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Abstract

INTRODUCTION: Alzheimer’s disease (AD) is heterogeneous, both clinically and 

neuropathologically. We investigated whether polygenic risk scores (PRSs) integrated with 

transcriptome profiles from AD brains can explain AD clinical heterogeneity.

METHODS: We conducted co-expression analysis and identified gene-sets (modules) which were 

preserved in three AD transcriptome datasets and associated with AD-related neuropathological 

traits including neuritic plaques (NPs) and neurofibrillary tangles (NFTs). We computed the 

module-based PRS (mbPRS) for each module and tested associations for mbPRSs with cognitive 

test scores, cognitively-defined AD subgroups, and brain imaging data.

RESULTS: Of the modules significantly associated with NPs and/or NFTs, the mbPRSs from two 

modules (M6 and M9) showed distinct associations with language and visuospatial functioning, 

respectively. They matched clinical subtypes and brain atrophy at specific regions.

DISCUSSION: Our findings demonstrate that polygenic profiling based on co-expressed 

gene-sets can explain heterogeneity in AD patients, enabling to genetically-informed patient 

stratification and precision medicine in AD.

Keywords
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1. BACKGROUND

Late onset Alzheimer’s disease (AD) is a complex disorder with clinical and 

neuropathological heterogeneity [1, 2]. Types of clinical heterogeneity include progression 

rate, predominant cognitive symptoms, and whether psychotic symptoms manifest [1]. AD 

neuropathology can also be varied with complications of other neuropathological traits 

beyond plaques and tangles [1, 2]. Clinical and neuropathological heterogeneity may have 

contributed to the repeated failure of AD clinical trials [3]. Classification of heterogeneous 

AD patients into biologically-relevant subgroups may improve our understanding of 
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biological mechanisms underlying the variability of cognitive symptoms and trajectories 

of decline, as well as lead to development of subgroup-specific treatment options [4].

Different AD subtypes have been previously proposed based on neuropsychological and 

neuropathological characteristics [5–7], domain-specific cognitive functions, MRI brain 

imaging data [4], and metabolic profiling [8]. However, our understanding of molecular 

mechanisms underlying disease heterogeneity is still limited. Recent report illustrates that 

genetic variants with large effect sizes can distinguish six cognitively-defined subgroups 

of AD when compared with elderly controls [9]. A previous study showed that polygenic 

risk scores (PRSs) derived from clusters (i.e., gene-sets) in genome-wide association studies 

(GWASs) of type 2 diabetes (T2D)-related phenotypes have successfully classified T2D 

patients into different subtypes [10]. These studies demonstrate that PRSs from biologically 

connected gene-sets may explain disease heterogeneity and improve scientific understanding 

of biological mechanisms underlying disease subtypes. In addition, co-expression network 

analyses have shown to be useful for identifying biologically-connected and disease-relevant 

gene-sets using transcriptome data [11, 12]. Taken together, these findings led to the 

hypothesis that network analysis utilizing transcriptome data of AD brains could capture 

biologically relevant gene-sets responsible for distinct disease subtypes and PRSs derived 

from the gene-sets could explain clinical heterogeneity of AD.

In this study, we identified modules (sets of biologically relevant genes) by co-expression 

analysis and thereby generated module-based PRSs of AD patients. Then, using domain-

specific cognitive functions, previously defined AD cognitive subgroups, and brain imaging 

data, we evaluated whether the module-based PRSs can explain cognitive impairment 

heterogeneity among the AD patients.

2. METHODS

2.1. Sources of RNA sequencing data in autopsied AD brains for network analysis

Co-expression analysis was performed using previously generated gene expression data 

from the dorsolateral prefrontal cortex (DLPFC) area of 65 autopsy-confirmed non-Hispanic 

white AD cases from the Framingham Heart Study and Boston University Alzheimer’s 

Disease Research Center (FHS/BUADRC) [13]. Details of procedures for quality control 

(QC) of RNA sequencing (RNA-Seq) data and neuropathological AD diagnosis are 

presented in Supplementary Information and previously reported elsewhere [13]. Additional 

RNA-Seq datasets for validation were obtained from the CommonMind portal (http://

www.synapse.org) including post-QC normalized gene expression data (version #1) from 

the DLPFC area of 363 neuropathologically-confirmed AD cases in the Religious Orders 

Study and Rush Memory and Aging Project (ROSMAP) [14] and from temporal cortex area 

of 82 autopsy-confirmed AD cases in the Mayo Clinic Study of Aging (MAYO) [15].

