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A chromosome-level genome 
assembly of Korean mint 
(Agastache rugosa)
Hyun-Seung Park1, Ick Hyun Jo2, Sebastin Raveendar3, Nam-Hoon Kim4, Jinsu Gil3, 
Donghwan Shim   5, Changsoo Kim6, Ju-Kyung Yu7, Yoon-Sup So7 ✉ & Jong-Wook Chung3 ✉

Agastache rugosa, also known as Korean mint, is a perennial plant from the Lamiaceae family 
that is traditionally used for various ailments and contains antioxidant and antibacterial phenolic 
compounds. Molecular breeding of A. rugosa can enhance secondary metabolite production and 
improve agricultural traits, but progress in this field has been delayed due to the lack of chromosome-
scale genome information. Herein, we constructed a chromosome-level reference genome using 
Nanopore sequencing and Hi-C technology, resulting in a final genome assembly with a scaffold N50 
of 52.15 Mbp and a total size of 410.67 Mbp. Nine pseudochromosomes accounted for 89.1% of the 
predicted genome. The BUSCO analysis indicated a high level of completeness in the assembly. Repeat 
annotation revealed 561,061 repeat elements, accounting for 61.65% of the genome, with Copia and 
Gypsy long terminal repeats being the most abundant. A total of 26,430 protein-coding genes were 
predicted, with an average length of 1,184 bp. The availability of this chromosome-scale genome will 
advance our understanding of A. rugosa’s genetic makeup and its potential applications in various 
industries.

Background & Summary
Agastache rugosa, a perennial plant belonging to the Lamiaceae family, is widely distributed in Korea, China, 
Taiwan, and Japan. In Korean traditional medicine, the aerial part of A. rugosa, known as “Gwakyang”, is pre-
scribed for various ailments, such as miasma, cholera, anorexia, and vomiting1. A. rugosa produces phenolic 
compounds such as rosmarinic acid, which has antioxidant and antibacterial properties2–5. In addition to its 
uses in traditional herbal medicine, A. rugosa leaves are used as a spice or vegetable and its flowers as a tea ingre-
dient6. Desta et al. assessed the antioxidant activity of various parts of A. rugosa—including the flowers, leaves, 
stems, and roots—and found that the leaves, flowers, and roots exhibited notably strong antioxidant properties7.

Previous research on A. rugosa has primarily concentrated on its secondary metabolites3,4, 
phenylpropanoid-biosynthetic genes8–10, and cell culture11,12. To date, there are no whole genome sequences 
available for A. rugosa, and only transcriptome data have been published13. An integrated analysis of its metab-
olites and genome will provide insight into chemotype breeding of A. rugosa and improve its economic value in 
the market.

In this study, we assembled the chromosome-level genome of A. rugosa using Nanopore sequencing and 
Hi-C technology. The final genome assembly had a scaffold N50 of 52.15 Mbp, totaling 410.67 Mbp. With inte-
gration of Hi-C data, nine pseudochromosomes were generated, accounting for 89.1% of the entire predicted 
genome. The first chromosome-scale genome of A. rugosa provides a foundational genetic resource for breeding 
programs targeting enhanced production of secondary metabolites like rosmarinic acid and essential oils. This 
genome assembly bolsters the efficiency of genotyping methods such as GBS, facilitating more precise QTL 
analysis or GWAS, which are crucial for optimizing agricultural traits.
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Methods
Sampling and sequencing.  A breeding line, AG34, of A. rugosa, sourced from a specific population in 
the field, was chosen for reference genome sequencing and assembly. This line was derived from original natural 
accessions obtained from the Chungbuk National University (Korea). Young leaf samples were collected once 
during the vegetative stage after being grown in a greenhouse for three months. Leaf tissue samples were stored 
at −80 °C and used for DNA extraction, whole genome sequencing, and Hi-C library construction. DNA was 
extracted using the Biomedic Plant gDNA extraction kit (#BM20211222A, Korea) following the manufacturer’s 
instructions.

