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Abstract

Multi-task learning (MTL) methods have been extensively employed for joint localization and 

classification of breast lesions on ultrasound images to assist in cancer diagnosis and personalized 

treatment. One typical paradigm in MTL is a shared trunk network architecture. However, 

such a model design may suffer information-sharing conflicts and only achieve suboptimal 

performance for individual tasks. Additionally, the model relies on fully-supervised learning 

methodologies, imposing heavy burdens on data annotation. In this study, we propose a novel 

joint localization and classification model based on attention mechanisms and a sequential semi-

supervised learning strategy to address these challenges. Our proposed framework offers three 

primary advantages. First, a lesion-aware network with multiple attention modules is designed 

to improve model performance on lesion localization. An attention-based classifier explicitly 

establishes correlations between the two tasks, alleviating information-sharing conflicts while 

leveraging location information to assist in classification. Second, a two-stage sequential semi-

supervised learning strategy is designed for model training to achieve optimal performance on 

both tasks and substantially reduces the need for data annotation. Third, the asymmetric and 
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modular model architecture allows for the flexible interchangeability of individual components, 

rendering the model adaptable to various applications. Experimental results from two different 

breast ultrasound image datasets under varied conditions have demonstrated the effectiveness of 

the proposed method. Furthermore, we conduct comprehensive investigations into the impacts 

of various factors on model performance, gaining in-depth insights into the mechanism of our 

proposed framework. The code is available at https://github.com/comp-imaging-sci/lanet-bus.git.
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1. Introduction

Breast neoplasm is a commonly seen disease among women between 35–55 years of age 

(Pyakurel et al., 2014; Nothacker et al., 2009). It has various subtypes ranging from benign 

cysts, high-risk lesions, and pre-cancer lesions to malignant cancers. Early cancer diagnosis 

can significantly improve treatment outcomes and reduce breast cancer mortality rates. 

Medical imaging techniques, including mammography, magnetic resonance imaging (MRI), 

and ultrasound imaging (Nothacker et al., 2009; Lee et al., 2010), have been employed in the 

noninvasive identification of early-stage breast cancer cells (Wang, 2017). Mammography, 

while the gold standard for breast cancer screening, exhibits relatively low sensitivity in 

patients with dense breasts (Nothacker et al., 2009; Lee et al., 2010). MRI is usually 

used along with mammography to screen patients with elevated cancer risk, mitigating 

the high false positive rate and avoiding unnecessary invasive biopsies (den Dekker et 

al., 2021). To complement these imaging techniques, previous studies have shown that 

breast ultrasound can inspect certain changes in breast tissue that can be harder to see in 

mammograms (Gordon and Goldenberg, 1995; Kolb et al., 1998; Buchberger et al., 1999; 

Berg et al., 2008). Due to its low cost, widespread availability, and radiation-free safety, 

breast ultrasound is a ubiquitous breast imaging modality used extensively in diagnostic 

examinations. It is generally the first scan performed for young (< 30 years old), pregnant, or 

lactating patients with breast concerns (Lee et al., 2010).

Manually analyzing large volumes of breast ultrasound screening images is time-consuming 

and substantially increases the overall workload for radiologists. Intrinsic characteristics 

of breast ultrasound images also bring additional challenges to image analysis, such as 

similarities in texture and contrast between lesions and surrounding tissue, lesion tissue 

heterogeneity, and user-dependent scan quality (Hooley et al., 2013). Computer-aided 

diagnosis (CAD) systems have been developed to address these challenges and assist in 

clinical applications such as localization and classification (Shan et al., 2016; Wu et al., 

2019; Yap et al., 2018; Shin et al., 2018; Han et al., 2017). Lesion classification aims 

to stratify lesions into different subtypes to support appropriate treatment planning, while 

localizing and segmenting lesions can facilitate the classification task to achieve better 

diagnosis accuracy (Vakanski et al., 2020; Tang et al., 2021; Abbas et al., 2020; Cao et 

al., 2017; Shin et al., 2018; Zhou et al., 2021). Instead of handling these tasks separately, 
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multi-task learning (MTL) techniques have been designed for joint lesion segmentation 

and classification (Wu et al., 2019; Yap et al., 2018; Shin et al., 2018; Han et al., 2017; 

Zhou et al., 2021; Crawshaw, 2020; Rasaee and Rivaz, 2021; Chowdary et al., 2022; Singh 

et al., 2019). One typical paradigm of MTL models employs a network architecture that 

encompasses a shared feature extractor along with two appended task-specific branches 

for lesion segmentation and classification, respectively. Such shared trunk-based models 

are trained using a hybrid task-related loss function to achieve optimal performance for 

both tasks. The network design and training process allows inter-task information sharing, 

therefore improving data efficiency and reducing the risk of overfitting.

However, training MTL models is more intricate and challenging than training single-task 

models. Due to the possible information-sharing conflicts between tasks with distinct 

objectives, increasing the model performance on one task might compromise the other. 

Balancing information sharing across tasks is critical in ensuring overall model performance 

(Li et al., 2022). Several methods, such as task-specific loss weighting (Crawshaw, 2020; 

Liu et al., 2019) and gradient demodulation (Crawshaw, 2020; Sinha et al., 2018) have been 

proposed to address this problem by balancing the contribution of each task to the hybrid 

loss.

Recently, many studies have been conducted to employ attention mechanisms to mitigate 

information-sharing conflicts in MTL for segmentation and classification using BUS images 

(Zhang et al., 2021; Vakanski et al., 2020; Han et al., 2020). An attention module employs 

the information bottleneck method to highlight crucial input features while downplaying 

the less relevant aspects (Tishby and Zaslavsky, 2015; Liu et al., 2019; Ronneberger et 

al., 2015), thus yielding task-specific representation and minimizing interference during 

model optimization. Furthermore, attention mechanisms have been explored to aggregate 

multi-scale features to capture expressive combinations of local and global information to 

enhance lesion segmentation performance (Xu et al., 2023; Lyu et al., 2023; Xu et al., 2022; 

Zhou et al., 2021; Chen et al., 2019).

