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Abstract

The clinical and socioeconomic burden of asthma exacerbations (AESs) represents a major public
health problem. In the last four years, there has been an increase in ethnic diversity in candidate-
gene and genome-wide association studies (GWAS) of AEs, which in the latter case has led to
the identification of novel genes and underlying pathobiological processes. Pharmacogenomics,
admixture mapping analyses, and the combination of multiple “omic” layers have contributed

to prioritizing genomic regions of interest and/or understanding the functional consequences

of genetic variation. Despite this, the field still lags behind the genomics of asthma, where a

vast compendium of genetic approaches has been used (e.g., gene-environment interactions, next-
generation sequencing, or polygenic risk scores). Furthermore, the roles of the DNA methylome
and histone modifications in AEs have been scarcely investigated, and microRNA findings remain
to be validated in independent studies. Likewise, the most recent transcriptomic studies highlight
the importance of host-airway microbiome interaction in the modulation of AEs risk. Leveraging
-omics and deep-phenotyping data from sub-types or homogenous subgroups of patients will be
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crucial to overcome the inherent heterogeneity of AEs, and boost the identification of potential
therapeutic targets and the implementation of precision medicine in clinical practice for AEs.

Keywords
asthma exacerbations; genomics; epigenetics; transcriptomics

INTRODUCTION

Asthma exacerbations (AESs) are episodes of worsening symptoms requiring a change in
treatment. AE events can be severe, and while multiple criteria have been used in the
literature [1], a common definition comprises asthma-related hospitalizations, emergency
department (ED) visits, and the use of systemic (oral, intramuscular, or intravenous)
corticosteroids. However, this definition should be regarded cautiously because it often relies
on a subject’s self-report without incorporating other clinical or physiological parameters
capturing the underlying pathophysiology of the episode [2].

AEs are a major public health problem and a priority in asthma research. Each year,
approximately 75,000 people are hospitalized, and 15,000 people die from asthma in the
United Kingdom (UK) [3]. In the United States (US), there are ~170,000 asthma-related
hospitalizations, 1.8 million ER visits, and ~4,000 asthma-related deaths per annum. In fact,
yearly asthma healthcare expenditures amount to £1.1 billion in the UK [4] and $50.3 billion
in the US [5]. Indirect asthma costs, such as work and school absences, further increase the
economic impact of asthma [5]. Moreover, AEs affect the quality of life of individuals with
asthma [6,7] and their caregivers [8]. Although several studies have found an association
between AEs and lung function decline [9-13], infants with a reduced airway calibre may
also be at higher risk of loss of lung function and AEs [14,15]. In fact, the baseline airway
wall area percent, an indicator of airway remodelling, is associated with the annual rate of
future AEs and long-term decline in lung function [16,17].

To date, the best predictor of AEs is having had one within the last year [18-20],
highlighting the key roles of genetic factors and/or early-life determinants. In addition,
identifying clinically relevant biomarkers or predictors of AEs is crucial to guide the
reduction and prevention of AEs. AEs are likely due to the complex interplay of genetic,
environmental, and behavioural factors [18,21-23]. In fact, risk factors for AEs comprise
allergen, air pollution or tobacco exposure, viral infections, psychological stress, treatment
adherence, obesity, or genetic factors, among others [18].

Ethnic differences in the patterns of AEs are evidenced worldwide. In the US, African
Americans and Puerto Ricans exhibit higher rates of AEs [24-28], while in Europe, AE rates
are higher in Southern European countries [29]. African Americans are also more likely

to have longer lengths of stay in intensive care units compared with Europeans [30]. In

fact, African ancestry has been associated with AEs among African Americans [31] and
other individuals of African descent in the US [32]. However, this association has not been
validated for the number of exacerbations [33] or in Puerto Ricans [34], a recently-admixed
population with up to ~25% African ancestry [34,35]. More recent findings suggest that
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the association of African ancestry and asthma re-admissions in African Americans may be
mediated by disease management and socioeconomic factors [36].

A detailed description of genetic association studies of AE published until 151" November
2018 was previously reported by Herrera-Luis et al. [16]. Gautam et al. [37] reviewed the
transcriptomics of asthma susceptibility, disease severity, and AEs prior to 2022, but no
extensive summary of epigenetic studies of AEs has been published. In this review, we
discuss the latest findings from -omics studies of AEs, assess methodological challenges,
and propose future directions in this research field. For that purpose, we provide an update
on the state of the art of the genomics and transcriptomics of AEs from the aforementioned
dates to 15t October 2022 and review the epigenetic articles of AEs ever published.