2.2. Identifying Preserved and AD-associated Modules

Co-expression gene-sets (i.e., modules) were generated using the transcriptome data from 

the 65 AD brains in FHS/BUADRC using the Weighted Gene Co-expression Network 

Analysis (WGCNA) approach, which computes pairwise correlations for all gene pairs 
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and clusters genes by the correlated expression levels [16]. Transcriptome data of AD-free 

controls were not included in our co-expression study because our interest is to identify 

gene-sets related to the disease heterogeneity, not the disease risk (e.g., cases versus 

controls). Details of co-expression module construction were presented in Supplementary 

Information and previously described [17]. Preservation of the discovery modules was 

evaluated in the two independent validation datasets, including ROSMAP and MAYO 

datasets, using z-summary statistics [16]. We considered a module to be preserved if 

z-summary scores greater than 5.0 in both validation datasets [16]. Among the preserved 

modules, we selected AD-associated modules by enrichment analyses using gene-sets 

for AD-related outcomes consisting of AD-related neuropathological traits [18] including 

neuritic plaques (NP) and neurofibrillary tangles (NFT) and AD-risk [19]. We used AD 

associated genes for enrichment analyses that contained at least one single nucleotide 

polymorphism (SNP) with P<10−3 located within +/− 20 kilobases from the gene for0 one 

of the AD phenotypes (NP, NFT, or AD-risk). Significant enrichment P-values<0.05 were 

applied using the Fisher’s exact test after false discovery rate (FDR) correction. Based on 

the result from the enrichment analysis for each module, we assigned the AD phenotypes 

(NP, NFT, or AD-risk) for which the module was most significantly enriched and used to 

calculate module based polygenic risk scores. The selected AD-associated modules were 

considered to generate module based polygenic risk scores.

We also examined expression coherence and cellular signatures of genes in each of the AD-

associated modules using single cell RNA-seq data in five different cell types (astrocytes, 

microglia, oligodendrocytes, endothelia, and neurons) from the temporal lobe area (Gene 

Expression Omnibus ID: GSE67835) [20] and single nucleus RNA-seq data in seven 

cell types (astrocytes, microglia, oligodendrocytes, pericytes, endothelia, and excitatory/

inhibitory neurons) from the prefrontal cortex in the ROSMAP [21]. Details of methods 

for deriving cell-type-specific gene-sets and their expression profiling are presented in 

Supplementary Information and reported elsewhere [13]. Enrichment of cell-type-specificity 

for each AD-associated module was tested using the Fisher’s exact test.

2.3. Genotypic and phenotypic data in ADNI

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) is a longitudinal study assessing 

clinical, neuroimaging, genetic, and biomarker data from participants in various stages 

of cognitive impairment including cognitively normal (CN), mild cognitive impairment 

(MCI), and AD. Genetic and phenotypic data of ADNI participants were obtained from 

the LONI website (http://adni.loni.usc.edu). We used the ADNI genetic data for computing 

mbPRSs and phenotype data for evaluating the relationships between mbPRSs and cognitive 

impairment heterogeneity. Genome-wide genotype data from two different arrays (ADNI-1, 

n=679 and ADNI-GO/2, n=397) were imputed using the Haplotype Reference Consortium 

data. Details of quality control (QC), imputation, and population substructure procedures 

are described in the Supplementary Information. Characteristics of the sample after QC are 

presented in Table S1.

Since clinical spectrum of AD can be largely affected by impairment of specific cognitive 

functions [22], we hypothesized that deficits in particular cognitive domains explain at 
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least in part disease heterogeneity (i.e., cognitive impairment heterogeneity). To explore 

this heterogeneity, we used domain-specific cognitive tests at the last exam from the ADNI 

dataset (Table S1): logical memory immediate (LIMMTOTAL) and delayed (LDELTOTAL) 

recall tests for memory; trail marking test A/B (TRAASCOR and TRABSCOR) for 

executive functioning; category fluency animal score (CATANIMSC) and Boston naming 

test total (BNTTOTAL) score for language; and clock test total score (COPYSCORE) for 

visuospatial functioning. Cognitive test scores were adjusted for age, sex, and education 

using linear regression, and the residuals derived from the regression models were ranked-

transformed as previously described [17].

2.4. Computing and assessing polygenic risk scores for AD-associated modules in ADNI

We selected SNPs in each AD-associated module from the enrichment analysis for the 

assigned AD outcome and generated module based polygenic risk scores (mbPRSs) using 

effect estimates of the selected SNPs for NP, NFT, or AD-risk from the enrichment analysis. 