Traditionally, MTL models, including attention-based ones, are trained under fully-

supervised learning paradigms. Such training paradigms require large datasets with both 

class labels and pixel-level tumor segmentation annotations. Particularly, obtaining the latter 

is usually time-consuming and expensive. Semi-supervised learning (SSL) techniques have 

recently gained growing attention in training deeplearning (DL) based models, because they 

leverage unlabeled data and reduce the requirement for a large amount of labeled data (Yang 

et al., 2021; Han et al., 2020; Mittal et al., 2021; Zhai et al., 2022; Kim et al., 2021; Farooq 

et al., 2023; Chen et al., 2019). SSL methods enable the training of models using samples 

without complete and explicit labels, which combine the advantages of both supervised 

and unsupervised learning and enhance the model’s learning capability. In recent years, a 

variety of SSL techniques have been proposed, including pseudo-labeling (Liu et al., 2021b; 

Dai et al., 2019; Liu et al., 2021b), contrastive learning (Mittal et al., 2021; Farooq et al., 

2023), and generative SSL (Imran and Terzopoulos, 2019; Han et al., 2020). Among these, 

pseudo-labeling is widely used because of its simplicity and efficiency. However, a majority 

of these SSL methods have primarily targeted single-task applications. Designing specific 

SSL strategies tailored to MTL models remains an area lacking in-depth understanding.
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In this study, we propose a novel joint localization and classification framework integrating 

the attention mechanism and the semi-supervised learning strategy to address these 

challenges. The framework comprises a feature extractor (FEX), an auxiliary lesion-aware 

network (LA-Net) for lesion localization, and an attention-based classifier (AC) for lesion 

classification. With the proposed two-stage sequential semi-supervised training strategy, 

the designed framework effectively mitigates the concerns of information-sharing conflicts 

and data annotation burdens, thereby achieving optimal model performance on both tasks. 

Experimental results from two BUS image datasets demonstrate the effectiveness of the 

proposed method. The effects of various network factors on model performance are 

thoroughly investigated to gain a deep understanding of the designed framework. The main 

contributions of this study can be summarized as follows:

• The proposed auxiliary LA-Net, including multiple attention modules that 

capture discriminative features within the extracted representations, facilitates 

precise tumor localization. A channel attention module (CAM) and a spatial 

attention module (SAM) are designed in the LA-Net to exploit multi-scale and 

location-related features to improve lesion localization performance. A mask-

attention module (MAM) is designed in the attention-based classifier to bridge 

the two task-specific branches and refine the classifier’s performance using 

the localization information captured by the LA-Net. This design enhances the 

features specific to the tumor region and downplays the possible negative effects 

of ultrasound image noise and contrast limitations. In this way, our method 

alleviates potential information-sharing conflicts and achieves optimal model 

performance on both localization and classification tasks.

• A sequential semi-supervised learning strategy based on a pseudo-labeling 

paradigm (Lee et al., 2013) is proposed for model training. This training strategy 

has two stages: (1) training the LA-Net using location labels and (2) utilizing 

the pre-trained LA-Net within our framework to enhance learning stability. 

The MAM-assisted learning strategy facilitates direct optimization of the AC 

using the localization information captured by the LA-Net. It enables LA-Net 

to learn discriminative features by leveraging classification outcomes even in 

the absence of location labels. This strategy permits utilizing large amounts 

of BUS images without location labels to improve model performance while 

concurrently reducing the need for lesion location annotations.

• Our modular framework is designed as an asymmetric U-Net-like architecture 

(Ronneberger et al., 2015). It facilitates flexible configuration of feature 

extraction trunks and task-specific branches. In this study, FEX is designed with 

ResNet (He et al., 2016) to demonstrate model efficacy. Other powerful deep 

convolutional neural networks (CNNs) like EfficientNet (Tan and Le, 2019) can 

also be integrated into the framework as the encoder. This extensibility allows 

the integration of various encoders to extract hierarchical multi-scale features 

enriched with local and global lesion-related information from input BUS 

images. Such representative features alleviate the challenges due to substantial 

intra-class variation and inter-class similarity in BUS images.
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The remainder of the paper is organized as follows. Section 2 introduces the related 

background knowledge of multi-task learning, vision attention mechanisms, and semi-

supervised learning. Section 3 describes the network architecture and training strategy of 

the proposed method. Section 4 describes the datasets and implementation details of the 

proposed method. The experimental results are shown in Section 5, and the discussion and 

conclusion are described in Sections 6 and 7, respectively.

2. Related work

2.1. Multi-task learning

Most MTL methods applied to BUS images are based on a design of shared trunk 

architecture. This architecture consists of a shared trunk network responsible for extracting 

features from input images and two appended branches for lesion classification and 

localization tasks. The model is usually optimized by a hybrid loss combining both 

classification and localization losses. This design aims to learn the features by leveraging 

both classification- and localization-related information, thus reducing the risk of overfitting 

and improving task performance (Crawshaw, 2020). For example, Zhou et al. employed a 

VNet-based encoder–decoder network for segmentation task, while the intermediate feature 

maps generated by the encoder were reused by a lightweight network for the classification 

task (Zhou et al., 2021). Chowdary et al. employed a residual U-Net architecture for 

segmentation and shared intermediate feature maps with a two-layer fully-connected (FC) 

network for classification (Chowdary et al., 2022). Rasaee et al. designed an asymmetric 

encoder–decoder architecture (Rasaee and Rivaz, 2021). The feature extraction trunk 

and classification branch were designed as a ResNet50 network (He et al., 2016). A 

segmentation branch with three upsampling blocks was appended to the feature extraction 

trunk to extract the feature map from the last convolutional layer for lesion segmentation. 

Singh et al. revisited the U-Net architecture to incorporate atrous convolutional layers and a 

channel weighting block for segmentation (Singh et al., 2019). The subsequent segmentation 

predictions were further revised through adversarial training (Goodfellow et al., 2014). After 

adversarial training, the statistical boundary features of the segmented tumor contours were 

used to distinguish tumor classes. Mishra et al. proposed a U-Net-like architecture for 

segmentation and fed the intermediate features of all encoder and decoder blocks into a 

residual CNN for classification (Mishra et al., 2022).

To avoid laborious annotation of pixel-level segmentation, some methods simplify pixel-

wise lesion segmentation to object localization in the form of bounding boxes (Cao et al., 

2017; Shin et al., 2018). For instance, Cao et al. investigated the performance of several 

popular object localization methods such as YOLO (Redmon et al., 2016) and SSD (Liu 

et al., 2016) applied to BUS images (Cao et al., 2017). Shin et al. employed Faster-RCNN 

(Ren et al., 2015) for joint localization and classification of breast tumors in the BUS image 

dataset (Shin et al., 2018). Beyond shared-trunk-based MTL methods, other alternative MTL 

methods have been proposed, including cross-talk, prediction distillation, and task routing. 

More details on those methods can be found in Crawshaw’s survey (Crawshaw, 2020).