LITERATURE MINING

Literature mining of genomic, epigenetic, and transcriptomic studies of AEs was conducted
in PubMed [38] applying the following search terms: (Transcriptomics [Title/Abstract] OR
Candidate gene [Title/Abstract] OR polymorphism [Title/Abstract] OR SNP [Title/Abstract]
OR Genetics [Title/Abstract] OR GWAS [Title/Abstract] OR EWAS [Title/Abstract] OR
epigenetic [Title/Abstract] OR methylation [Title/Abstract] OR histone [Title/Abstract]

OR micro RNA [Title/ Abstract] OR mRNA [Title/ Abstract] OR transcriptomics [Title/
Abstract]) AND (asthma with exacerbations [Title/Abstract]). We excluded manuscripts
reporting 1) reviews, editorials, or opinion articles, 2) findings in animals or cell lines, or 3)
no data on -omics or candidate-gene associations with AEs.

GENETIC ASSOCIATION STUDIES

The genetic determinants of AEs have been thoroughly investigated using hypothesis-driven
approaches to select genomic regions of interest [1] (Figure 1A). However, candidate-gene
association studies are hampered by non-reproducibility across studies and a low likelihood
of identifying true biological risk variants because of the polygenic structure underlying
complex human traits [39]. Conversely, genome-wide association studies (GWAS) allow for
agnostic interrogation of genetic variation across the genome for association with a trait.
These hypotheses-free strategies can uncover novel pathogenic mechanisms, potentially
leading to new therapeutic targets [40] (Figure 1B). Most genetic association studies have
investigated single nucleotide polymorphisms (SNPs), which are base substitutions at a
single position in the genome sequence. Although rare genetic variation (<1% minor allele
frequency) may be implicated in the pathophysiology of AEs, whole-genome or exome
association studies are yet to be conducted for AEs (Figure 1C).

In populations resulting from the admixture of two or more ancestral populations,
admixture mapping analysis can be an alternative strategy to avoid the high penalty of
statistical significance in GWASSs, particularly in genetically complex populations often
underrepresented in biomedical research [41-43]. Briefly, differences in the number of
copies of alleles inherited from distinct ancestral populations at a given locus, or “local
ancestry”, can be leveraged to distinguish candidate regions where local ancestry is
associated with a trait of interest (Figure 1D). Genetic variants within the biologically
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plausible candidate region are then interrogated for association with the trait to identify
causal variants that usually evince distinct allele frequencies between ancestral populations
[41,42,44].

Since the most frequently used approaches to identify susceptibility alleles for AEs are
biased to uncover variants with modest effect sizes (i.e., candidates gene studies) or located
in non-coding regions of the genome (i.e., GWAS), it is imperative to comprehensively
assess the functional impact of genetic variation [1,45]. In this context, investigating the
effect of variants on different -omic layers (Figure 1E) has become easier, given the
availability of multiple free tools online (e.g., see [46-49]).

Candidate-gene association studies.

Most candidate-gene association studies of AEs focused on polymorphisms in genes
previously implicated in asthma or in viral pathways [1], such as the Interleukin 33 (/L33)
[50], vitamin D receptor (VDR) [54], or SERPINEI gene encoding for the plasminogen
activator inhibitor-1 (PA/-1) [52] (Table 1). For instance, adding several asthma-related
variants at SPA7SZL and /L33that were associated with ED management failure to
ED-related clinical scores improved the predictive capability for ED management failure
compared with the clinical model alone (area under the curve [AUC]: 0.82 v5.0.79, p =
0.0004) [50]. Moreover, an expression quantitative trait loci (eQTL) analysis of respiratory
syncytial virus (RSV)-related genes narrowed down the modulatory effect of RSV infection
on a CEACAM3locus for AEs [53]. Likewise, a candidate-gene association study of six
genomic regions harbouring genes whose combined sputum gene expression signature
exhibited predictive capability for exacerbations uncovered a DNASE1L 3 locus for AEs
associated with DNASEIL 3transcript expression levels in asthma-related tissues [56].