For comparison, we also generated PRSs for NP, NFT, and AD-risk in a conventional 

approach, which aggregates effect estimates of SNPs with P<0.001 across the genome, 

defined as genome-wide PRS (gwPRS). Details about computing these two types of PRSs 

(gwPRS and mbPRSs) are included in the Supplementary Information.

After generating those PRSs in ADNI, we evaluated correlations among the mbPRSs and 

gwPRSs. To assess relevance of those PRSs to disease stages/progression, we stratified 

ADNI sample by disease stages (CN, MCI, and AD) at the last exam and compared mean 

values of PRSs between different disease stages. We also tested associations between PRSs 

and conversion status for AD progression (e.g., CN to MCI or AD; MCI to AD) excluding 

AD at baseline using logistic regression models after adjusting for age, sex, the first four 

PCs and the array information.

Next, we conducted association tests with mbPRSs or gwPRSs for specific cognitive 

domains using rank-transformed cognitive test scores as quantitative outcomes in linear 

regression models after adjusting the first four PCs and genotype platform as covariates. We 

followed up the nominally significant modules (P<0.05) with domain-specific cognitive test 

scores as cognitive impairment heterogeneity (CIH) modules.

We also attempted to replicate the associations between mbPRSs of the selected 

CIH modules and domain-specific cognitive test scores among 134 AD cases in 

FHS (dbGaP Study Accession ID: phs000056.v5.p3). Details of sample characteristics, 

imputation, computation of mbPRSs, and association tests with cognitive test scores in 

Neuropsychological Test Battery in FHS is described in the Supplementary Information.

2.5. Validating CIH modules with cognitively-defined AD subtypes in ADNI

Previously, 672 AD cases in ADNI have been classified into cognitively-defined subtypes 

based on relative impairments at the time of AD diagnosis [9], consisting of 196 as AD-

Memory, 16 as AD-Executive functioning, 52 as AD-Language, 91 as AD-Visuospatial 

functioning, and 317 other domains (Table S2). Details about these cognitively-defined 

subgroups are described in Supplementary Information and reported elsewhere [9]. We 

evaluated whether mbPRSs of CIH modules are linked into one of the four cognitively-
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defined subgroups (AD-Memory, AD-Executive, AD-Language, and AD-Visuospatial 

domains). Each subject was assigned into a membership of one subgroup coded as 1, 

and otherwise coded as 0 excluding subjects with overlapping memberships. We tested 

association between mbPRSs and a dichotomized membership of cognitively-defined 

subtypes in a logistic regression model adjusting for age, sex, the first four PCs, and 

genotype platform as covariates.

2.6. Brain imaging (MRI) data analysis with mbPRSs of the CIH modules in ADNI

To understand the relationships between our CIH modules and brain atrophy at specific 

locations, we tested the association between mbPRSs and surface-based cortical thickness 

of AD patients using general linear models after adjusting age, sex, magnetic field strength, 

and intracranial volume as covariates [23]. Detail information about brain imaging data 

processing for surface-based measure of cortical thickness in ADNI are described elsewhere 

[23].

2.7. Biological functions of genes in the CIH modules

Gene-ontology (GO) analyses were conducted to discern biological pathways of AD-

associated genes in CIH modules using the Ingenuity Pathway Analysis software (QIAGEN, 

Redwood, CA). We also looked up associations between the CIH module-genes and 

AD-related neuropathological traits including Consortium to Establish a Registry for 

Alzheimer’s Disease (CERAD) score and Braak stage, and quantitative measures of proteins 

including Aβ42, phosphorylated Tau at 181 (pTau181) and 231 (pTau231), postsynaptic 

density protein 95 (PSD95), C4a, C4b, and PPP2CA/B from prefrontal cortex area of 

autopsied brains (FHS/BUADRC) [13].

3. RESULTS

3.1. AD-associated modules in AD brains were preserved in independent studies

The overall study design including module selection process was provided in Figure S1. 

Eighty-three modules were identified in the discovery dataset (FHS/BUADRC), and 29 of 

these modules were preserved in the two validation datasets (Figure 1A). Fourteen of the 

29 preserved modules (M1-M14) contained genes that were significantly enriched in at least 

one of the AD gene-sets (NP, NFT, or AD-risk) with FDR<0.05 (Figure 1B and Table 1). 