Within shared trunk-based MTL methods, effective mitigation of possible information-

sharing conflicts is critical for achieving optimal model performance in both tasks (Li et 
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al., 2022). Task-specific loss weighting is one solution to balance the contribution of each 

task during model optimization by assigning different weights to individual task losses 

(Crawshaw, 2020; Liu et al., 2019). For example, Liu et al. introduced an adaptive weighting 

method to dynamically balance task weights guided by the rate of change in the loss of 

each task (Liu et al., 2019). Gradient demodulation is another solution to equalize gradient 

magnitudes across tasks during model optimization to balance learning efficiency and ensure 

that each task is optimized with equal importance (Crawshaw, 2020; Sinha et al., 2018). For 

instance, Sinha et al. employed adversarial training to align the gradients from different tasks 

to boost model performance (Sinha et al., 2018).

2.2. Vision attention mechanism

Vision attention mechanisms, inspired by the human visual system’s neuronal structure (Itti 

et al., 1998), have been applied in computer vision tasks to enhance feature extraction by 

emphasizing discriminative task-specific information, thereby improving model performance 

(Liu et al., 2019). Within the domain of BUS image processing, attention mechanisms have 

gained growing attention (Xu et al., 2022; Zhang et al., 2021; Ma et al., 2020; Singh et 

al., 2020). For instance, Xu et al. proposed a self-attention module on top of a U-Net 

architecture to utilize contextual information to improve both breast tumor segmentation 

and classification performance (Xu et al., 2022). Zhang et al. proposed an MTL framework 

with soft and hard attention modules to guide the model to focus on tumor regions and thus 

enhancing model performance (Zhang et al., 2021). Woo et al. developed a convolutional 

block attention module with versatile applicability to various CNNs, leveraging channel and 

spatial information from input features to achieve improved model performance (Woo et al., 

2018).

Previous studies have demonstrated the potency of multi-scale features extracted from 

diverse hierarchical layers of CNNs, which offer rich local and global information and 

significantly benefit overall model performance (Tang et al., 2021; Lin et al., 2016). The 

incorporation of these multi-scale features with specific attention mechanisms is emerging 

as a prominent strategy in designing MTL methods. For example, Lyu et al. proposed a 

pyramid attention network combining spatial and channel attention mechanisms with multi-

scale features for segmentation task (Lyu et al., 2023). The multi-scale feature pyramid was 

achieved by a depth-wise separable small-size convolution strategy. Xu et al. designed a 

regional attention module on top of a U-Net-like segmentation network (Xu et al., 2023). 

It aims to decode the multi-scale information captured by the segmentation task to guide 

the classifier in learning class-specific features from tumor, peritumoral, and background 

regions.

These methods have shown improved performance for both classification and segmentation 

tasks. However, they predominantly stem from a U-Net framework (Ronneberger et al., 

2015) with symmetric encoder and decoder architecture. Such a design may constrain 

the flexible and smooth adaptation of encoders and decoders to diverse applications. 

For example, the off-the-shelf CNNs pretrained on large-scale datasets cannot be directly 

integrated into these methods and employed as encoders.
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2.3. Semi-supervised learning

Semi-supervised learning (SSL) methods are widely used to alleviate the necessity for 

large-scale labeled datasets (Yang et al., 2021; Han et al., 2020; Mittal et al., 2021; Zhai 

et al., 2022; Kim et al., 2021). These methods utilize large amounts of unlabeled data to 

learn useful characteristics of input data distributions, thereby enhancing model performance 

without the need for additional annotations. One type of widely-used SSL method is pseudo-

labeling (Liu et al., 2021b; Dai et al., 2019; Liu et al., 2021b). This approach assumes 

that predictions of unlabeled data with high prediction confidence are highly likely to be 

correct. These high-confidence predictions can be used as surrogate ground-truth labels 

during training. Dai et al. proposed a sequential training strategy that exploits unlabeled 

annotations to train a 3-dimensional U-Net network for brain tumor segmentation using MRI 

data (Dai et al., 2019). The network is initially trained on an unlabeled dataset with massive 

automatically generated pseudo labels, followed by fine-tuning through transfer learning on 

a small dataset with manually annotated labels. Liu et al. revised a 3-dimensional VNet 

(Milletari et al., 2016) with a deep attentive module to focus on important information 

from extracted multi-scale features to achieve accurate breast cancer segmentation on 3D 

ultrasound data (Liu et al., 2021b).

Other popular SSL methods can be classified as contrastive learning (Mittal et al., 2021; 

Farooq et al., 2023) and generative SSL (Imran and Terzopoulos, 2019; Han et al., 2020). 

The idea of contrastive learning is to learn useful representations by comparing similar 

and dissimilar examples. For example, Mittal et al. introduced a dual-branch model with 

a consistency regularization technique to combine a GAN-based network for segmentation 

and a multi-label teacher network to filter out false positive segmentation predictions (Mittal 

et al., 2021). Generative SSL methods leverage generative models (e.g., GAN (Goodfellow 

et al., 2014)) to capture the underlying distribution of data samples and synthesize additional 

labeled data for training. Han et al. adopted a generative adversarial network (GAN)-based 

model for lesion segmentation with a semi-supervised learning strategy, exploiting unlabeled 

BUS images to improve the quality of generated segmentation (Han et al., 2020). A more 

detailed review of SSL methods can be found in the literature (Van Engelen and Hoos, 2020; 

Yang et al., 2022).

3. Methods

3.1. Proposed auxiliary attention-based joint classification and localization framework

The proposed joint classification and localization framework is shown in Fig. 1. The 

framework consists of a feature extractor (FEX), an attached attention-based classifier (AC) 

for classification, and an auxiliary lesion-aware network (LA-Net) for lesion localization. 

Given BUS images, FEX extracts multi-scale image feature maps that capture local and 

global information, which are fed into LA-Net for lesion localization and AC for lesion 

classification. The lesion-aware feature map (fmask) obtained by the LA-Net is further 

leveraged by the AC to improve the performance of lesion-type classification. Notably, 

the AC explicitly correlates the classification and localization branches through an attention 

module, which takes both fn of the FEX and fmask of the LA-Net as inputs. Such a design 
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alleviates the potential conflicts and ensures balanced optimization for both localization and 

classification branches. The model architecture is discussed below in terms of each network.

3.1.1. Feature extractor (FEX)—The FEX is structured hierarchically with a series 

of n convolutional blocks. Given a 2-dimensional BUS image X ∈ ℝM × N, FEX extracts 

multi-scale feature maps {f1, …, fn} using each convolutional block. The extracted feature 

maps serve as inputs for LA-Net, while only the topmost extracted feature map fn is used as 

input for AC. FEX can be described as:

{f1, f2, …, fn} = F(X, ΘF), (1)

where F  represents the mapping function of FEX parameterized by ΘF.

