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Introduction
Increased detection of pancreatic cystic neoplasms has drawn the 
attention of the medical community1,2. Among these, intraductal 
papillary mucinous neoplasms (IPMNs) represent a serious 
challenge for clinicians because of their (low) premalignant 
potential. Despite extensive efforts, the treatment of IPMN 
remains controversial, which is reflected by differences in the 
current three major guidelines1,3,4.

Most patients diagnosed with IPMN will be kept under surveillance, 
aimed at monitoring progression of the cyst, which may require 
surgical resection in highly selected patients. Still, the risk of 
clinicians missing IPMN progression to malignancy is concerning5, 
with burdensome consequences for the patient. This concern must 
be balanced against the risk of complications after major pancreatic 
surgery. Therefore, patient selection is crucial both to avoid 
unnecessary surgery for benign lesions, and to continue surveillance 
safely. Typically, diagnostic imaging plays a central role in guiding 
patient selection for, and the timing of, surgery. However, current 
imaging approaches fall short for optimal decision-making.

Machine learning assessment of radiological imaging may 
improve the assessment of IPMNs and add to the decision-making 
for surgery. This scoping review provides an overview of the 
available evidence on this topic.

Methods
Literature search
The Joanna Briggs Institute and PRISMA Extension for Scoping 
Reviews criteria were used for this scoping review6,7. The review 

was performed in PubMed and Embase up to 16 December 2021. 
The search strategy is provided in Table S1. Two assessors worked 
independently on literature screening, evaluation of eligibility, 
and inclusion, with conflicts handled through discussion. The 
remaining literature was subjected to full-text analysis. Original 
studies on imaging-based machine learning models (Table S2) in 
IPMN, which reported on model performance in terms of 
malignancy assessment, were included.

Data extraction and analysis
Two reviewers extracted data independently. If consensus could 
not be established, disagreements were resolved by discussion. 
When these two reviewers could not reach agreement, a third 
independent assessor was involved. Data from the included 
studies were analysed descriptively. The primary outcome was 
the discriminatory ability of the models measured by the area 
under the curve (AUC), accuracy, C-index, and P value. Model 
performance of 0.75 or more was considered sufficient for 
research reporting on AUC, C-index, and accuracy.

Specific attention was paid to determining whether the 
discriminative models were compared with the reference standard 
of clinical care based on guidelines.

Methodological assessment
The methodological quality of the included studies was assessed 
using the modified Radiomics Quality Score (mRQS)8. Within the 
mRQS (Table S3), radiomics approaches can reach a total of 36 
points on 16 aspects, and deep learning approaches can reach a 
total of 32 points on 14 aspects. Two independent assessors 
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performed the methodological assessment. Discrepancies were 
resolved by discussion.

Results
Literature search
The literature search yielded 49 studies, of which 33 were 
excluded based on title and abstract screening, and four more 
studies after full-text screening. Eventually, 12 studies9–20 

fulfilled the eligibility criteria and were included in this scoping 
review (Fig. S1). Table 1 details the included studies and the data 
extracted.

Radiomics models
Of the 10 IPMN radiomics models, 9 were based on CT and 1 on 
MRI. All models aimed to distinguish low- or intermediate-grade 
dysplasia from high-grade dysplasia or IPMN with concomitant 
pancreatic ductal adenocarcinoma. The studies had AUCs 
ranging between 0.76 and 0.969–17; one18 showed that two 
features were independent variables for malignant IPMN with 
ORs ranging from 1.49 to 1.52 and 0.977 to 0.981.

Deep learning models
Of the two deep learning models, one was based on MRI and the 
other on endoscopic ultrasound imaging. The models aimed to 
distinguish low- or intermediate-grade dysplasia from high-grade 
dysplasia or IPMN with concomitant pancreatic ductal 
adenocarcinoma. These models reached AUCs of 0.78 and 0.9819,20.

Comparison with reference standard and added 
value
Two of the included studies compared the developed model with 
available guidelines. Corral et al.20 reported a similar diagnostic 
performance for MRI-based deep learning (AUC 0.78), and 
American Gastroenterology Association4 and Fukuoka (AUC 
0.77)1 guidelines. Conversely, the CT and MRI-based radiomics 
model of Cheng et al.15 had superior discriminative performance 
(MRI: AUC 0.94; CT: AUC 0.86) to that of the clinical and imaging 
model based on the Fukuoka guidelines (AUC 0.77)1.

Methodological assessment
The median mRQS score for the radiomics studies was 11.5 of 36, 
ranging from 4 to 17. The deep learning studies had a median 

Table 1 Studies on imaging-based machine learning models assessing the malignant potential of intraductal papillary mucinous 
neoplasm

Reference Country Imaging IPMN type Target variable Total n Machine 
learning 

component

Data type Outcome(s)

Hanania et al.9 USA CT BD and MD Low-grade IPMN 
versus high-grade 

IPMN or PDAC

Total 52 
(10-fold 

cross-validation)

PCA and LR Radiomics AUC 0.96

Permuth 
et al.10

USA CT BD, MD, 
and Mixed

Low-grade IPMN 
versus high-grade 

IPMN or PDAC

Total 38 
(10-fold 

cross-validation)

LR and PCA Radiomics AUC 0.93

Attiyeh et al.11 USA CT BD Low-grade IPMN 
versus high-grade 

IPMN or PDAC

Total 103 
(10-fold 

cross-validation)

RF Radiomics AUC 0.76

Chakraborty 
et al.12

USA CT BD Low-grade IPMN 
versus high-grade 

IPMN or PDAC

Total 103 
(10-fold 

cross-validation)