Interestingly, only four modules (M1–3 and M11) were nominally enriched in the AD-risk 

gene-set, and all 14 modules were at least three orders of magnitude more significantly 

enriched in either NP or NFT gene-sets (Table 1). These findings may imply that our 

modules derived from the transcriptome datasets of AD brains (without AD-free controls) 

would capture the gene-sets for underlying changes in AD pathology, rather than the overall 

disease risk. Therefore, we selected one outcome, either NP or NFT, but not AD-risk to 

compute fourteen mbPRSs (NP-linked modules: M2, M5, M6, M10, and M13; NFT-linked 

modules: M1, M3, M4, M7–9, M11, M12, and M14), according to its most significantly 

enriched gene-set and the GWAS summary data of the selected outcome (NP or NFT).

All 14 AD-associated modules were significantly enriched in specific cell-types, where these 

results were consistent between temporal lobe and prefrontal cortex regions (Figure 1B and 
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Table S3). M1 to M4 modules were predominantly enriched in excitatory neurons (best P 

with M2 from prefrontal cortex=4.4×10−188), M6 and M7 in astrocytes (best P with M7 

from prefrontal cortex =1.3×10−97), M10 in endothelia (P from temporal lobe=9.9×1087), 

and M11 in microglia (P from temporal cortex=1.7×10−129). The other five modules (M5, 

M8, M9, M12 and M13) were significantly enriched in more than one cell type, while 

M5 and M8 (astrocytes), M9 (endothelia), M12 (neurons), and M13 (microglia) were 

significantly enriched in at least one cell type in both brain regions.

3.2. Module-based PRSs explained heterogeneity in cognitive functions among AD 
patients

Of 14 preserved and AD associated modules, we computed mbPRSs for nine NFT-linked 

modules (M1, M3, M4, M7–9, M11, M12, and M14) using NFT, while mbPRSs of the 

remaining five NP-linked modules (M2, M5, M6, M10, and M13) using NP. Three modules 

including M2, M13, and M14 were excluded due to their low standard error (<0.05) and/or 

their extremely skewed distributions for the following analyses (Table S4), leading to 11 

modules for further evaluation.

In comparison, three genome-wide PRSs (gwPRSs) were significantly correlated with 

mbPRSs of the M3, M11, and M12 modules (correlation r2≥0.1), while the rest of eight 

mbPRSs were not correlated with those for gwPRSs (r2<0.01) (Figure S2). The mean values 

of all three gwPRSs were sequentially increased from CN to MCI and AD (Figure 1C). In 

contrast, the mean values of mbPRS were varied across the disease stages, which the mean 

values of modules (M3–6, and M10) were smaller in MCI or AD stages than in the CN 

stage (Figure 1C). For the disease progression, two gwPRSs (NFT and AD-risk) and three 

mbPRSs (M3, M11, and M12) were significantly associated with the progressions from CN 

to both MCI and AD (Figure 1D). None of PRSs were associated with the progression 

from MCI to AD. Interestingly, NFT-gwPRS and M9-mbPRS were associated with the 

progression from CN to MCI, while M6-mbPRS was associated with the progression from 

CN to AD. All three gwPRSs were significantly associated with most cognitive test scores, 

except for the visuospatial domain (COPYSCORE), with the consistent effect directions 

across cognitive tests. This indicates that the gwPRSs are not likely to differentiate cognitive 

impairment heterogeneity among AD cases (Figure 1E).

Five mbPRSs for M3, M6, M9, M11, and M12 were robustly associated (all tests in domain 

with P-value<0.05), while two mbPRSs for M7 and M10 were nominally associated with 

only one cognitive test in domain (Figure 1E and Table S5). Four mbPRSs for M1, M4, M5, 

and M8 showed no association (P-value>0.05) with any cognitive test scores (Figure 1E and 

Table S5). Of the 5 mbPRSs with robust associations for cognitive domains, mbPRSs for M3 

and M11 were strongly associated with the 3 cognitive domains except for the visuospatial 

functioning, indicating that mbPRSs from M3 and M11 did not differentiate cognitive 

impairment heterogeneity. The M6-mbPRS was nominally associated with all two language-

domain test scores (BNTTOTAL P-value=0.03 and CATANIMSC P-value=0.01). The M9-

mbPRS was associated with all tests in memory and executive function domains (P<0.05), 

as well as with visuospatial functioning domain (COPYSCORE P-value=0.05). The M12-

mbPRS was strongly associated with language (best P with BNTTOTAL=2.2×10−6) and 
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memory (best P with LIMMTOTAL=4.4×10−6) domains (Table 2). Therefore, we prioritized 

M6, M9, and M12 as CIH modules and attempted to validate the associations between 

mbPRSs of the CIH modules (M6, M9, and M12) and the cognitive test scores among the 

AD cases in FHS (Table S6). We replicated nominally significant associations (P<0.05) 

between the M6-mbPRS and two language-domain cognitive test scores in AD cases from 

the FHS (BNT30 P-value=0.03 and BNT30cue P-value=0.03; Table S7). Although we did 

not find associations of the rest two modules (M9 and M12) with the cognitive test scores 

in FHS, three CIH modules (M6, M9, and M12) were further tested with cognitively-defined 

subgroups [9] and brain atrophy among AD patients.