3.1.2. Lesion-aware network (LA-net)—As shown in Fig. 2(a), the LA-Net 

architecture comprises a convolutional block attention module (CBAM) and a feature fusion 

module. The motivation for this design is driven by the versatility of integrating CBAM 

into diverse CNNs, seamlessly enhancing both classification and localization performance 

(Woo et al., 2018). In addition, CBAM can be trained end-to-end along with the base CNNs 

(Woo et al., 2018). The extracted multi-scale feature maps {f1, …, fn} from the FEX are first 

exploited by CBAM and then fused by the feature fusion module to predict lesion location. 

As shown in Fig. 2(b), CBAM includes a channel attention module (CAM, shown in Fig. 

2(c)) and a spatial attention module (SAM, shown in Fig. 2(d)) to sequentially process 

the input feature maps. Both CAM and SAM rely on an information bottleneck design 

(Tishby and Zaslavsky, 2015) to effectively compress the input feature maps and selectively 

highlight the discriminative channel-wise and spatial relationships in the input features.

The architecture of the feature fusion module is illustrated in Fig. 2(a). The first 

convolutional layer compresses the multiple channels of the input feature map into a single 

channel, distilling the learned knowledge to emphasize regions of interest (ROIs) relevant 

to the lesion. Each compressed intermediate feature map is resized to match the dimension 

of feature fn and concatenated into a merged feature map fmerge with dimensions Sn × Sn × n. 

Here Sn denotes the size of fn. The merged feature map fmerge is processed by a sequence 

of a convolutional layer, a batch normalization (BN) layer, and a sigmoid activation layer. 

The output is the lesion-aware feature map fmask, with each pixel reflecting its probability 

of belonging to either the lesion or background. The predicted lesion location mask Ypixel is 

determined via a binary function with a confidence threshold of 0.5.

fmask = Ppixel = D({f1, . . fn}, ΘD), (2)

Ypixel = binarize(Ppixel > 0.5) (3)

where Ppixel represents the probability of each pixel on fmask belonging to the lesion, D
represents the mapping function of the LA-Net, which is parameterized by trainable 

parameters ΘD and binarize(.) is a binary function.
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3.1.3. Attention-based classifier (AC)—The AC includes a mask-attention module 

(MAM) and a classification head, as shown in Fig. 3. The feature map fn extracted from the 

last layer of the FEX is enriched by the lesion-aware feature map fmask through MAM. The 

MAM module consists of a feature element-wise multiplication layer and a skip-connected 

element-wise addition layer. It directly enhances the features for classification by leveraging 

the location information captured by LA-Net. This design enables the learned features to 

emphasize the lesion region and downplay negative impacts due to the noise or artifacts in 

the non-lesion regions of BUS images. The classification head has an average pooling layer 

and a fully-connected layer. It employs the enhanced feature map to predict the probability 

of an input BUS image belonging to each of the K classes. The classification process can be 

described as:

fatt = fn + fn ⊗ fmask, (4)

Pcls = C(fatt, ΘC), (5)

where C is the mapping function of the classifier parameterized by ΘC, ⊗ denotes element-

wise multiplication, fatt is the enhanced feature map, and Pcls represents the probability of an 

input BUS image belonging to each of the K classes.

3.2. Sequential semi-supervised learning strategy

A two-stage sequential semi-supervised training strategy is introduced to train the 

framework to achieve optimal classification and localization performance. In the first stage, 

the FEX and LA-Net are jointly trained only using images with lesion location labels. The 

loss function Lfloc measures the geometric disparity between the predicted and ground-truth 

(GT) lesion locations:

Lfloc = E[ − Ȳpixel
T log(Ppixel)], (6)

where Ppixel represents the probabilities of pixels on fmask belonging to the lesion, and Ȳpixel

represents the GT lesion location mask.

In the second stage, the FEX, LA-Net, and AC are jointly trained in a semi-supervised 

learning strategy using all training samples, including those without lesion location labels. 

Notably, the well-trained LA-Net and FEX in the first stage are utilized in the second stage 

to improve training stability. A hybrid loss Lℎyb employed for model training in this stage can 

be described as:

Lℎyb = λLcls(ΘF, ΘC, ΘD) + (1 − λ)Lsloc(ΘF, ΘD),
Lcls = E[ − Ȳcls

T log(Pcls)]
Lsloc = Lsloc − w + αLsloc − wo

= E[ − Ȳpixel
T log(Ppixel)] + αE[ − Ȳpixel

′T log(Ppixel
′ )],

Ȳpixel
′ = binarize(Ppixel

′ > 0.5 ∣ Pcls > τ),

(7)

where Lcls measures the discrepancy between the GT class labels and predicted class labels 

from classifier C; Lsloc is defined as a hybrid localization loss that integrates the losses from 
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training samples with and without location labels, denoted Lsloc − w and Lsloc − wo; λ ∈ [0, 1] is a 

weighting factor to regulate the contribution of Lsloc and Lcls; and ΘF, ΘC, and ΘD represent the 

trainable parameters of FEX, AC, and LA-Net, respectively.

Particularly, Pcls in Lcls represents the probabilities of input data X belonging to each of the 

K classes and Ȳcls is a one-hot GT label vector with K elements. In Lsloc, Ppixel has the same 

meaning as in Eq. (3), Ppixel
′  in Lsloc mirrors Ppixel but is predicted from unlabeled data. Ȳpixel

′

is the pseudo lesion location label determined by applying a binarize function on Ppixel
′  when 

the image’s predicted class probability is higher than a predefined classification confidence 

threshold τ. The parameter α ∈ [0, 1] is a coefficient controlling the contributions from 

losses of Lsloc − w and Lsloc − wo. It reduces the contribution of samples without location labels in 

the localization loss during model training and mitigates the negative impact of potentially 

inaccurate pseudo labels. The hybrid loss design in the two-stage training strategy optimizes 

the AC using the localization information captured by the LA-Net. Furthermore, it allows 

the LA-Net to learn discriminative features guided by classification outcomes when the 

image’s location label is absent. In this study, cross-entropy was used for Lcls, Lfloc, Lsloc − w and 

Lsloc − wo. The detailed training process is described in Algorithm 1.

4. Dataset & method implementation

4.1. Dataset

The proposed method was evaluated on two breast ultrasound image datasets. Notably, 

in this study, we referred to image samples with both a lesion location and lesion-type 

labels as fully-labeled samples, while samples annotated only with lesion-type labels were 

termed partly-labeled samples. Accordingly, a dataset containing only fully-labeled samples 

was classified as a fully-labeled dataset, while a dataset comprising both fully-labeled and 

partly-labeled samples was categorized as a partly-labeled dataset.