The first GWAS of asthma revealed variants at chromosome 17q12-21 with larger effects

on asthma in children than adults [64], whose effects may be intensified by early-life and
passive tobacco smoke exposure [65,66]. As expected for the most consistently replicated
signal for asthma across populations, genetic variation and gene-by-environment (GXE)
interactions for chromosome 17q12-21 have been investigated in relation to AEs [1,67].
More recently, the effect of GSDMB SNP rs7216389 on AEs was found not to be modulated
by prenatal second-hand smoke exposure in Danish children [68]. Several 17g12-21 variants
are associated with expression levels of nearby genes in bronchial epithelial cells and located
within binding sites for Interferon regulatory factors, suggesting effects through antiviral
pathways [59], consistent with previous GXE evidence on asthma susceptibility [67].

Two recent studies of Korean subjects with asthma revealed genetic associations for AEs
in NLRP4and OXSR1 that differed by smoking status [51,62]. NLRP4 is a regulator of
the inflammasome acting as an inhibitor of type | interferon signalling, tumor necrosis
factor (TNF)-a and IL-1B-mediated NF-xB activation [69]. Conversely, OXSR1 encodes
an oxidative stress responsive kinase that participates in ion transport and cell volume
homeostasis [62]. In fact, OXSR1 expression was increased by smoke exposure and
glucocorticoid treatment in various airway cell types [62].
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In the reviewed period, four candidate gene studies have explored susceptibility variants for
response to inhaled corticosteroids (ICS) [60,61,63,70], long-acting beta2-agonists [55], or
montelukast [58] using AEs as a clinical endpoint. Four of them assessed asthma-related
genes: /L1RL1[60] and CRHR1[61] for ICS, ADRBZ2[55] for LABA, and L7A4H [58]

for montelukast response. The other two combined or integrated multiple omics to prioritize
candidate genes [63,70]. Hernandez-Pacheco et al. [57] identified a member of the family of
latent-transforming growth factor-beta binding proteins (L7PBI) as differentially expressed
after glucocorticoid exposure in several transcriptomic datasets from airway smooth muscle
cells and peripheral blood mononuclear cells. Within L7BP1, two polymorphisms associated
with AEs exerted ethnic-specific effects [70]. Kan et al. [63] leveraged a previous GWAS of
change in forced expiratory volume in one second (FEV;) after ICS treatment (p<1x10~%),
chromatin immunoprecipitation sequencing (ChIP-Seq), and transcriptomics to develop a
multi-omics integrative score that prioritized a locus harbouring a member of the family

of inhibitor of apoptosis proteins (B/RC3) near glucocorticoid receptor-binding sites. The
BIRC3locus was significantly associated with AEs -despite ICS use- in Hispanics/Latinos,
African Americans, and Europeans [63].

Six non-pharmacogenomic GWAS of AEs were published in the reviewed period (Table

2). An asthma-related HLA-DQB1 locus was associated with AEs in British adults and
Hispanic/Latino children, possibly through regulatory effects over HLA genes [71]. In
European children, a study comparing participants with AEs and individuals without asthma
revealed a novel genome-wide signal at FUTZ/MAMSTR, along with several previously
asthma-related loci, as expected of such a comparison strategy [74]. Interestingly, the
epistasis of a functional FU72SNP with an ABO SNP increased the risk of respiratory
infection with Streptococcus pneumoniae [74].

Most genetic association studies of AEs have been conducted in Europeans [16], but

recent substantial efforts have increased ethnic diversity and representation [72,73,75—

77]. As a result, the largest GWAS meta-analysis of severe AEs in Hispanics/Latinos
children (n=4,010) uncovered a genome-wide significant association in L/NC03033, a long
non-coding RNA (IncRNA) that participates in myofibroblasts differentiation and airway
remodelling [72]. The risk allele for AEs was associated with higher DNA methylation
(DNAm) levels at L/NC03033in nasal epithelium, which in turn was associated with
higher expression of KCNJ2-AS1 [72], also overexpressed in atopic asthma [84]. Another
recent GWAS compared asthma cases with AEs to controls without asthma to overcome the
reduced statistical power derived from the complex genetic structure in recently-admixed
populations in order to identify genetic signals for asthma with AEs in Hispanic/Latino

and African American children [73]: a genome-wide significant locus nearby INCRNA
LINC01913was associated with asthma with severe exacerbations, possibly through
LINCO01913expression in lung and DNAm of PKDCC in blood. While LINC01913
function remains unknown, PKDCC is involved in lung development and mediates various
homeostatic cellular processes [73]. Likewise, an intronic variant in the MYTIL gene,
encoding for a regulator of proteins of the nervous system, was associated with the annual
number of AEs in Koreans [75]. More recently, a multi-ancestry meta-analysis of GWAS of
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AEs identified two suggestive variants associated with blood DNAm or expression levels of
genes participating in inflammation and host defence (VCAM1, EXTLZ2, and PANKI) [76].

