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1. Introduction.-In a previous paper ("On the Equidistribution of
Sums of Independent Random Variables," to appear elsewhere; an abstract
will appear in Bull. Am. Math. Soc., 59, (May, 1953); we shall refer to this
paper as [1]) we considered some properties of the sequence S. of partial
sums of independent and identically distributed random variables or
random vectors in two dimensions. Here we show in Theorems 1-4
that the results of [1] carry over to the Brownian motion process in one
and two dimensions.

2. The Two-Dimensional Case.-Let X(t) denote the Brownian motion
(Wiener) process on the line: X(O) - 0, X(t) is continuous for all t with
probability 1, and for any to < t1 < ... < tn the random variables X(tj) -
X(t_l), j = 1, . . ., n, are independent and normally distributed with zero
means and variances tj - tji. Let V(t) = (X(t), Y(t)) denote the Brown-
ian motion process in the plane, the two components of V(t) being inde-
pendent one-dimensional Brownian motion processes. Suppose that
f(x, y), g(x, y) are real valued functions which are bounded and summable
in the plane -o <x < cc, -ocx <y < cx, and setf = fff(x, y) dxdy,
g = ff g(x, y) dxdy, where here and in the sequel an integral sign
without limits denotes integration over (- co, oo). We shall prove the
following two theorems for plane Brownian motion. The corresponding
results for the one-dimensional case involve no essentially new arguments
and will be stated without proof at the end of the paper.
THEOREM 1. Iff $ 0 then for every u,

lim Pr
-
T f(V(t)) dt < = G(u), (2.1)

T co logT J

where G(u) = 1-e-u for u > 0, = Ofor u < 0.
THEOREM 2. If g $ 0 then

fToTf(V((t)) dt
f

in probability. (2.2)

Proofs of Theorems 1 and 2: Assume f $ 0 and g $ 0 and define

2_ n 2 r

Zn(f) = I f(V(t)) dt, Wn(f) = E f(V(j)),flog n o f logn j=

with corresponding definitions for Zn(g) and Wn(g). For any positive
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integer n, each component of V(n) is the sum of n independent random
variables, each distributed normally with zero mean and unit variance,
since

X(n) = , [X(j) - X(j - 1)], Y(n) = E [Y(j) - Y(j - 1)].
j=1 j=l

A theorem in [1] gives

lim Pr[W1(f) < u] = G(u). (2.3)

We shall later prove as Lemma 1 that

lim E[Zn(f) - Wn(f)]2 = 0 (2.4)

It follows from (2.4) that Z1(f) - W15(f) tends to zero in probability,
and hence from (2.3) that Z1(f) has the same limiting distribution, G(u),
as Wx(f). This proves (2.1) as T -X co through integer values, and the
extention to arbitrary T is immediate, proving Theorem 1.
To prove Theorem 2 we shall later prove as Lemma 2 that

lim E[Zx(f)Zn(g) - Wn(f)Wn(g)] = 0, (2.5)

and we make use of the fact, proved in [1], that

lim EW2(f) = lim EW,2(g) = lim EWn(f)Wn(g) =
n co it a Co

feo u2dG(u) = M2, say. (2.6)
From (2.4)-(2.6) it follows that

lim E4n(f) = lim EZ24(g) = lim EZx(f)Zn(g) = iM2,
n_0. co n_azco ax-co

and hence lim E[Zn(f) - Zn(g)]2 = 0. (2.7)

As in [1], given e > 0 we choose a = 6(e) > 0 such that 6 < e, G(5) < '/2e,
and N = N(e) (by (2.1) with f replaced by g) such that

n > N implies Pr[Zn(g) > 5] 1 - G(5) -1/2e> 1 -e.