The first utilized dataset was the Breast Ultrasound Image (BUSI) Dataset, a publicly 

available resource provided by Al-Dhabyani et al. (2020). This database consists of 780 

images collected from 600 patients, each of which includes labeled lesion segmentation 

contour and lesion type. Consequently, this dataset is considered fully-labeled. Further 

details regarding this dataset are shown in Table 1, with four example images shown in the 

top row of Fig. 4 (panels A to D).

The second dataset, termed the Mayo Clinic Breast Ultrasound Data (MBUD), was collected 

from the Department of Radiology at Mayo Clinic. This dataset comprises 160 scanning 

videos collected from 136 patients using a LOGIQ E9 ultrasound system. A total of 

22202 two-dimensional images were extracted from these videos and annotated with class 

labels. Bounding boxes were employed to annotate lesion locations in 384 of these images. 

Therefore, the MBUD dataset is considered partly-labeled. Four example images from this 

dataset are presented in the bottom row of Fig. 4 (panels E to H). Specifically, the subset of 

MBUD images with both location and class labels was regarded as a fully-labeled dataset, 

denoted as F-MBUD. A comprehensive overview of the MBUD and F-MBUD datasets is 

shown in Table 2.
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4.2. Network architecture

The standard residual neural networks (ResNets) (He et al., 2016) are used as the FEX in the 

proposed framework. ResNet consists of multiple residual blocks with shortcut connections 

between nonadjacent convolutional layers. This architecture design addresses the issues 

of gradient vanishing and improves training stability. ResNet has gained popularity in 

BUS image classification tasks due to its effectiveness and has demonstrated promising 

performance in previous studies (Ding et al., 2022; Mishra et al., 2021). Four multi-scale 

feature maps {f1, …, f4} are extracted from the intermediate residual blocks of FEX with 

dimensions of {(C1, S1, S1), …, (C4, S4, S4)}, respectively. Here, Ci denotes the number of 

channels in the ith extracted feature map, Si is the size of the ith extracted feature map, 

and i ∈ [1, 4]. Each residual block down-samples the feature map size by half: Si = Si + 1 ∕ 2. 

Within LA-Net, CBAM is applied individually to each feature map extracted from FEX, 

following the original CBAM network configurations described in Woo et al. (2018). In 

AC, MAM is parameter-free and the FC layer has two neurons corresponding to binary 

classification.

4.3. Settings for framework training and testing

The BUSI dataset and MBUD dataset were employed to train and evaluate our framework 

separately. The total number of images used for model training and testing is shown in Table 

1 (BUSI) and Table 2 (MBUD). The training images were randomly divided into a training 

subset (85%) and a validation subset (15%). The parameters of pretrained ResNets on the 

ImageNet dataset (Deng et al., 2009) were used to initialize the FEX (Wightman, 2019). For 

initializing the LA-Net’s parameters, the Xavier initialization scheme was applied (Glorot 

and Bengio, 2010).

During each training epoch, a mini-batch of 8 images was randomly sampled from the 

training subset. The input images were sequentially preprocessed with data augmentation 

techniques, including random rotation of [90°, 180°, 270°], random horizontal and vertical 

flips, and random color jittering. The preprocessed images were resized to 256 × 256 pixels 

using bilinear interpolation. Subsequently, the resized images were normalized to the range 

of [0, 1] and then served as the model input. The loss functions defined in Section 3.2 were 

calculated to optimize the model parameters using the Adam stochastic gradient algorithm 

(Kingma and Ba, 2015) with an initial learning rate of lr = 0.001. Noted that in cases where 

the input images lacked location labels, pseudo location labels were generated by setting 

the classification confidence threshold τ to 0.8 as described in Section 3.2. The weighing 

coefficients α and λ in Eq. (7) were set to 0.1 and 0.5, respectively.
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Algorithm 1: Minibatch training of the proposed framework

Input:Training dataset X with a total of N images, of which Nf images have both class and location labels and Ns images only have
class labels (N = Nf + Ns) . A data subset with Nf fully‐labeled samples is denoted as Xf, and the other data subset with Ns

partly‐labeled samples is denoted as Xs;
Networks with parameters:FEX with ΘF; AC with ΘC; LA‐Net with ΘD;
Training hyper‐parameters:Minibatch size (m); the number of stage 1 training epochs (t1); the number of stage 2 training epochs (t2);

Stage 1: Pre‐train the LA‐Net with fully‐labeled subset Xf

Start training
Initialize training iteration: i = 1
while i ≤ t1 do

Initialize the count of trained images in the current epoch: n; Set n = 0
while n ≤ Nf do

1 . Sample a batch of m images {Xl
(1), …, Xl

(m)} from input data and their corresponding lesion location labels
{Ȳ pixel

(1) , …, Ȳ pixel
(m) }

2 . Forward the batched data through the FEX and LA‐Net and output mask prediction {Ppixel
(1) , …, Ppixel

(m) }
3 . Calculate the loss Lfloc using Eq . (6)
4 . Update the parametes of FEX and LA‐Net by ascending their stochastic gradients: ∇(ΘF, ΘD)Lfloc

5 . Increment the count: n = n + m
Increment iteration i = i + 1

End training
Output:Trained LA‐Net with parameters Θ̄D

Stage 2: Train all three networks with the entire dataset X
Start training
Load the LA‐Net parameters Θ̄D trained in Stage 1
Initialize training iterator: i = 1
while i ≤ t2 do

Initialize the count of trained images in the current epoch: n; Set n = 0
while n ≤ N do

1 . Sample a batch of mimages {X(1), …, X(m)} from input data . Among these, mf images are from the subset Xf, and the

remaining ms images are from the subset Xs . Thus, mf images have GT class labels {Ȳ cls
(1), …, Ȳ cls

(mf)} and GT location

labels {Ȳ pixel
(1) , …, Ȳ pixel

(mf) }, while the ms images only have GT class labels {Ȳ cls
(mf + 1), …, Ȳ cls

(mf + ms)}
2 . Forward the batched data through the FEX, AC, and LA‐Net . Predict lesion‐types {Pcls

(1), …, Pcls
(m)} on all m images .