3.3. Module-based PRS associations with cognitively-defined AD subtypes and brain 
atrophy

Of the three CIH mbPRSs, the mbPRSs of M6 and M9 showed nominal associations 

at P<0.05 with odds ratio (OR)>1.0 with previously defined cognitive subtypes for 

AD-Language (OR=5.5; P=0.01) and AD-Visuospatial functioning (OR=1.9; P=0.04), 

respectively (Table 3). The M12-mbPRS was associated with none of the cognitive subtypes 

(Table 3). In contrast, the gwPRSs for NP and AD-risk failed to differentiate any of 

the subgroups, while only NFT-gwPRS was nominally associated with the AD-Memory 

subgroup (OR=1.01; P=0.04).

The mbPRSs of M6 and M9 were significantly associated with cortical thickness at specific 

brain locations (M6: bilateral frontal, parietal, and temporal lobes; M9: bilateral frontal 

lobes; Figure 2A). Particularly, the brain atrophy for the M6-mbPRS was localized at 

the Wernicke area where lesions have been associated with severe impairments of word 

comprehension [24].

3.4. Functional profiling of M6 and M9

Among the genes in M6 and M9, we focused on the GWAS genes (i.e., seed genes) 

containing a SNP with P<0.001 for NP or NFT (# of GWAS genes, M6=16 and M9=11; 

Figure 2B and Table S8). The seed genes in M6 were significantly enriched in pathways 

(Figure 2C and Table S9) including morphology of nervous system (P=4.0×10−8), abnormal 

morphology of nervous system (P=7.8×10−7) and differentiation of astrocytes (P=8.4×10−5), 

while the M9 seed genes were enriched in pathways including vascular system including 

development of vasculature (P=3.8×10−9), angiogenesis (P=3.0×10−8), and vasculogenesis 

(P=2.5×10−7) (Figure 2C and Table S9).

According to our previous report [13], the majority of the seed genes in M6 (best: DOCK1, 

P=3.0×10−7) and M9 (best: SLC25A30, P=6.3×10−6) were up-regulated in AD compared 

with control brains (Table S10). In addition, we observed significant associations between 

expression levels of the seed genes in M6 and M9 and AD-related protein levels (Figure 

2D and Table S11). The seed genes in M6 were significantly associated (P<0.05) with 

CERAD scores, Braak stages, Aβ42, pTau181/tTau ratio, pTau231/tTau ratio, C4a, C4b, and 

PSD95 (Table S11), which the most significant association was observed with expression of 

ADCY2 with pTau181/tTau ratio (P-value=1.1×10−3). The expressions of the seed genes in 
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M9 were nominally associated with Braak stages, Aβ42, pTau231/tTau ratio, and C4a levels 

with the best P-value between expression of DISC1 and C4a (P-value=1.0×10−3).

4. DISCUSSION

4.1. Key findings

The goal of this study was to identify gene-sets responsible for the biological mechanisms 

underlying AD heterogeneity. We generated modules (gene-sets) that were commonly 

observed in multiple transcriptome datasets of AD brains. We closely evaluated biological 

coherence and disease relevance of networks of genes (modules) using profiling of human 

brain cell types and genetics of AD neuropathology. Then, we selected the CIH modules 

(M6, M9, and M12), which are likely to explain the disease heterogeneity in cognitive 

impairment of the AD patients, by testing with domain-specific cognitive test scores 

in ADNI (clinic-based study) and in FHS (population-based study). We identified and 

validated two CIH modules (M6 and M9) that showed significant associations for language 

and visuospatial domains with matching cognitive AD subtypes (AD-Language and AD-

Visuospatial), respectively. These results were further linked to atrophy in specific brain 

areas (M6: Wernicke’s area in temporoparietal cortex; M9: frontal cortex) which were 

previously reported to underpin for language comprehension [24, 25] and visuospatial deficit 

[26]. This study demonstrated the novel concept that can be generalizable and applicable 

to diverse populations, although not all the modules are available in all populations. The 

process and approach used in this study indicate that polygenic risk profiling in co-regulated 

and biologically connected genes provide one of unique and distinct frameworks to explain 

AD heterogeneity.