Since Pr[{Zn(f) - Zx(g) 12 < 63] 1 E[Zn(f) Zn(g)]2

if we choose (by (2.7))K = K(e) such that

n > K implies E[Zn(f) - Zn(g)]2 < 54,

then if n > max. (N, K),

Pr[Zn(g) > 5] 1 -,
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which in turn imply that

Pr {z(f) -1 < E > Pr[Zn(g) > 5, {Zn(f) Zn(g) 2 < 53] > 1 -2e.
L Z-(g)

Since e was arbitrary this proves (2.2) as T -- co through integer values.
Again, the extension to arbitrary T is immediate. Finally, the restriction
that! 0 can be dropped by a simple argument and the proof of Theorem
2 is complete.

3. Proof of the Lemmas.-We shall prove Lemma 2 first. We have

Zn(f) = Xlogn E f(V(t)) dt, Wn(f) fVjlognJJfVj)) dl.

Set D. = E[Zn(f)Zn(g) - Wn(f)Wn(g)]

4wr2 n k

fg (log n) 2 E E[f(V(t))g( V(u))-f(V(j))g( V(k))] dudt(lo n) jk=1 -1 k-1
4T2n

E ajk,-g (logn)2 j,k=1

where

ajt = ff [0(t,u) -0(j,k)]dudt, Rjk = {j- 1<t<j; k -

Rik 1 < u < kI, O(t, u) = E[f(V(t))g(V(u))].

We want to show that D. -n 0 as n -- cc, i.e., that

n
lim (log n)-2 E ajk = 0 (3.1)
n I-M j, k=1

To evaluate 0(t, u) we observe that for tl < t2 the random vector V(12)-
V(t1) = (X(t2) - X(11), Y(t2) - Y(11)) has the joint probability density

1 X2 + Y2

2w (t2 t- )e- 2(12 - ti).

Hence for 0 < t < u,

0(t, u) = 4 12t(u - 1) ffff f(x, y)g(x + x', y + y)

X2 + y2 ,X_2 +Y_2

e 2t 2(u - t) dxdydx'dy'

4w2t(u -t) ] fJ ',fj f(x, y)g(t, n)e-Q(' u) dxdydrdij,
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where we have set

Q(t, u) = i{xI + y2 (x 2 + (y2_)2}

In what follows C will denote any constant whose numerical value is
immaterial, and F = supIf(x, Y)I, G = sup|g(x, y)I. Then if (t,
u) eRjj or ERj, j+1(j > 2),

O(t,u)l . 42 t)JfILf(x, y)Je- 21 dxdy
I X'2+ y'2 G (''C
e 2(u - t) dx'dy'<2 JJ f(x y) dxdy < (3.2)

Also, for 0 < t < u,

8(t, u) 1 < 1f f(x, y)*g
X2 + y2 F ( 'C

e- 21 dxdydd- <. _ JJ g(, )dd, < u (33)
n

We write E ajk as the sum of the following terms:
j,k = 1

n n n n - 1

(a) ajj, (b) alk, (b') E aji, (c) aj, j+l,
=2 k 3 =3 2
n - 1

(c') E ak+l,k, (d) ajk, (d') a1k, and
k = 2 2<.j<k-2<n-2 2<k<j-2<n-2

(e) all+ a12 + a2l.

To prove (3.1) it will suffice to show that each of (a), (b), (c), (d)
is o{(log n)2}.

C
(a) From (3.2), if (t, u)eRjj, j > 2, O(t, u) < -

ff ~~~~X2+C
Also, O(j,j) f(x, y)g(x, y)C- 23 dxdy < -

2 rj J
n n 1

Hence ajj < C.>j- = 0(log n). (3.4)
j=2 j=2J

(b) From (3.3), if (t, u)ERlk, k > 3,

C C
* (1, u)f .u - t k -2

Also, I(1, k)I < k2
k-2

PROC. N. A. S.
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Hence | ai| < C>j = O(log n). (3.5)
k=3 k=3k - 2

(c) Again from (3.2),
n-1

,aj, j+1 = O(log n). (3.6)
j=2

(d) If (t, u) e Rjk, 2 < j < k -2 < n - 2, then Q(t, u) > O and

(t, u)- O(j, k) = 42(-) ... f(x, y),,) [e

e k)x]...d77±i[ i]f xe-Q(s*)dX. -d +47r2 t(U - ) j(k -9j) J

f(x,y)g(&, 7l)e -Q(ik) dx.. .d77 = J1 + J2.