An Oxford Nanopore Technology (ONT) sequencing library was constructed using the ONT genomic 
ligation sequencing kit SQK-LSK110 (ONT, UK). ONT sequencing was performed using the flow cell vR9.4 
(FLO-MIN106) and GridION platform operated with MinKNOW Core 4.4.3 following the manufactur-
er’s instructions. We obtained 55.9 Gb of raw genomic data. Guppy v5.0.17, embedded in MinKNOW14, was 
used to convert raw ONT sequencing data (FAST5 files) to FASTQ format using the default parameters of the 
high-accuracy method. All ONT sequencing procedures were conducted by Phyzen Co. (www.phyzen.com, 
Korea). Paired-end (PE) Illumina sequencing was also conducted with the NovaSeq6000 platform after con-
structing a standard Illumina paired-end library. We obtained 115.5 Gb of raw data from Illumina sequencing.

Total RNA was extracted from leaf tissue of the same material used for the genome sequencing of A. rugosa, and 
the transcriptome was sequenced on the Illumina NovaSeq6000 platform by Macrogen Co. (www.macrogen.com,  
Korea). The RNA reads were used for gene annotation.

Sequence trimming and genome size estimation.  ONT data were trimmed using Porechop (v.0.2.3, 
https://github.com/rrwick/Porechop) with default parameters to remove adaptors and chimeric sequences. Raw 
Illumina sequencing data were trimmed using fastp (v.0.21.0, https://github.com/OpenGene/fastp) with default 
parameters. The amount of trimmed Illumina PE sequencing data was 97 Gb, which was used for further genome 
size estimation based on k-mer analysis. An optimal k-mer value of 19 was calculated by Jellyfish (v2.0)15, and the 
genome size was estimated using GenomeScope (v2.0)16. The estimated genome size of A. rugosa based on k-mer 
analysis was 460.89 Mbp, which is slightly smaller than the 520 Mb previously reported using flow cytometry17. 
The heterozygous rate was 0.55%, and the repeat rate was 62.21% (Fig. 1).

Contig assembly.  The first round of de novo assembly was performed using NextDenovo assembler 
(v.2.3.1, https://github.com/Nextomics/NextDenovo) with default parameters, employing only preprocessed 
55,923,595,489 bp of ONT data(~121X of estimated genome size, 460Mbp). Assembled contigs were then pol-
ished using NextPolish (v1.3.1, https://github.com/Nextomics/NextPolish) with trimmed Illumina PE sequencing 
data. Haplotigs were removed using Purge Haplotigs18 with default parameters. The assembly statistics improved, 
with fewer contigs and increased minimum, average contig lengths, and N90 (see Table S1). Finally, a draft 
genome assembly was generated with 221 contigs totaling 410.65 Mbp, with a contig N50 of 3.85 Mbp (Table 1).

Fig. 1  The result of K-mer analysis. (a) 19-mer frequency distribution in A. rugosa genome. The X-axis is the 
k-mer depth, and Y-axis represents the frequency of the k-mer for a given coverage. (b) Statistics of K-mer 
analysis.
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Chromosome-level genome assembly using Hi-C data.  A Hi-C library of A. rugosa was constructed 
for chromosome assembly using the ProximoTM Hi-C Plant Kit (Phase Genomics, United States) following the 
manufacturer’s instructions. A total of 30.77 Gbp of clean Hi-C data were generated and aligned to the assem-
bled contigs using BWA-MEM (v0.7.17)19 with -5SP and -t 8 options specified. Chromosome-level scaffolding 
was performed with the Phase Genomics Proximo Hi-C genome scaffolding platform based on the LACHESIS 
method20, and sequences were anchored to nine pseudochromosomes with chromosome lengths ranging from 
27.7 Mb to 73.6 Mb. Our chromosome-scale assembly coincides with that from a previous karyotype analysis, as 
the base chromosome number of Agastache species is reported to be nine, and A. rugosa is a diploid species21,22. 
Additional manual correction of the chromatin contact matrix was performed using Juicebox (https://github.
com/aidenlab/Juicebox). The nine pseudochromosomes were clearly identified by distinct interaction signals in 
the Hi-C interaction heatmap (Fig. 2), and the final assembled genome was 410.68 Mbp, with a scaffold N50 of 
52.15 Mb, accounting for 89.1% of the predicted genome size based on the k-mer analysis (Table 1 and Fig. 3). 
The assembled genome sizes of Lamiaceae species show a wide range of variation: A. rugosa in this study (410.68 
Mbp), Perilla frutescens var. hirtella (676.94 Mbp)23, P. frutescens var. frutescens (1.2 Gbp)23, Salvia hispanica 
(321.47 Mbp)24, and Salvia splendens (805.9 Mbp)25.