Predict lesion locations {Ppixel
(1) , …, Ppixel

(mf)} for fully‐labeled mf images, which have annotated GT locations . Predict

lesion locations {Ppixel
′(mf + 1)

, …, Ppixel
′(mf + ms)

} for partly‐labeled ms images, which have unknown GT locations . Generate

pseudo location labels {Ȳ pixel
′(mf + 1)

, …, Ȳ pixel
′(mf + ms)

} using the binarize function applied to {Ppixel
′(mf + 1)

, …, Ppixel
′(mf + ms)

} described
in Eq. (7)

3 . Calculate the hybrid loss Lℎyb using Eq. (7)
4 . Update the parameters of FEX, AC, and LA‐Net by ascending their stochastic gradients: ∇(ΘF, ΘC, ΘD)Lℎyb

5 . Increment the count: n = n + m
Increment iteration i = i + 1

End training
Output: Trained model weights of the FEX, AC, and LA‐Net

The framework was trained with the training subset for 100 epochs. After each epoch, the 

trained model was evaluated with the validation subset. The model weights with the highest 

validation accuracy were further assessed using the testing images, which have both class 

and location labels, as shown in Table 1 (BUSI) and Table 2 (MBUD). To assess the training 

stability, the procedure described above was repeated three times. The proposed framework 

was implemented by use of PyTorch 1.7.0 (Paszke et al., 2019). The training and validation 

processes were executed using Nvidia GeForce GTX 1080ti GPUs.
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4.4. Other methods for comparison

In this study, we have implemented and compared the proposed method with two 

comparative MTL methods, four single-task classification methods, and two single-task 

segmentation methods. The four single-task classification methods include ResNet18 (R18) 

(He et al., 2016), ResNet50 (R50) (He et al., 2016), EfficientNet (EB0) (Tan and Le, 

2019), and vision transformer (ViT) (Dosovitskiy et al., 2020)). The two classic single-task 

segmentation methods are U-Net (Ronneberger et al., 2015) and DeepLabV3 (Chen et al., 

2017)). Additionally, we evaluated two recently proposed MTL methods: RMTL (Rasaee 

and Rivaz, 2021) and attention gated network (AGN) (Schlemper et al., 2019)). RMTL is 

a typical shared-trunk MTL method tailored for BUS images. Similar to our method, it can 

employ various CNN-based networks as its feature extraction backbone. In the experimental 

setup, both ResNet50 and ResNet18 served as the feature extraction backbone for our 

method and RMTL, resulting in methods named R50+LA-Net, R18+LA-Net, R50+RMTL 

and R18+RMTL, respectively.

4.5. Performance evaluation metrics

The evaluation of the proposed method encompasses both classification and localization 

performance. Accuracy, precision, recall, F1-score, and area under the ROC curve (AUC) 

were employed as the metrics to evaluate the classification performance. Two commonly-

used segmentation metrics, intersection over union (IoU) and dice score, were employed to 

evaluate the localization performance. When using the MBUD dataset with bounding boxes 

as location labels, the predicted lesion mask obtained from the LA-Net was transformed into 

a bounding box before evaluating the localization performance. The metrics are defined as 

follows:

Accuracy = TP + TN
TP + TN + FP + FN ; Precision = TP

TP + FP ;

F1‐score = 2TP
2TP + FN + FP ; Recall = TP

TP + FN ;

IoU = ∣ A⋂B ∣
∣ A⋃B ∣; Dice = 2 ∣ A⋂B ∣

∣ A ∣ + ∣ B ∣

(8)

where TP  means the number of true positive samples, FN means the number of false 

negative samples, FP  means the number of false positive samples, TN means the number of 

true negative samples, ∣ A ∣ means the predicted lesion area, ∣ B ∣ means the GT lesion area, 

∣ A⋂B ∣ means the intersection area of A and B, and ∣ A⋃B ∣ means the union area of A and 

B.

5. Experimental results

5.1. Performance of our model trained with partly-labeled MBUD dataset

The MBUD dataset described in Section 4.1 was employed to evaluate model performance 

for classification and localization. The study compared the proposed method to eight 

comparative methods, as described in Section 4.4. Specifically, the single-task classification 

methods, including ViT, EB0, R18, and R50, were directly trained using all samples with 

complete class labels within the MBUD dataset. Meanwhile, two single-task segmentation 
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methods (U-Net and DeepLabV3) and two MTL methods (AGN and RMTL) were trained 

on the fully-labeled F-MBUD subset. All methods were evaluated using the MBUD testing 

set, as shown in Table 2.

The classification results are shown in Table 3. The proposed method (#11), using ResNet50 

as the FEX, achieved superior classification outcomes compared to all other comparative 

MTL and single-task classification methods. Particularly, the comparative MTL methods 

(#5 to #7 in Table 3) can only be trained using the fully-labeled F-MBUD subset, but 

not the large amounts of images without location labels (a total of 18066 images) in 

the MBUD dataset. They showed lower classification performance than our method and 

even the other four single-task classification methods. It indicates the susceptibility of 

these methods to overfitting due to the limited training data. Comparatively, our methods 

trained on the F-MBUD subset (#8 and #9 of Table 3) still outperformed AGN and RMTL 

methods. It demonstrates the capacity of our method in mitigating overfitting risk even when 

trained on the small F-MBUD dataset. These results show the effectiveness of our network 

design in improving classification performance and reducing overfitting by exploiting the 

limited lesion location information in the dataset and being trained with the semi-supervised 

learning strategy.

The localization results are shown in Table 4. Our method, using ResNet18 as the FEX, 

demonstrated better localization performance than all other comparative methods. This result 

indicates that the depth of the FEX network has varying impacts on model performance 

in terms of localization and classification; however, a deeper network does not necessarily 

guarantee better performance. Interestingly, the localization performance of our method 

trained on the small yet fully-labeled F-MBUD subset (#8 in Table 4) was better than that 

achieved with the large yet partly-labeled MBUD dataset (#6 in Table 4). This phenomenon 

may arise due to the inclusion of large amounts of images without location labels in model 

training, and a more in-depth analysis of this aspect is discussed in Section 5.3.2.

5.2. Performance of our method trained with fully-labeled datasets

In order to individually investigate the effectiveness of the designed framework architecture, 

we trained our method and other comparative methods described in Section 4.4 using the 

same fully-labeled datasets and compared their performance. Two fully-labeled training 

datasets, BUSI and F-MBUD, were employed for model training. The classification results 

are shown in Table 5. When using ResNet50 as the FEX, our method achieved significantly 

higher performance than all other comparison methods in terms of all classification 

evaluation metrics on both datasets. This result indicates that the integration of LA-Net 

and AC designs enables the utilization of localization information to improve classification 

performance. In addition, our model employing ResNet50-based FEX outperformed that 

using ResNet18 as the FEX in terms of classification performance in both datasets. It 

indicates that the depth of the FEX network influences the classification performance. A 

more detailed discussion can be found in Section 5.3.3 below. Interestingly, the classification 

performance of the comparative RMTL method trained with the F-MBUD dataset was 

even lower than that of the vanilla ResNets. One possible reason is that RMTL training 
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demands pixel-level segmented lesion contours, while the F-MBUD dataset contains only 

lesion bounding box annotations.

