^{-\frac{a^2}{(j-1)j} + \frac{4a^2}{(k-j-1)(k-j)}} \leq A e^{-\frac{a^2}{2} + 2a^2},
$$

and hence

$$
|J''_1| \le \frac{C(a)}{(j-1)(k-j-1)} \left[\frac{1}{(j-1)j} + \frac{1}{(k-j-1)(k-j)} \right]. \quad (3.8)
$$

Turning to J_2 , we have

$$
|J_2| \leq C \left| \frac{1}{t(u-t)} - \frac{1}{j(k-j)} \right| = C \left| \frac{j(k-j) - t(u-t)}{t(u-t)j(k-j)} \right| \leq
$$

$$
C \frac{|j(k-j) - t(u-t)|}{(j-1)j(k-j-1)(k-j)}.
$$

Since $1-2j = j(k-j)-jk + (j-1)^2 \le j(k-j)-1(u-t) \le j(k-j)$ $j) - (j-1)(k-1) + j^2 = k + j - 1,$ lj(k-j) -t(u-t)I <max.[k+j- 1,2j- 1] =

$$
|j(k-j) - t(u-t)| \le \max_{k} |k+j-1, 2j-1| =
$$

$$
k+j-1 = (k-j-1) + 2(j-1) + 2.
$$

Hence

$$
|J_2| \le C \left[\frac{1}{(j-1)j(k-j)} + \frac{1}{j(k-j-1)(k-j)} + \frac{1}{(j-1)j(k-j-1)(k-j)} \right] \le C \left[\frac{1}{(j-1)^2(k-j-1)} + \frac{1}{(j-1)(k-j-1)^2} + \frac{1}{(j-1)^2(k-j-1)^2} \right].
$$
 (3.9)

From (3.7)–(3.9) we obtain for $2 \le j \le k - 2 \le n - 2$,

$$
|a_{jk}| \le \frac{C\epsilon}{(j-1)(k-j-1)} + C(a) \left[\frac{1}{(j-1)^2(k-j-1)} + \frac{1}{(j-1)(k-j-1)^3} \right] + C \left[\frac{1}{(j-1)^2(k-j-1)} + \frac{1}{(j-1)(k-j-1)^2} + \frac{1}{(j-1)^2(k-j-1)^2} \right].
$$
 (3.10)

Now from [1],

$$
\sum_{2 \le j \le k-2 \le n-2} \frac{1}{(j-1)(k-j-1)} \sim (\log n)^2, \tag{3.11}
$$

while

$$
\sum_{i=2}^{n-2} \sum_{k=j+2}^{n} \frac{1}{(j-1)^2(k-j-1)} \le \sum_{j=2}^{n-2} \frac{1}{(j-1)^2} \cdot \sum_{m=1}^{n} \frac{1}{m} = 0 \text{ (log } n),\tag{3.12}
$$

$$
\sum_{j=2}^{n-2} \sum_{k=j+2}^{n} \frac{1}{(j-1)(k-j-1)^2} \le \sum_{j=2}^{n-2} \frac{1}{j-1} \sum_{m=1}^{\infty} \frac{1}{m^2} = 0 \text{ (log } n). \tag{3.13}
$$

From (3.4) - (3.6) and (3.10) - (3.13) it follows that

$$
\limsup_{n\to\infty} (\log n)^{-2} \bigg| \sum_{j,\,k=1}^n a_{jk} \bigg| \leq C\epsilon,
$$

and since ϵ is arbitrary this proves (3.1) and Lemma 2.

Turning to the proof of Lemma 1, let

$$
K_n = \frac{1}{\log n} \left[\int_0^n f(V(t)) dt - \sum_{j=1}^n f(V(j)) \right] =
$$

$$
\frac{1}{\log n} \sum_{j=1}^n \int_{j-1}^{\infty} \left[f(V(t)) - f(V(j)) \right] dt.
$$

Then $EK_n^2 = (\log n)^{-2} \cdot \sum_{j, k=1}^n b_{jk},$

where

 $\bar{\beta}$

$$
b_{jk} = \int \int \int \int E[f(V(t)) - f(V(j))][f(V(u)) - f(V(k))] dt du
$$

=
$$
\int \int \int \left[\{\theta(t, u) - \theta(t, k)\} - \{\theta(j, u) - \theta(j, k)\}\right] dt du
$$

and where we now write

$$
\theta(t, u) = Ef(V(t))f(V(u))
$$

=
$$
\frac{1}{4\pi^2t(u-t)} \int \dots \int f(x, y)f(\zeta, \eta) e^{-Q(t, u)} dx \dots d\eta
$$

for $0 < t < u$. For $2 \le j \le k - 2 \le n - 2$,

$$
\theta(t, u) - \theta(t, k) = \frac{1}{4\pi^2 t(u - t)} \int \ldots \int f(x, y) f(\zeta, \eta) [e^{-Q(t, u)} - e^{-Q(t, k)}] dx \ldots d\eta + \frac{1}{4\pi^2 t} \left[\frac{1}{u - t} - \frac{1}{k - t} \right] \int \ldots \int f(x, y) f(x, y) dx \ldots d\eta = J_1 + J_2.
$$