Assessment of the genome assemblies.  The completeness of the assembled genome was evaluated 
using BWA-MEM (v0.7.17)19 and Benchmarking Universal Single-Copy Orthologs (BUSCO, v5.2.1)26 with the 
embryophyta_odb10 lineage dataset. Approximately, 98.04% of the Illumina short read were aligned to genome, 
of which 89.6% of reads were properly mapped. The BUSCO analysis showed that the assembled draft genome 
sequence contained 1,596 (98.9%) complete BUSCOs, including 1,533 (95.0%) single-copy BUSCOs, 63 (3.9%) 
duplicated BUSCOs, and 7 (0.4%) fragmented BUSCOs (Table 2).

Repeat annotation.  The de novo repeat families were identified with RepeatModeler27, and by LTR_
retriever28, then repetitive sequences were masked using RepeatMasker 4.0.9 (http://www.repeatmasker.org).  
A total of 561,061 repeat elements were identified, accounting for 61.65% of the A. rugosa genome. Among the 
various repeat elements, Copia and Gypsy, which are long terminal repeats (LTRs), were dominant in the genome, 
accounting for 14.98% and 13.91%, respectively (Table 3).

Gene prediction and annotation.  Gene prediction involved a combination of evidence-based annota-
tion methods and ab initio prediction using repeat-masked assembly sequences. RNA-Seq data were assembled 
by Trinity and used for the transcript set. Additionally, protein data from four related Lamiaceae species were 
obtained from the NCBI. The first round of gene prediction was performed using MAKER (v3.01.03)29 with 
evidence data, the transcript set and the protein data from the four related species. The ab initio gene predictions 
were conducted on only the first gene models with sufficient evidence (AED of 0.25 or less) using GeneMark-ES 
(v4.38)30, SNAP (v2006-07-28)31, and Augustus (v3.3.2)32. Final gene predictions were confirmed again based 
on the first gene model and ab initio gene model using MAKER3 (v3.01.03)29 and EvidenceModeler (v1.1.1)33. 
In total, 26,430 protein-coding genes were predicted and annotated, with an average gene length of 1,184 bp 
(Table 4). The complete BUSCOs of predicted gene set were calculated as 98.9%.

The predicted genes of A. rugosa were functionally annotated by comparing their similarities against those 
in the NCBI nonredundant (nr) protein database and the reference genome Araport11 of Arabidopsis thaliana 

De novo assembly

Total contigs number 221

Total size of assembled contigs (bp) 410,656,262

Minimum length of contig (bp) 48,164

Maximum length of contig (bp) 12,657,832

Average length of contigs (bp) 1,858,173

Contig N50 (bp) 3,851,190

Contig N90 (bp) 885,118

GC contents (%) 36.51

Final statistics of Hi-C scaffolding

The number of scaffolds (pseudomolecule) 9

Unscaffolded contigs 21

Total length 410,677,362

Total length of scaffolds anchored to chromosomes 405,296,100

Total length of unscaffolded contig 5,381,262

Maximum length of unscaffolded contigs 697,320

Minimum length of scaffold 70,820

Maximum length of scaffold 73,606,202

Scaffold N50 52,151,255

Scaffold N90 32,072,577

Table 1.  Assembly statistics of A. rugosa.
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Fig. 2  Hi-C contact map the chromosome-level assembly of A. rugosa. The intensity of interactions was 
calculated using a bin size of 140 K.