The localization performance of our method and comparative methods are shown in Table 

6. When using the F-MBUD dataset, the proposed method using ResNet18-based FEX 

achieved superior localization performance compared to all other comparison methods, 

including our method using ResNet50-based FEX. Interestingly, on the BUSI dataset, 

our method significantly outperformed the other RMTL methods, yet its performance 

was lower than the other two single-task segmentation methods (U-Net and DeepLabV3). 

This phenomenon might be attributed to the properties of lesion localization labels. In 

the BUSI dataset, all lesions are accurately delineated rather than being roughly marked 

with bounding boxes. Therefore, the extracted lesion-relevant information more precisely 

captures the intrinsic characteristics of the lesion, rendering it suitable for training single-

task segmentation networks. However, there is a possibility of information conflict in the 

proposed multi-task learning method that might potentially compromise its localization 

performance. The features learned for classification may not necessarily align with the 

requirements for accurate localization and even have a detrimental effect on it. On the 

contrary, in the F-MBUD dataset, the lesion localization labels are in the form of bounding 

boxes, which poses challenges for traditional single-task segmentation methods in capturing 

intrinsic lesion shape information. Our method, which leverages classification information to 

facilitate lesion localization, can alleviate the negative effect of this form of annotation and 

achieve better localization performance. These results demonstrate the significant effects of 

lesion localization/segmentation labels on the model performance. Additionally, the varied 

performance achieved by our method using ResNet50 and ResNet18 as FEXs also implies 

the possible impact of FEX network depth on localization performance. Eight examples 

of BUS images for the two datasets are shown in Fig. 5, containing the ground truth and 

predicted lesion masks.

5.3. Ablation studies

5.3.1. Impact of attention modules on model performance—An ablation 

experiment was conducted to investigate the impact of each attention module (CAM, SAM, 

and MAM) on the overall model performance. After individually removing each attention 

module, the model was re-trained while maintaining the parameter settings described 

in Section 4.3. Both the fully-labeled BUSI dataset and partly-labeled MBUD dataset 

were used for model training. Table 7 and Table 8 demonstrated the model performance 

with respect to classification and localization, respectively. The original model containing 

all three attention modules achieved superior classification and localization performance 

compared to the other ablated models. Particularly, the classification performance of the 

model without MAM was significantly reduced, while the model without CAM or SAM 

showed greatly degraded localization performance. The results demonstrate that the three 

different attention modules contribute differently to the model performance. Specifically, 

CAM and SAM in the LA-Net exploit the essential channel-wise and lesion-related spatial 

relationships in the input features, therefore playing an important role in localization 

performance. Differently, MAM is crucial for leveraging lesion localization information 

to assist in the classification.
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5.3.2. Impact of sequential semi-supervised learning strategy—To explore the 

gain achieved by using the proposed sequential semi-supervised learning (s-SSL) strategy, 

an ablation study was conducted using the MBUD dataset. Our method was trained 

separately using two approaches: employing the partly-labeled MBUD dataset with the 

s-SSL strategy and using only the fully-labeled F-MBUD subset without s-SSL. For 

comparison, the RMTL method was also trained with and without the adapted s-SSL 

strategy. As shown in Table 9, using s-SSL significantly improved the classification 

performance of both our method and the RMTL method. This success highlights the 

effectiveness of the s-SSL strategy in MTL by efficiently exploiting the potential of 

images without location labels. Conversely, this s-SSL strategy decreased the localization 

performance of both our method and the RMTL method, as seen in Table 10. This 

phenomenon implies that there is a trade-off that both our and the RMTL models tend 

to sacrifice the localization performance to pursue optimal classification performance 

when large amounts of class labels rather than lesion location labels are used for model 

training. One potential explanation is that the distribution of lesion locations in the 

unlabeled images varies from that of the labeled images. These MTL methods might exploit 

inconsistent lesion location information from unlabeled images, subsequently impacting 

their localization performance when tested on the labeled images. Note that our method 

demonstrated a more moderate decrease in localization performance when compared to the 

RMTL method. This result indicates the efficacy of our method in managing and mitigating 

the inherent optimization conflicts between the two tasks.

5.3.3. Impact of FEX network depth—To assess the influence of the FEX 

architecture, the performance of models with ResNet18-based and ResNet50-based FEXs 

was evaluated on both BUSI and MUBD datasets and compared to the vanilla ResNet18 and 

ResNet50. As demonstrated in Fig. 6, our method was effective in improving classification 

performance using both ResNet architectures on both datasets. Using ResNet50 as the FEX 

generally achieved superior performance than that of using ResNet18. For comparison, 

the same experiment was also conducted for the RMTL method, which similarly employs 

ResNets as its feature extraction backbone. While RMTL showed higher performance over 

the Vanilla ResNet on the BUSI dataset, it suffered degraded performance when using 

the MBUD dataset, as shown in Fig. 6(b). One possible reason for this discrepancy is 

that the RMTL method suffers high overfitting issues when it can only be trained with a 

small number of fully-labeled samples. Our method, however, significantly alleviates the 

overfitting problem by fully utilizing a large number of images without location labels.

Similarly, Fig. 7(a) shows that our method consistently led to higher localization 

performance than the RMTL method on the BUSI dataset. However, Fig. 7(b) exhibits 

divergent outcomes for the MBUD dataset. Our method using ResNet50 as the FEX did not 

notably outperform the RMTL method, as well as our method with ResNet18-based FEX, 

in terms of localization performance. These results imply that adopting a deeper network as 

the FEX in our method might be inadvertently influenced by large-scale unlabeled images, 

therefore compromising the model’s capacity to predict accurate true location distribution 

and leading to the similar trade-off discussed in Section 5.3.2.
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5.3.4. Impact of the number of partial-labeling training samples—We conducted 

experiments to understand the impact of the number of partly-labeled training samples 

on model performance. As defined in Section 4.1, partly-labeled samples represent those 

with lesion-type labels but no corresponding location labels. Using the fully-labeled BUSI 

dataset, we randomly retained 25%, 50%, and 75% of the location labels in the dataset 

and discarded the rest to create four partly-labeled datasets. Our method was individually 

trained with these four partly-labeled datasets. For comparison, a single-task segmentation 

method (U-Net) and two RMTL methods were trained using the fully-labeled images from 

each of the four partly-labeled datasets. As shown in Fig. 8, our method achieved greater 

classification performance than the three compared methods across all four partly-labeled 

datasets. The classification performance showed improvement with an increased number of 

fully-labeled training samples. Notably, our method showed less performance degradation 

along with the decrease of partly-labeled training samples. A similar trend was observed in 

the localization performance of our method, as shown in Fig. 9. These results indicate that 

our method can enhance model performance and reduce the risk of overfitting for datasets 

with varying amounts of location labels compared to the RMTL methods.