Pharmacogenomic GWAS (PGWAS) of AEs have identified susceptibility variants for
response to ICS [1,77,80,82,85] and LABA [79]. Genomic regions harbouring the loci
suggestively associated with AEs in children receiving ICS are implicated in response to
viral infections (APOBEC3B/APOBEC3C[77]), baseline lung function (CACNAZD3[86]),
bronchodilator responsiveness (CACNAZD3[87]), or the Wingless/integrase 1 signalling
(WNT5A) pathway [80]. Moreover, two studies considered AE despite ICS use as a
secondary outcome to validate genetic associations for ICS response at EDDM3B [78] and
ROBOZ2[81]. While the EDDM3B and APOBEC3B/APOBEC3C variants exerted similar
effects across several ethnic backgrounds [77,78]), CACNAZD3/WNT5A and ROBOZ2 loci
exhibited effects specific in children of European descent [80,81].

In addition, a recent study in older adults of European ancestry with asthma treated

with ICS uncovered 152 suggestive associations for AEs defined using diagnosis codes,
and a genome-wide signal for oral corticosteroid (OCS) use nearby PTCHD4, which
encodes a regulator of hedgehog signalling previously associated with airway disease [82].
Furthermore, a genome-wide interaction study (GWIS) of age on AEs despite ICS use
found genome-wide significant signals in genes implicated in angiogenesis, lung function
and chronic obstructive pulmonary disease (COPD) ( 7THSD4), inflammatory and immune
processes, and glucocorticoid response (H/VEP2) [83]. Moreover, the only multi-ancestry
meta-analysis of GWAS of AEs despite LABA use discovered suggestive associations within
genes previously implicated in lung function (78X3[88]) and response to short-acting
beta2-agonists (EPHA7[89]).

As previously indicated, some studies aimed to shed light into the role of genetic variation
by assessing their functional and biological impact. For instance, CACNAZD3/WNT5A
and ROBOZ variants were associated with the expression of proteins involved in asthma
pathophysiology in plasma [80,81]. Gene-level analysis stratified by smoking status in
Koreans revealed that significant genes in non-smokers were enriched for T-cell immune
responses and DNA/RNA modifications, while tissue development and apoptosis were the
most important processes in smokers [75].

Genetic variants associated with AEs despite ICS use in European adults are enriched

in genes implicated in protein and fatty acid metabolism, toll-like receptor signalling,
antigen cross-presentation, or vesicular transport [82]. Among European children treated
with ICS, genetic variants associated with AEs were enriched in asthma-related genes that
showed differential expression under trichostatin A exposure [80]. Trichostatin A is an
antifungal antibiotic with histone deacetylase activity that has been shown to reduce airway
inflammation and hyperresponsiveness [90]. Interestingly, histone deacetylase participates
in the regulation of corticosteroid sensitivity [91]. Overall, these findings support further
investigation of the therapeutic potential of trichostatin A in asthma.
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Admixture mapping.

Admixture mapping studies have identified genetic variants associated with asthma, IgE
levels, bronchodilator response, and lung function [42,94], but only two admixture studies
of AEs have been published (Table 3). The only admixture mapping of AEs independent

of treatment conducted in Hispanics/Latinos revealed significant associations for AEs with
Indigenous American ancestry at chromosomal regions 5g32, 13q13-g13.2, and 3p13. The
5932 SNP rs1144986 (C5o0rf46) was significantly and consistently associated with AEs in
Mexican Americans and Puerto Ricans, but was not validated in non-Hispanics/Latinos. The
risk allele of rs1144986 was associated with altered DPYSL3 DNAm levels and lower gene
expression of SCGB3AZ2in blood. While DPYSL 3 may be involved in airway remodelling,
SCGB3AZis an upstream regulator of TGFB-mediated antifibrotic processes in the lung
[92].