Setting
Ra = {Ix| < a, IYI < a,- IH| < a, 1711 < a}, R' = complement of Ra,
let E> 0 be arbitrary and choose a > 0 such that

, JW~~~.1 Ifi(x, Y)&(, r7)|Idx ..dr7 < c.

Ra

We can write

= 4ir2t(u - t) ± 4ir2t(u - t) =Ro +

where

IT'I.- c- < C
37J1 <' 4wr2t(u- t) (j - 1)(k -j - 1)

To obtain a bound for J; we observe that

Q(t,u) - Q(j,k) = x2+y2(!_) + (x_ )2+(Y_ )2( Lt

i) X2+Y2(1 -1) + (x _)2 + (y 2

k-j/-~~~~~22\j- (X
2 \k-j-1)_X+Y ~+ = A(>.),say.

k-j,/2(j-1)j 2(k-j-1)(k - j)
Also,

Q(t, u) -Q(j, k) > (X )2 + (Y 2- 1)2 ~i+ 1
(X-P)2 + (y - t)2 > -A.
2(k -j)(k -j + 1)-
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Hence

e A - 1< e-IQ(u)-Q(i,k)) < eA _ 1, and

|e-IQ(,u)-Q(i,k)) -1 < max. [eA e1, 1 -eA] = e
A

1.

Therefore

J 47r42t(u - t) /* J' JI f(x, Y)g(¢, ~) | *e Q(i k)* e-I Q( u)-Q(I, k) _

1 dx....d.ir2j - l -j-i) JR f (eA 1) dx.. d-.

Since ex < 1 + xeb for 0 < x < b, we have in R0
a2 + 4a2 1 a2- + 2a2]

eA 1 < AeL( i)i (k-i-i) (k-i) ] < Ae[2

and hence

I -. (j-_ C(k- 1) [(J + (k-j-1) (k - j) (3.8)

Turning to J2, we have

f~2I. C 1 1 jc(k-j) -t(ut)t_J21 < C t t-( j =C i ) jk ))| <
u- t) j(k - j) t(u - t)j(k -j)

C lji(k-j)-t(u-t)|
(- 1)j(k -j - 1)(k -j)

Since 1-2j = j(k-j)-jk + (j-1)2 < j(k-j)-I(u-t) < j(k-
j) - (j- 1)(k- 1) +j2 = k +j-1,

lj(k-j) -t(u-t)I <max.[k+j- 1,2j- 1] =
k + j - 1 = (k-j - 1) + 2(j - 1) + 2.

Hence

Fl

II<C (j -1)j(k - j))((kk-j1)(k-j)

1 1
(j- 1)(k-j - 1)2 + - 1)2(k -j - 1)21 (3.9)

From (3.7)-(3.9) we obtain for 2 < j < k - 2 < n -2,

PROC. N. A S.
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faJkj . Ce±--+C(a) F. I +
(j - l)(k j - 1) )(j - 1)3(k-j - 1)

1 1 F 1
(j-l)(k -j-1)3 + i(j- 1)2(k-j- 1) +

1 + 1 1. (3.10)
(j-1)(k-j 1)2 (j-1)2(k -j 1)2J

Now from [1],

E . . ~~~~~~(log n) 2, (3.11)
25j.k-2<n-2 (j - 1)(k - - 1)

while

x-2 n 1 n-2 1 n 1

=2 k=j+2 (j - 1)2(k -j - 1) j=2 (j- 1)2 m-i m

(3.12)

n-2 n 1 n-2 1 1

L 1 < Z - = 0(log n).
j2 k=j+2 (j - 1)(k -j - 1)2 j=2 j-1 mr-i 2

(3.13)

From (3.4)-(3.6) and (3.10)-(3.13) it follows that
n

lim sup (log n) -2 E ajk < Ce,
n co j,k=1

and since e is arbitrary this proves (3.1) and Lemma 2.