4.2. Advantage of mbPRSs for AD subgrouping

The three gwPRSs for NP, NFT, and AD-risk showed high correlations with each other and 

largely similar patterns from associations with disease conversion and cognitive test scores. 

In contrast, the mbPRSs showed almost no correlations with each other and were associated 

with the performance of specific cognitive domains. These findings after comparing our 

novel mbPRSs with conventional gwPRSs demonstrate that mbPRSs would be more 

useful for explaining the phenotypic heterogeneity in AD patients, while gwPRSs (i.e., 

traditional PRS) would be more relevant to predict the overall disease risk. Our mbPRSs 

successfully distinguished differences in clinical (cognitive domains) and structural brain 

imaging patterns, indicating representation of different disease mechanisms and thereby 

would be effective tools for dissecting the disease heterogeneity. The gwPRSs for NP and 

AD-risk failed to recognize the AD subgroups. Only the gwPRS for NFT discerned the most 

typical cognitive subgroup, AD-Memory domain. In contrast, newly identified mbPRSs 

for the M6 an M9 modules recognized different types of AD subgroups. This indicates 

that the conventional gwPRS approach is less likely to recognize differences between AD 

subtypes. Further, these results support our hypothesis that subgrouping genetic markers 

from gene-sets responsible for a distinct disease mechanism leading to an AD subtype is 

important for precision medicine and genome-guided clinical trials.
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There have been huge efforts to improve predicting and distinguishing disease subtypes 

using polygenic profiling for early detection of subjects at risk [27–29]. Polygenic risk 

scores can be also useful to predict expected development of a disease or treatment 

responses in particular patient subgroups [30]. Our module-based polygenic profiling has 

innovative features compared to those previously conducted co-expression studies [11, 

12] and conventional PRS approaches for AD [29–32]. First, our co-expression modules 

were developed from only AD brains excluding CN and MCI brains, while previous 

co-expression studies used transcriptome data of AD cases together with controls [11, 

12]. Biological processes underlying disease heterogeneity in AD brains may be different 

from CN or MCI brains [33, 34]. Inclusion of non-AD transcriptome data would well 

differentiate gene-sets relevant to the disease risk but not explain disease heterogeneity. 

Second, previous polygenic profiling studies have generated PRSs by aggregating genetic 

estimates of genome-wide or most significant SNPs, which may have improved prediction 

rates [30] but cannot explain specific biological functions. In contrast, our mbPRSs are 

derived from biologically coherent gene-sets, which enable us to interpret biological 

functions of the modules and thereby provide insights on functional/mechanistic pathways 

for the AD subtypes. A previous study demonstrated genomic annotations at the single 

tissue level can improve our understanding on the etiology of complex human diseases 

[35]. A recent simulation study with failed AD trials confirms that the main failure 

reason is because variability between individuals’ in trials masks efficacy [3]. Therefore, 

our mbPRSs relevant to cell/tissue-level transcriptome profiles, brain imaging data, and 

cognitively-defined subgroups can be utilized for studying disease subtypes, prognosis, and 

response of treatment.

4.3. Role of omics and genetic profiling in AD subgrouping

Profiling using omics data including transcriptome data at tissue- or cell-level helped 

identify clinically and neuropathologically heterogeneous modules but also understand the 

biological functions of the modules. For example, the identified M6 module-genes were 

enriched for astrocytes, neuritic plaque scores, and language domain of cognitive function. 

This confirms the previous report that astrocytes are involved in amyloid clearance [36] 

and damaged astrocytes impact language domain among AD patients [37]. Our discovery 

showed that M9 module-genes are linked to endothelial cells, Braak stages, and visuospatial 

functioning in this study. Increased vascular inflammation in endothelial cells has been 

observed among AD patients with poor short-term visuospatial functioning [38].

Genes in the M6 and M9 modules have been previously reported for association with 

neurodegenerative diseases. Most of genes in the two modules have biological functions 

relevant to the nervous system or have been previously reported in genetic or experimental 

studies for neurodegenerative diseases. For example, SLC6A11 in M6 has been targeted for 

drug development of different neurodegenerative diseases including epilepsy [39]. GLIS3 in 

M9 has been associated with T2D [40, 41] and a longer life expectancy [42]. SNPs from 

GLIS3 in M9 showed genome-wide significant associations from GWASs for amyloid-β and 

phosphorylated tau proteins in cerebrospinal fluid (CSF) [43].
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4.4. Limitations

Our study has several limitations. First, the sample size of discovery AD brains was modest. 