Another study investigated the association of local ancestry with response to different
step-up regimens including ICS in 516 subjects with asthma of African descent [93]. The
primary outcome was a composite score comprising AEs, a 31-day difference in annualized
asthma-control days, and a 5% difference in percent predicted FEV. African ancestry at
12924.22-924.23 was associated with better responsiveness in children that transitioned
from low-dose ICS to the quintuple dose of ICS compared to those who received 100

ug fluticasone plus salmeterol. Moreover, African ancestry at chromosome 22g12.1 was
associated with better responsiveness in adults that transitioned from low-dose ICS to the
quintuple dose of ICS compared with those who received 2.5 times the ICS dose. Analysis
of genetic variants within these regions revealed one SNP that was consistently replicated
for association with AEs in African Americans treated with ICS [93].

EPIGENETICS

The three main epigenetic mechanisms that can act synergistically to regulate gene
expression are DNAm, histone madifications, and non-coding RNAs such as micro-RNAs
(miRNA). However, histone modifications have been investigated for asthma [95] but not for
AEs.

DNAmM.

DNAmM consists of the addition of a methyl group to a cytosine, often within 5’ -cytosine-
phosphate-guanine-3” dinucleotide sequences (or CpG sites). DNAm levels have been
associated with disease risk and health outcomes, including asthma and allergy [96]. Most
CpGs in the human DNA methylome are hypermethylated and located in regions of low
CpG density but CpG-rich regions, known as CpG islands, are often hypomethylated. While
promoter DNAm usually leads to reduced gene expression, gene body DNAm is associated
with active transcription [97].

Although DNAm is the most extensively studied epigenetic mechanism, only one targeted
DNAm study of AEs [98] and one epigenome-wide association study (EWAS) [99] of
AEs as a proxy of treatment response have been published (Table 4). Curtin et al. [98]
found that increased cord blood DNAm of the /L2 promoter was associated with AEs and
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hospitalizations for asthma or wheezing later in childhood. On the other hand, Wang et

al. [99] conducted a multi-ancestry EWAS meta-analysis of peripheral blood CpG markers
and AEs despite ICS treatment. Hypomethylation of cg00066816 upstream of /L 12B, which
encodes for a subunit of the heterodimeric IL-12, a pro-inflammatory cytokine involved in
Th1 and Th17 signalling [100], was nominally associated with the absence of asthma-related
ED visits or hospitalizations in the previous year in children on ICS. In a secondary analysis,
13 CpGs were differentially methylated in subjects who received OCS bursts in the past year
despite ICS use. Although functional effects of DNAm over blood gene expression were
explored, the CpG-gene pairs were not consistently replicated across studies [99].

miRNA are post-transcriptional regulators that exert their effects by binding to the

3" untranslated regions of mMRNAs, leading to mRNA deadenylation and subsequent
degradation. These small non-coding molecules are implicated in the regulation of multiple
cellular processes and have recently gained attention in allergic and chronic lung diseases
[101-103].

To our knowledge, seven studies have addressed the role of miRNAs in AEs, including three
studies in blood, three in serum, and one in induced sputum (Table 5). All studies focusing
on circulating miRNAs applied single marker approaches, while the study that performed
miRNA profiling in induced sputum carried out a systems biology approach. Specifically,
Gomez et al. [109] conducted a weighted gene co-expression network analysis (WGCNA)
of miRNA and mRNA expression levels in induced sputum from 61 subjects with asthma.
The analysis of 221 miRNASs revealed a 12-miRNA module directly correlated with asthma
hospitalizations. In their cluster analysis, high expression levels of these 12 miRNAs were
associated with neutrophilic inflammation, low T2 biomarkers, and airflow obstruction.
Notably, the sputum 12-miRNA module correlated with mRNA modules implicated in

the TLR9/Th17 signalling pathway and endoplasmic reticulum stress. One of the miRNA
associated with high sputum neutrophil counts in response to 0zone exposure, hsa-miR-223-
3p, acted as a regulator of both of these two mRNA modules [109].

Midyat et al. [104] reported that 10 of 739 tested miRNAs were differentially expressed

by asthma and AE severity in children. Another study found that miR-1 is downregulated
in acute-stage asthma and predicted asthma attacks with an AUC of 0.90, significantly
higher than the AUC from asthma-related cytokines (e.g., IL-4 or IL-5) (p<0.05) [105].
Analysing animal models and primary human endothelial cells, miR-1 has been implicated
in the regulation of airway eosinophilia through the inhibition of eosinophil binding to

the endothelium by promoting RNA-induced gene silencing of eosinophil trafficking genes
[106].