In R_{jk} ,

$$
Q(t, u) - Q(t, k) = \frac{(x - \zeta)^2 + (y - \eta)^2}{2} \left(\frac{1}{u - t} - \frac{1}{k - t}\right) =
$$

$$
\frac{(x - \zeta)^2 + (y - \eta)^2}{2} \cdot \frac{k - u}{(u - t)(k - t)} \ge 0.
$$

Hence $|e^{-Q(t, u)} - e^{-Q(t, k)}| = e^{-Q(t, k)} |e^{-Q(t, u) - Q(t, k)} - 1| \le 1 -$
 $e^{-Q(t, u) - Q(t, k)} \le Q(t, u) - Q(t, k) \le \frac{(x - \zeta)^2 + (y - \eta)^2}{2}.$
 $\frac{k - u}{(u - t)(k - t)}.$

Thus, writing

$$
J_1 = \frac{1}{4\pi^2 t(u-t)} \int \frac{1}{Re'} \int + \frac{1}{4\pi^2 t(u-t)} \int \frac{1}{Re'} \int = J_1' + J_1'',
$$

we have $J'_1 \leq \frac{C\epsilon}{(j-1)(k-i-1)}$

$$
J_1'' \le \frac{F^2}{8\pi^2 i(u-t)} \int_{R_a} \dots \int \left[(x-\zeta)^2 + (y-\eta)^2 \right] \times d\zeta
$$

$$
dx \dots d\eta \cdot \frac{k-u}{(u-t)(k-t)} \le \frac{C(a)}{(j-1)(k-j-1)^3},
$$

$$
J_2| \le \frac{C}{4\pi^2 i(u-t)(l-1)} \le \frac{C}{(l-1)(l-1)(l-1)}.
$$

$$
|J_2| \leq \frac{C}{t} \cdot \frac{k-u}{(u-t)(k-t)} \leq \frac{C}{(j-1)(k-j-1)^2}.
$$

Hence we have

$$
|\theta(t, u) - \theta(t, k)| \le \frac{C\epsilon}{(j - 1)(k - j - 1)} + C
$$

$$
\frac{C(a)}{(j - 1)(k - j - 1)^3} + \frac{C}{(j - 1)(k - j - 1)^2},
$$
 (3.14)

and similarly it can be shown that the right-hand side of (3.14) is an upper bound for $|\theta(j, u) - \theta(j, k)|$. Hence, as in the proof of Lemma 2,

$$
\lim_{n \to \infty} (\log n)^{-2} \sum_{2 \le j \le k - 2 \le n - 2} b_{jk} = 0,
$$

and the other sums occurring in EK_n^2 can be proved to be $o\{(\log n)^2\}$ as before, completing the proof of Lemma 1.

4. The One-Dimensional Case.—Let $f(x)$ and $g(x)$ be real valued functions which are bounded and summable in the line $-\infty < x < \infty$, and set $f = \int f(x)dx$, $\bar{g} = \int g(x)dx$.

THEOREM 3. If $\bar{f} \neq 0$ then for every u,

$$
\lim_{T \to \infty} \Pr\left[\frac{1}{f\sqrt{T}} \int_0^T f(X(t)) dt \le u\right] = H(u),
$$

where
$$
H(u) = \begin{cases} \sqrt{\frac{2}{\pi}} \int_0^u e^{-y^2/2} dy & \text{for } u \ge 0, \\ 0 & \text{for } u < 0. \end{cases}
$$

THEOREM 4. If $\bar{g} \neq 0$ then

$$
\lim_{T \to \infty} \frac{\int_0^T f(X(t)) dt}{\int_0^T g(X(t)) dt} = \frac{f}{\bar{g}} \text{ in probability.}
$$

* John Simon Guggenheim Memorial Fellow.

OMNIBUS CHECKING OF THE 61-PLACE TABLE OF DENARY LOGARITHMS COMPILED B Y'PETERS AND STEIN, B Y CALLET, AND BY PARKHURST

BY HoRAcE S. UHLER

YALE UNIVERSITY

Communicated by J. B. Whitehead, March 30, 1953

The first reference is: Zehnstellige Logarithmentafel. Erster Band. Herausgegeben von Reichsamt fur Landesaufnahme unter wissenschaftlicher Leitung von Prof. Dr. J. Peters. Berlin 1922. Table 14b, pages 156-162 of the appendix. The original source for Table 14b is acknowledged on page xix by the statement that " \cdots this table contains the 61-place common