Turning to the proof of Lemma 1, let

1 Ff' 1
Kn lI L f(V(t)) dt - E f(V(i))J =

log n ~ ii [f(V(t)) -f(V(j))] dt.log n j=j -1

Then EK2n = (log n) -2. bik,
j, k=i

where

bjk = ff E[f( V(t)) - f(V(j))][f(V(u)) - f( V(k))] dtdu
Rik

= f [{0(t, U) -O(t, k) -{O(j, u) -O(j, k)}Idtdu
Rik
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and where we now write

O(t, u) = Ef(V(t))f(V(u))

4 I2t(u-t) .J'f(x, y)f(D, tq)e-0( u) dx.. d

forO < t < u. For2<j< k - 2< n -2,

Otu)- O(t, k) = 412j Jf(x, y)f(r, q) [e Q(t U)

e-Q' k)] dx.. Ad + 4r2t [ t k-] f(x,y)f X

e/-Q(, k) dx ... .dr = J1 + J2.

In Rjk,

(X-02 + (y _)2( )Q(t, u) - Q(t, k) = ~ 2+( -n2 1 1

(X- )2 + (y - )2 k-u
2 (u-t)(k-t)

Hence |e-Q(tiu) _ e Q(, k) I= e-Q (1 k) e- Q(t,u) -Q(t, k)) 1<

e-IQ(t, u)-Q(t, k) < Q(t, u) -Q(t, k) < (x -)2 + (Y- )2
2

k-u

(u-t)(k-t)
Thus, writing

472rt(U - t) fr .;f + 42t((U t) I Ra =

Ce
we havef.:< (j1_ )(k-j-1)

8r2t(u- t) J ..J [(x r) + (y _ )2] X.

dx...dq -

k-u < C(a)
r7(u- t)(k -t)- (j-)(k-j -1)3

IJI<C k-u < C
Hn t (u-ht)(k-vt)-(j-)(ke-j-

Hence we have
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0(t, ) (t, )
Ce

9(t, u)-6(t,kt)I . (j- 1)(k-j-- 1)
C(a) + C , (3.14)

and similarly it can be shown that the right-hand side of (3.14) is an upper
bound for 0(j, u) - 0(j, k) I. Hence, as in the proof of Lemma 2,

lim (log n)2 E bik = 0,
25jkk-2. n-2

and the other sums occurring in EK2, can be proved to be o{(log n)2} as
before, completing the proof of Lemma 1.

4. The One-Dimensional Case.-Let f(x) and g(x) be real valued func-
tions which are bounded and summable in the line -c < x < c, and set
f = ff(x)dx, g = Jfg(x)dx.
THEOREM 3. Iff 5=4 0 then for every u,

lim Pr [ J f(X(t)) dt < uJ = H(u),

e2I -y2/2 dy foru2°
where H(u) = r j

0 foru <O.

THEOREM 4. Ifg0 0 then

0Jof(X(t)) dt fZ.liT Tf(X(t)) dt ig.n probability.

* John Simon Guggenheim Memorial Fellow.

OMNIBUS CHECKING OF THE 61-PLACE TABLE OF DENARY
LOGARITHMS COMPILED B Y'PETERS AND STEIN, B Y CALLET,

AND BY PARKHURST

BY HoRAcE S. UHLER
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The first reference is: Zehnstellige Logarithmentafel. Erster Band.
Herausgegeben von Reichsamt fur Landesaufnahme unter wissenschaftlicher
Leitung von Prof. Dr. J. Peters. Berlin 1922. Table 14b, pages 156-162 of
the appendix. The original source for Table 14b is acknowledged on page
xix by the statement that "*--this table contains the 61-place common
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