Fig. 3  Overview of genome features of the A. rugosa. Syntenic block among inter-chromosome were analyzed 
with MCScanX. (a) Gene distribution, (b) Repeat percentage(%), (c) Gypsy (red line) and Copia (blue line) LTR 
distribution (%), (d) GC content(%).
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using DIAMOND (v0.9.30.131)34 with an E-value cutoff of 1E-5. Conserved protein domains were predicted by 
InterProScan (v5.34-73.0)35. Gene Ontology analysis was conducted using the Blast2GO command line (v.1.4.4), 
and genes were assigned to metabolic pathways by comparing them to those in the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway database36 using the KEGG Automatic Annotation Server (KAAS) webtools 
(v2.1)37. A total of 24,624 genes were successfully annotated for A. rugosa, accounting for 93.2% of all predicted 
genes (Table 4 and Fig. 4). Predicted gene models were comparable to four other Lamiaceae species in aspects 
such as gene count, average CDS length, average exons per gene, and average exon and intron length (Table 5).

Ortholog and phylogenetic analysis.  Orthologs between A. rugosa and eight other plants (seven 
from the order Lamiales: S. hispanica24, Salvia miltiorrhiza38, P. frutescens var. hirtella23, Paulownia fortune39, 
Erythranthe guttata40, Andrographis paniculata41, and Genlisea aurea42, along with one outgroup, Vitis vinifera43) 
were identified using OrthoFinder (v2.5.4)44. The sequences for these plants were sourced from the NCBI database  
(http://www.ncbi.nlm.nih.gov/). From these, 371 single-copy orthologous genes were extracted, concatenated, 
and aligned using the Multiple Alignment program for amino acid or nucleotide sequences (MAFFT)45. We then 
constructed a maximum likelihood phylogenetic tree of these orthologous genes using RAxML (v8.2.12)46 under 
the JTT model, Gamma Distributed With Invariant Sites (G + I), with a bootstrap value of 1000. Four species, 
namely A. rugosa, S. hispanica, S. miltiorrhiza, and P. frutescens var. hirtella, all of which belong to the Lamiaceae 

Type

Genome

Count Ratio (%)

Complete BUSCOs (C) 1,596 98.9

Complete and single-copy BUSCOs (S) 1,533 95.0

Complete and duplicated BUSCOs (D) 63 3.9

Fragmented BUSCOs (F) 7 0.4

Missing BUSCOs (M) 11 0.7

Total BUSCO groups searched 1,614 100.0

Table 2.  Result of the BUSCO assessment of A. rugosa.

Class
Number of 
elements

Sequence 
length (bp)

Percentage of 
genome (%)