RF and SVM Radiomics AUC 0.77

Kuwahara 
et al.19

Japan EUS Undefined Low-grade IPMN 
versus high-grade 

IPMN or PDAC

Total 50 
(10-fold 

cross-validation)

NN Image AUC 0.98

Corral et al.20 USA MRI BD and MD Low-grade IPMN 
versus high-grade 

IPMN or PDAC

Total 139 
(10-fold 

cross-validation)

NN Image AUC 0.78

Jeon et al.18 South 
Korea

MRI BD, MD, 
and mixed

Low-grade IPMN 
versus high-grade 

IPMN or PDAC

248 
(no validation)

LR Radiomics Entropy: OR 
1.49–1.52 

Compactness 2: 
OR 0.977–0.981

Harrington 
et al.13

USA CT and 
EUS

BD and MD Low-grade IPMN 
versus high-grade 

IPMN or PDAC

Training 103 
Testing 33

RF Radiomics AUC 0.83

Polk et al.14 USA CT Undefined Low-grade IPMN 
versus high-grade 

IPMN or PDAC

Total 51 
(5-fold 

cross-validation)

LR Radiomics AUC 0.90

Tobaly et al.17 France CT BD, MD, 
and Mixed

Low grade IPMN 
versus high grade 

IPMN or PDAC

Training 296 
Testing 112

LASSO and LR Radiomics AUC 0.84

Cui et al.16 China MRI BD Low-grade IPMN 
versus high-grade 

IPMN or PDAC

Training 107 
Testing 99

LASSO and LR Radiomics AUC 0.81–0.82

Cheng et al.15 China CT and 
MRI

Undefined Low-grade IPMN 
versus high-grade 

IPMN or PDAC

Total 60 
(10-fold 

cross-validation)

LR and SVM Radiomics MRI: AUC  
0.879–0.940 

CT: AUC  
0.811–0.864

IPMN, intraductal papillary mucinous neoplasm; BD, branch duct; MD, main duct; PDAC, pancreatic ductal adenocarcinoma; PCA, principle component analysis; LR, 
logistic regression; AUC, area under the curve; EUS, endoscopic ultrasound imaging; RF, random forest; SVM, support vector machine; NN, neural network; LASSO, 
least absolute shrinkage and selection operator.
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mRQS score of 9 of 32, ranging from 8 to 10. The included studies 
consistently scored poorly (25 per cent or fewer of the studies 
received all points) on 10 of 16 items in the mRQS: 2, 3, 4, 8, 10, 
11, 12, 13, 15, and 16. Four items scored consistently positive (at 
least 75 per cent of the studies received all points): 5, 7, 9, and 
14. Finally, two items scored moderately consistently (received 
all points in more than 25 per cent and less than 75 per cent of 
the studies): 1 and 6. Figure 1 summarizes the mRQS scoring.

Discussion
This scoping review identified 12 artificial intelligence-based 
models to assess the risk of malignancy in patients with IPMN 
on radiological imaging. Although model performance was 
generally promising, the methodological quality of the studies 
was relatively poor. Furthermore, none of the models were 
applied in a prospective clinical setting or determined the added 
value compared with current guidelines or a clinical expert 
panel. If methodologically robust models are developed, and 
evaluated in a prospective setting, they may have the potential 
to enhance decision-making in finding the best time for surgery 
in patients diagnosed with IPMN.

This review has several limitations. First, owing to publication 
bias, models that were not discriminative may not have been 
submitted or accepted for publication. The model performance 
presented in this review may therefore be optimistic. Second, all 
studies are based on retrospective surgical series. However, 
most IPMNs are addressed to surgery after surveillance if cyst 
progression is observed. The selection bias originating from 
including only patients with surgically resected tumours makes 
the value of these models unclear in the unresected population. 
Third, the methods of the included studies varied extensively. 
Therefore, extracting generalizable results from this overview is 
difficult.

Future research should concentrate on developing 
methodologically sound, generalizable, and clinically validated 
models. Multiple methodological elements are frequently missed 
or ignored, as is evident from the mRQS scores of the research 
included. Once robust and generalizable models have been 
constructed, their performance and value should be validated in 
clinical settings. Currently available studies have focused on 
assessing the discriminative performance of machine learning 
models for malignant IPMNs. However, ideally, models would 
exclude the presence of malignancy with a high negative 
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Attiyeh et al.11 1 0 0 0 3 1 1 0 2 0 0 2 0 2 0 0 12 of 36

Chakraborty et al.12 1 0 0 0 3 0 1 0 2 0 0 2 0 2 0 0 11 of 36

Kuwahara et al.19 0 0 0 0 1 1 2 0 0 2 0 2 0 0 8 of 32

Corral et al.20 1 0 0 0 0 1 2 0 0 2 2 2 0 0 10 of 32
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Tobaly et al.17 1 0 0 0 3 1 1 0 2 0 0 3 0 2 0 0 13 of 36
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–

–

–

–

Fig. 1 Methodological assessment of included studies using modified Radiomics Quality Score 

Green, all points given; orange, not all points given; red, no points or negative points given; –, not applicable to this study owing to data type.
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predictive value and ‘safely’ advise surveillance in patients who 
would have been selected for surgical treatment according to 
current criteria. This would represent a true added value to 
current clinical practice.

This scoping review has provided evidence that 12 artificial 
intelligence-based machine learning models have sufficient 
capacity to evaluate the risk of malignancy in IPMN. However, 
the methodological quality of the included studies is inadequate, 
and the clinical value of the proposed models has not been 
proven. As a result, caution should be advised when interpreting 
these results, and the findings must be corroborated by 
additional high-quality studies. Future research should focus on 
developing rigorous models and investigating their usefulness in 
clinical practice to ensure that they are dependable tools for 
assessing the risk of malignancy in IPMN.
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