In a six-week longitudinal study, 3 of 7 circulating miRNAs tested were significantly
lower during an AE episode than a follow-up visit: miRNA-126a, miRNA-16, and
miRNA-21 [108]. Furthermore, miRNA-21 and miRNA-126a expression levels were
positively correlated with FEV1%, whereas miRNA-21 levels were higher in participants
with atopy or FeNO levels >25 parts per billion. MiRNA-126a and miRNA-21 are both
considered promoters of Th2-mediated allergic inflammation [101,111], and miRNA-21
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is a systemic oxidative stress marker dysregulated in the airways and/or blood in atopic
dermatitis and allergic asthma [101].

In an analysis of subjects with frequent exacerbations and infrequent/no exacerbations, 20 of
649 tested blood miRNAs were differentially expressed by asthma [110]. In the COPDGene
study, 5 of these 20 miRNAs were associated with COPD exacerbations, supporting some
overlap in the pathogenesis of COPD and asthma. The gene targets of these 4 miRNAs
participate in PI3K-Akt and MAPK signalling pathways [110], which are relevant in Th-2
inflammation and asthma pathogenesis [102].

Only one study has investigated the role of miRNAs in response to treatment using AEs as

a clinical endpoint. In particular, miRNA profiling of serum samples was conducted in 153
children with asthma after randomization to ICS [107]. In univariate logistic regression
models, 12 of the 125 tested serum miRNAs were significantly associated with OCS

bursts in the previous year. Moreover, the combination of a clinical score for exacerbations
along with 3 of these 12 miRNAs (miR-146b, miR-206, and miR-720) suggested a higher
predictive capability for AEs compared with clinical score alone (AUC: 0.81 vs. 0.67) [107].
Of note, miR-146b-5b and miR-206 serum levels have been associated with asthma and
COPD [103], as well as with baseline FEV{/FVC in individuals with asthma [112].

TRANSCRIPTOMICS

Studies of transcriptomics and AEs prior to 2022 were recently reviewed by Gautam et al.
[37]. Such studies have identified distinct AE-related gene expression signatures implicated
in innate and adaptative immunity, viral and non-viral exacerbations, and revealed genes
implicated in frequent exacerbations (7AVFR2) and in AEs triggered by colds (genes
implicated in SMAD3 signalling pathways). Only one single-cell RNA-sequencing study
in the context of AEs has been conducted, highlighting the implication of several cytokines
and intracellular transduction regulators in multiple cell types in this trait [113].

Two transcriptomic studies of AEs have been published in the reviewed period. One

focused on the interaction of transcriptional and bacterial networks in nasal epithelium on
the risk of AEs in children [114]. Specifically, the risk of AEs increased along with the
expression of genes implicated in SMAD3related cell differentiation in a context of high
abundance of a bacterial network dominated by Veillonella, Streptococcus, Neisseria, and
Haemophilus and/or reduced abundance of a bacterial network dominated Staphylococcus
[114]. Another study aimed to understand the pathophysiological factors underlying frequent
exacerbations using transcriptomic data from bronchial biopsies. CEACAMS5, encoding for
a cell surface glycoprotein upregulated by interferon-gamma [115], was the only transcript
differentially expressed in subjects with frequent exacerbations compared with those with
infrequent exacerbations. However, no differential expression was found when subjects
with persistent frequent exacerbations were compared with those with persistent infrequent
exacerbations. An analysis of several gene signatures for viral infections and type 1 and
type 2 inflammatory pathways revealed that subjects with frequent exacerbations had higher
expression of those signatures than those with persistent frequent exacerbations [116].
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CONCLUSION AND FUTURE DIRECTIONS

AEs constitute a major burden on individuals with asthma and their caregivers, healthcare
systems, and society as a whole. Although preventing AEs is key in clinical practice, risk
stratification of patients with AEs is challenging due to the inherent heterogeneity of the
biological mechanisms underlying these events. Despite this, -omic studies have identified
genes and biological processes associated with AEs and proposed potential therapeutic
targets. These results need to be validated in independent cohorts and experimental studies,
and much work remains to be done compared to -omics findings in other respiratory traits,
such as asthma [37], or COPD [117-119].