Therefore, we did not have statistical power for explaining the subtle phenotypic variations 

among AD patients, which might lead to detect modules associated with a few specific 

cognitive domains. In addition, our current study exclusively relied on cognitive test scores 

for prioritizing CIH modules, which may not be useful for detecting unknown or brain 

imaging-based subtypes of the disease. Second, our findings in ADNI may not represent 

AD heterogeneity in other populations. However, since one of modules was replicated in an 

independent study (FHS), there are shared mechanisms across diverse populations. Third, 

since we focused on AD patients, our sample size of AD subgroups remained underpower, 

so we could not apply multiple testing correction in current study. This limitation was 

mitigated by replicating one of the mbPRSs in FHS. Fourth, we limited our mbPRSs 

calculating using GWAS summary statistics for AD-risk and neuropathological outcomes 

regardless of available GWAS studies for CSF biomarker [44] or brain imaging data [1]. 

We decided to focus on neuropathological outcomes instead of biomarkers, since our goal 

is to explain AD heterogeneity by linking clinical subtypes to neuropathological outcomes. 

Fifth, we did not observe significant associations between PRSs and uncommon subgroups 

(e.g., AD-Executive). This may be because most of previously defined cognitive subtypes 

in ADNI were predominantly classified as subgroups of memory (31.8%), and executive 

functioning subgroup (2%) was relatively limited, especially in small datasets. In addition, 

datasets with GWAS for enough AD patients with carefully classified clinical phenotypes 

and clinically and/or pathologically defined subtypes were extremely limited. Finally, we 

recognize that the GWAS summary statistics for AD neuropathological traits (NP and NFT) 

in this study were generated based on genotype imputation using a previous reference panel 

(1000 genome) [18], which may affect quality and accuracy of our gene-sets and PRSs. 

However, we used common SNPs (MAF>5%) for constructing gene-sets and PRSs, and the 

imputation qualities of common SNPs are still relatively acceptable even in the previous 

reference panel [45]. Therefore, potential problems caused by low imputation quality would 

be largely limited in our study.

Future work in other independent GWAS sample with cognitively-defined subgroups (or 

relevant subgroups based on cognitive tests) will be required to validate our module-

based subgrouping of AD patients. Furthermore, linking genetics of various AD-related 

phenotypes including endophenotypes would enhance to dissect further the disease 

heterogeneity [10]. Other AD-related GWAS summary data including cerebral amyloid 

angiopathy, hypertension, cholesterol, and insulin resistance can be added for extending AD 

phenotype gene-sets, which will lead us to detect novel gene-sets and to recognize other 

subgroups beyond AD-Language/Visuospatial domains.

4.5. Conclusion

In conclusion, PRSs developed using biologically coherent gene-sets and disease-related 

phenotypes can successfully differentiate cognitively-defined subgroups and brain region 

specific atrophy, which likely represent specific mechanistic pathways responsible for the 

corresponding disease subtypes. Classification of patients using genetic information will 

allow patient subgrouping and target prioritization for the subgroups, which may eventually 
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lead to precision medicine in AD. However, AD heterogeneity explained by the specific 

polygenic risk profiles in this study does not mean that mbPRSs can predict subjects in 

different disease stages of AD or at risk to AD progression in future, since our mbPRSs 

can only differentiate AD patients into different cognitive subgroups. By comparing high- 

and low-risk groups of each mbPRSs using cognitively normal and MCI subjects, this aspect 

may be tested in future. Our study warrants further validations in large datasets.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Co-expression gene-network analysis in Alzheimer’s disease (AD) brains 

identified gene-sets (modules) associated with AD heterogeneity.

• AD associated modules were selected when genes in each module were 

enriched for neuritic plaques and neurofibrillary tangles.

• Polygenic risk scores from two selected modules were linked to the matching 

cognitively defined AD subgroups (language and visuospatial subgroups).

• Polygenic risk scores from the two modules were associated with cognitive 

performance in language and visuospatial domains and the associations were 

confirmed in regional specific brain atrophy data.

• AD associated genes in these modules were enriched in nervous and vascular 

systems.
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RESEARCH IN CONTEXT

1. Systematic review: We reviewed the literature using traditional (eg., 

PubMed) as well as preprinted (e.g., medRxiv) sources on studies about 

Alzheimer’s disease heterogeneity using genetic information.