DNA 37,867 10,748,442 2.62%

 CMC-EnSpm 3,533 2,472,316 0.68%

 MULE-MuDR 10,783 9,767,543 2.38%

 PIF-Harbinger 5,955 2,660,594 0.65%

 TcMar-Pogo 646 104,439 0.03%

 TcMar-Stowaway 578 510,816 0.12%

 hAT-Ac 3,793 2,366,869 0.58%

 hAT-Tag1 477 202,820 0.05%

 hAT-Tip100 776 289,420 0.07%

LINE 1,973 252,866 0.06%

 L1 3,602 1,630,673 0.40%

LTR 48,566 12,283,572 2.99%

 Caulimovirus 5,413 10,430,421 2.54%

 Copia 34,703 61,518,387 14.98%

 Gypsy 41,357 57,125,275 13.91%

 unkown 27,449 15,268,074 3.72%

RC — — —

 Helitron 5,338 2,634,800 0.64%

SINE 5,191 1,120,846 0.27%

tRNA 157 42,282 0.01%

Unknown 229,870 57,817,026 14.08%

total interspersed 468,027 249,247,481 60.69%

Low_complexity 16,665 793,497 0.19%

Simple_repeat 76,369 3,132,257 0.76%

Total 561,061 253,173,235 61.65%

Table 3.  Repetitive elements annotation in A. rugosa.
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family, clustered in the same clade. Notably, A. rugosa exhibited a closer relation to the two Salvia species (Fig. 5). 
These findings are consistent with previous phylogenetic studies based on the chloroplast genome47.

Data Records
The genomic Illumina sequencing data were deposited in the Sequence Read Archive at the NCBI 
(SRR24282004)48.

The genomic Nanopore sequencing data were deposited in the Sequence Read Archive at the NCBI 
(SRR24282001)49.

Type Number Percent

BLASTP (DIAMOND)
NCBI nr 24,583 93.01

Araport11 21,770 82.37

Protein domains (InterProScan) 20,523 77.65

Gene Ontology (BLAST2GO) 14,946 56.55

KEGG pathway (KAAS webtools) 10,047 38.01

Annotated genes 24,624 93.17

 Total length of genes (bp) 31,296,426

 Smallest gene length (bp) 102

 Largest gene length (bp) 15,765

 Average gene length (bp) 1,184

 GC content (%) 46.61

Unannotated 1,847 6.99

Total number of genes 26,430

Table 4.  Summary of gene annotation.

Fig. 4  Venn diagram of the number of genes from A. rugosa with homology or functional classification using 
multiple public databases.

Species (Accession number in GenBank)
Gene 
Number

Average 
CDS length

Average exons 
per gene

Average 
exon length

Average intron 
length

Agastache rugosa (GCA_031470985.1) 26,867 1,177 5.21 226.01 405.90

Perilla frutescens var. frutescens 
(GCA_019511825.2) 38,941 1,259 5.19 242.42 395.75

Perilla frutescens var. hirtella 
(GCA_019512045.2) 23,675 1,252 5.08 246.41 398.23

Salvia hispanica (GCF_023119035.1) 36,995 1,379 9.20 277.52 42.18

Salvia splendens (GCF_004379255.1) 64,211 1,391 10.54 276.74 27.35

Table 5.  The comparison of the gene models annotated from A. rugosa genome and other Lamiaceae.
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7Scientific Data |          (2023) 10:792  | https://doi.org/10.1038/s41597-023-02714-x

www.nature.com/scientificdatawww.nature.com/scientificdata/

The transcriptome Illumina sequencing data were deposited in the Sequence Read Archive at the NCBI 
(SRR24282003)50.

The Hi-C sequencing data were deposited in the Sequence Read Archive at the NCBI (SRR24282002)51.
The final chromosome assembly was deposited in GenBank at the NCBI (GCA_031470985.1)52.
The annotation result of gene structure, functional prediction, and final chromosome assembly were depos-

ited in the Figshare database (https://doi.org/10.6084/m9.figshare.22730084)53.

Technical Validation
The integrity and concentration of the extracted DNA and RNA were assessed with a TapeStation 2200 and 
an Agilent 2100 Bioanalyzer (Agilent Technologies, CA, USA), respectively. In a comparative context, the com-
plete BUSCO value for A. rugosa (98.9%) exceeds those of P. frutescens var. frutescens (92.7%)23, P. frutescens var. 
hirtella (92.5%)23, S. splendens (92.0%)25, and S. hispanica (97.8%)24, underscoring its relative completeness and 
quality within the Lamiaceae family.

Code availability
No in-house code or scripts were used in this study. Commands and pipelines used for data processing were 
executed using their corresponding default parameters.
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