Perhaps because of the heterogeneity of AEs, specific phenotyping approaches have been
successful in identifying novel susceptibility variants [58,74,120]. Despite the increased
statistical power derived from a large sample size, future studies should also consider
analyzing subtypes or homogenous groups of individuals exposed to similar exacerbation
triggers, which would allow the characterization of GXE interactions, almost unexplored in
AEs [1]. An alternative approach to boost statistical power in recently admixed populations
is to leverage local ancestry into GWAS models to increase the resolution of causal
variant(s) identification [121]. Pointedly, differences in the definition of AEs, trigger agents,
or clinical characteristics of individuals with asthma may have reduced statistical power in
several GWASs [76,77,79,80,122]. This could also account, at least partially, for the lack of
replication of SNPs associated with AEs across independent populations [76].

A combination of genetic variants into a single score of risk burden or polygenic risk

score (PRS) for AEs is not feasible without additional risk stratification that also considers
clinical and environmental parameters. Recently, multi-ancestral PRS for asthma developed
using lasso sum [123] or Bayesian regression [124] have captured the risk of asthma,
although other studies have failed to achieve this [125,126]. PRS incorporating DNAm or
gene expression data may better capture environmental influences in order to improve risk
stratification [127]. The extent to which methylation risk scores (MRS) or transcriptome risk
scores (PTRS) may contribute to risk prediction is still to be determined, though promising
findings have been published for other respiratory traits [128,129]. Within this context, it
will be crucial to evaluate the predictive power of biomarkers in populations not included in
the discovery phase or training datasets [130].

Similarly, the severity and number of AEs have a prognostic capability in risk-stratification
[131], but only one GWAS of the annual number of exacerbations has been conducted

[75], and no study has assessed temporal distance among events and/or the time-to-first
exacerbation. Moreover, although bioinformatic tools have been used to evaluate the
functional impact of potential susceptibility variants, many of these resources do not include
data from tissues/cells obtained from asthma patients, across several asthma-relevant tissues,
or diverse ethnic backgrounds. In this sense, experimental studies are required to understand
the biological role of identified genes and establish their prognostic value to adequately
implement precision medicine in patient risk stratification and prioritize potential therapeutic
targets.
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The role of rare variants in AEs has been poorly investigated, despite the fact that they

may underlie ethnic/racial differences in the burden of AEs or interact with environmental
exposures to modulate AEs. Furthermore, although ethnic diversity has increased in genetic
studies of asthma, particularly for Hispanic/Latino populations, large-scale genome-wide
studies of Asian and African-descent populations have not been implemented.

The contribution of the DNA methylome to AEs remains largely unexplored [99]. Thus,

a priority in asthma epigenetics is to investigate the role of DNAm as a mediator of
environmental effects or as a consequence of AEs, not only at the CpG level, but at
differentially methylated regions (DMRs). Future research should also focus on the role

of genetically-regulated DNAm and epigenetically-regulated gene expression. Furthermore,
it will be key to consider that hypomethylation states in previous EWAS of asthma in blood
were largely driven by a lower eosinophil count in blood [132], which is why specific cell
types [132,133] or cell-type deconvolution algorithms to discern cell-type specific DNAmM
signals using whole-blood data [134] are gaining interest. Moreover, histone modifications
have been implicated in asthma susceptibility and severity, ICS response, and immune
responses to viral infections [95,135], yet little is known about histone modifications and
AEs.

Most epigenetic asthma studies have focused on miRNAs in blood and serum, and
validation of their findings is needed to exclude spurious results due to differences in
sample processing [136,137]. Despite this concern, many miRNAs have been consistently
implicated in chronic respiratory or allergic diseases, highlighting their potential as possible
therapeutic targets (e.g., miR-206 and miRNA-21) [101-103]. Other plausible candidates to
participate in AEs are miRNAs involved in airway inflammation or respiratory infections
[101,102,138]. Undoubtedly, further exploration of the role of the miRNAome and its
interaction with other -omics layers in the upper and lower airways is required to determine
the role of altered miRNA expression in AEs.

Transcriptomic studies conducted in the reviewed period highlight important host-
microbiome interactions in the upper and lower airways and open new directions for future
research. Although McCauley et al. [114] found that the interaction of host gene expression
levels and microbial networks in the upper airways promote AEs, the causative direction

of those relationships is unclear. Still, they proposed several plausible candidate genes that
could be evaluated in other cohorts. Interestingly, among individuals with frequent AEs,
Hoda et al. [116] found increased CEACAMS5 expression, which is also promoted by the
interferon gamma [115].