2. Interpretation: Our coexpression network analysis among only AD brains 

without controls identified gene-sets (modules) which are likely to be 

responsible for AD heterogeneity. The polygenic risk scores derived from 

the modules associated with cognitive performance for certain domains 

(language and visuospatial functioning) were also associated with cognitively-

defined AD subgroups for the matching domains and cortical thickness 

at the specific brain regions. These findings imply that genetics can be 

a useful source for dissecting the disease heterogeneity along with other 

resources including domain-specific cognitive measures, brain imaging scan, 

and neuropathological traits.

3. Future directions: Follow-up analysis will repeat the analysis in independent 

samples to validate our approach and findings.
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Figure 1. 
A. Schematic of our study design. We constructed co-expression modules (sets of genes), 

selected AD-associated modules, and generated module-based polygenic risk scores for 

explaining the AD heterogeneity, which were tested and evaluated with gene-sets for 

AD-related neuropathological traits (NP and NFT human brain cell-types, cognitive test 

scores, cognitively-defined AD subgroups, and brain MRI imaging data. B. Enrichment 

analysis. The strength of enrichment results with the eleven AD-associated modules for AD 

phenotypes (NP, NFT, and AD-risk; left) and cell type specific gene-sets in temporal lobe 

(middle) and dorsal lateral prefrontal cortex (DLPFC; right). The darker color indicates the 
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more significant enrichment P-value. C. Heatmap of mean values for module-based PRSs 

(mbPRSs) and genome-wide PRSs (gwPRSs) across the disease stages including clinical 

normal (CN), mild cognitive impairment (MCI), and AD (the darker color indicates the 

larger mean value of the PRS). D. Associations between PRSs (mbPRSs and gwPRSs) 

and disease progression (CN to MCI, CN to AD, MCI to AD) (the darker color indicates 

the more significant P-value). E. Associations between PRSs (mbPRSs and gwPRSs) and 

seven test scores for four cognitive domains (executive functioning, visuospatial functioning, 

language, memory). Red and blue mean positive and negative effect directions, respectively. 

Dots in the cells indicate the strength of associations).
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Figure 2. 
M6 and M9 were selected as cognitive impairment heterogeneity (CIH) modules. A. 
Association between cerebral cortical thickness and module-based polygenic risk scores 

for M6 and M9. P-value map with threshold at p<0.05 indicated that the darker blue color 

showed more significant P-value. B. Co-expression network of genes in M6 and M9. C. 
Pathways enriched for M6 and M9. D. Associations of the expression levels of genes in M6 

and M9 with AD and AD-related neuropathological traits (previously published [13]).
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Table 1.

AD associated preserved networks in AD brains

Module
Z-summary Enrichment P-value

ROSMAP MAYO NP NFT AD-RISK

M1 40.56 20.71 3.74X10−6 3.26X10−9 0.04

M2 37.45 20.68 3.50X10−8 2.57X10−7 0.002

M3 35.48 18.59 5.38X10−5 8.36X10−7 0.01

M4 32.32 18 3.42X10−2 1.25X10−5 0.07

M5 29.83 15.91 1.46X10−6 2.92X10−4 0.40

M6 26.56 14.46 4.70X10−6 0.09 0.09

M7 25.84 14.23 2.65X10−3 2.47X10−4 0.12

M8 20.52 14.07 0.47 0.02 0.20

M9 20.51 12.71 4.34X10−3 8.89X10−4 0.37

M10 18.25 12.64 0.02 0.16 0.16

M11 17.32 11.81 8.70X10−4 7.48X10−4 0.01

M12 17.06 10.55 1.00 0.05 0.95

M13 15.57 8.59 0.02 0.03 0.81

M14 14.79 7.81 0.06 0.04 0.48

Module is a co-expressed gene network in the discovery from the Framingham Heart Study and Boston University Alzheimer’s Disease Center 
(FHS/BUADRC) study.

Z-summary is a network preservation score of a module from the discovery to at least one of two validation datasets, the Religious Orders Study 
and Rush Memory and Aging Project (ROSMAP) and the Mayo Clinic Study of Aging (MAYO).

Enrichment p-value for a module were computed using genes in the given module containing a SNP with P<10−3 from Beecham et al. for neuritic 
plaque [NP] and neurofibrillary tangles [NFT] [18] and from Kunkle et al. for AD-risk [19].

Fourteen modules were selected when a module in the FHS/BUADRC study was preserved with Z-summary>5 in both validation datasets, 
ROSMAP and MAYO, and significant at p-value<0.05 with at least one of the gene-sets for NP, NFT, or AD-risk.
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