Although there has been recent progress in genomic studies of AEs, the role and

the interaction of different -omic layers in the modulation of the risk of AES remain

largely unexplored. In many cases, novel findings remain to be validated in independent
populations, and their prognostic potential is unclear. Moving forward, multi-ethnic cohorts
with better phenotyping of clinical and environmental characteristics, careful phenotyping
approaches, evaluation of longitudinal exacerbation data, and combination or integration of
different -omics layers of data will be crucial to identify accurate biomarkers of AEs for
precision medicine.
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DEFINITIONS

Candidate-gene association study: Statistical approach that interrogates the
association of genetic variation with a trait of interest, analysing genomic
regions selected based on a biological hypothesis.

Genome-wide association study (GWAS): Agnostic scan of genetic variation
across the genome for association with a trait of interest.

Genome-wide interaction study (GWIS): Agnostic scan of the interaction
between genetic variation across the genome and a factor of interest (e.g.,
environmental or genetic factors) on a phenotype under study.

Admixture mapping: gene mapping approach that investigates whether
chromosomal ancestry (local ancestry) is associated with a trait of interest,
allowing the detection of genomic regions harbouring genetic variants that
exhibit ancestry differences.

Next-generation sequencing (NGS): high-throughput technology that allow
determining the DNA sequence of single DNA molecules in parallel. These
methods involve DNA fragmentation, DNA sequencing, and mapping to

an organism’s reference genome to detect the genetic variation of a given
sample.

Whole exome sequencing (WES): next-generation approach that allows
detecting genetic variation in the genomic protein-coding regions (exons).

Whole genome sequencing (WGS): next-generation approach that determine
the DNA sequence in the entire genome.

Epigenome-wide association studies (EWAS): agnostic scan of epigenetic
markers, usually DNA methylation, across the genome for association with a
trait of interest.

Transcriptome-wide association studies (TWAS): agnostic gene-based scan
of gene expression across the whole genome for association with a trait of
interest.

Proteome-wide association studies (PWAS): agnostic scan of protein
expression for association with a trait of interest.

Metabolome-wide association studies (MWAS): agnostic scan of metabolite
levels for association with a trait of interest.

Quantitative trait locus (QTL): position of the DNA sequence where

genetic variation is associated with a quantitative trait, such as DNA
methylation (methylation quantitative trait locus, meQTL), gene expression
levels (expression quantitative trait locus, eQTL), splicing ratios of transcripts
(splicing quantitative trait locus, SQTL), protein levels (protein quantitative
trait locus, pQTL) or metabolite levels (metabolic quantitative trait locus,
mQTL).
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. Expression quantitative methylation (eQTM): position of the DNA sequence
where methylation levels are associated with gene expression levels.
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Figure 1.

A) Candidate-gene association study. A biological hypothesis is used to prioritize genomic
regions that will be genotyped, and genetic variants within the regions will be tested

for association with the trait of interest. B) GWAS. Genetic variation is profiled via
genome-wide genotyping arrays and evaluated for association with the trait of interest. C)
Theoretical framework of admixture mapping. The genomes of the admixed individuals
are composed of mosaics of ancestral blocks derived from ancestral populations. The
association of local ancestry and a trait of interest is evaluated in order to prioritize genomic
regions where genetic variants will be assessed for association with the trait of interest. D)
Next-generation sequencing (NGS) approaches. The DNA is fragmented and sequenced,
then reads are mapped to the reference genome. While whole exome sequencing (WES)
focuses on genomic protein-coding regions (exons), whole genome sequencing (WGS)
determines genetic variation in any part of the genome. E) Combination of different

-omic and clinical layers to understand the biological mechanisms underlying a trait of
interest. The association of genetic variation with a specific trait, DNAm, gene expression,
protein expression or metabolites is assessed by GWAS, epigenome-wide association studies
(EWAS), transcriptome-wide association studies (TWAS), proteome-wide association
studies (PWAS) or metabolome-wide association studies (MWAS), respectively. Moreover, a
regulatory genetic variant can exert effects as methylation quantitative trait locus (meQTL),
expression quantitative trait locus (eQTL), splicing quantitative trait locus (sQTL), protein
quantitative trait locus (pQTL) and/or metabolic quantitative trait locus (mQTL). Moreover,
methylation levels at a specific chromosomal position may regulate gene expression levels
(eQTM).
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