5.3.5. Impact of training image size—The influence of training image size on model 

performance was explored using the BUSI and MBUD datasets. In this experiment, two 

different image sizes were tested, including 256 × 256 and 512 × 512 pixels. Both 

ResNet18 and ResNet50 were used as the FEX in our framework. As shown in Fig. 10, 

the classification performance achieved by using images with an input size of 256 × 256 

pixels was generally higher than that of using images with larger images of 512 × 512 pixels. 

However, Fig. 11 demonstrates that using larger images of 512 × 512 pixels usually led to 

significantly better localization performance. These results indicate that the trade-off persists 

in balancing classification and localization performance and can also be influenced by the 

sizes of images used.

5.4. Classification result interpretation through visualization of the discriminative region

Class activation mapping (Selvaraju et al., 2017; Zhou et al., 2016) has been broadly 

employed to interpret classification networks across various applications, including BUS 

image analysis (Byra et al., 2022; Ding et al., 2022). This technique enhances the 

interpretability of model performance by visualizing the areas that contribute most to the 

classification decision. Gradient-weighted class activation mapping (Grad-CAM) (Selvaraju 

et al., 2017) is an effective and applicable class activation mapping technique for 

highlighting potential ROIs based on the gradient score of each class. In this study, Grad-

CAM was utilized to identify the discriminative lesion regions within BUS images. The 

proposed method and the vanilla ResNet18 and ResNet50 were subjected to Grad-CAM 

analysis. The generated Grad-CAM examples are shown in Fig. 12. It is observed that the 

attention regions recognized by our method had a higher degree of overlap with the GT 

lesion locations. These examples indicate that the LA-Net effectively assists the feature 

extraction process, enabling the FEX to extract more discriminative information from lesion 

areas. Consequently, our framework reduces the interference from the noisy background and 

improves the overall classification performance.
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6. Discussion

The MTL framework proposed in this study integrates the advantages of attention 

mechanisms and a semi-supervised learning strategy to address the challenges for joint 

localization and classification of breast tumors on BUS images. Multiple attention modules 

are designed in the framework to explicitly highlight the discriminative features within the 

lesion region and suppress the negative impact of high image noise and low contrast inherent 

to BUS images. A mask attention module is a key component of our design, which connects 

the two task-specific branches to balance the importance of individual tasks and alleviate 

the potential information-sharing conflicts during model training. The proposed sequential 

semi-supervised learning strategy enables the model to leverage partly-labeled datasets 

effectively, greatly reducing the burdens of data annotation. Additionally, the framework is 

modularized so that each component can be flexibly adapted with suitable architecture to 

satisfy various demands.

We conducted complete experiments to validate the model performance and compare 

it against eight state-of-the-art methods using two different BUS image datasets. The 

comparative analysis results showed the effectiveness of our method in improving model 

performance across both localization and classification tasks. Furthermore, we also 

conducted an in-depth exploration of various network-related factors that might have an 

influence on model performance, including attention modules, the number of location 

labels, the depth of the feature extractor network, and the input image size. Our ablation 

studies demonstrated that three attention modules (CAM, SAM, and MAM) have different 

contributions to the overall model performance. The designed two-stage s-SSL strategy 

enables our method to leverage large amounts of partly-labeled images to significantly 

enhance the model performance. Additionally, the insights gained about network depth and 

training image size can serve as valuable guidance for adapting the method to diverse 

applications.

Given the inherent flexibility of our modular framework, one future research topic is to 

investigate the potential improvement of model performance and generalities by upgrading 

the current network architecture design. The modern network architectures, such as Vision 

Transformer (Dosovitskiy et al., 2020) and Swin Transformer (Liu et al., 2021a), will be 

employed as the FEX in our framework to understand their impacts on model performance 

and robustness when adapted to small BUS datasets. Also, the performance of cutting-edge 

attention modules, such as non-local attention module (Wang et al., 2018) and multi-head 

attention module (Vaswani et al., 2017), will be investigated to understand their abilities 

to address the issues of information-sharing conflict. Recently, the analysis of 3D BUS 

scanning videos has attracted growing interest in the community (Zhou et al., 2021; Liu et 

al., 2021b; Dai et al., 2019). Integrating appropriate temporal attention modules (Yan et al., 

2019) into the proposed framework to capture the temporal information holds the promise 

for addressing evolving challenges in 3D BUS data analysis.

Regarding the improvement of model training strategies, more advanced semi-supervised 

learning techniques will be explored to further reduce the reliance on data annotation, 

such as generative-based methods (Zhou, 2018; Yang et al., 2021; Zhai et al., 2022; Fan 
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et al., 2021), consistency regularization methods (Mittal et al., 2021), and self-supervised 

learning (He et al., 2022; Caron et al., 2020, 2021; Chen et al., 2020b, 2021). Particularly, 

recent cutting-edge self-supervised learning methods, such as masked-autoencoder (MAE) 

(He et al., 2022) and masked image modeling (SimMIM) (Xie et al., 2022), leverage 

pretext tasks to learn useful representations from large-scale unlabeled images. The 

learned representations can be fine-tuned on small task-specific datasets for downstream 

classification or localization tasks. These representation learning paradigms are extensively 

studied in various imaging applications (Zhou et al., 2022; Chen et al., 2022). However, 

there are two major challenges to adapt these designs to efficiently capture the inherent 

structure of medical images, especially breast ultrasound images with high noise and 

textural similarities between the lesions and normal tissues. First, the presence of spurious 

correlations between image slices in the ultrasound scanning data hinders the model from 

capturing robust representations during self-supervised learning. Second, self-supervised 

learning usually necessitates extensive data to acquire complete data distribution and ensure 

the generalizability of learned features to unseen data. Learning precise data distribution 

and lesion-relevant features becomes particularly challenging when working with relatively 

small BUS datasets. Our modular asymmetric framework is adaptable to various encoders, 

facilitating the extraction of multi-scale features embedded with both local and global lesion 

information from input BUS images. An ongoing project is to explore more powerful 

encoders as feature extractors, and train them with self-supervised methods to tackle the 

aforementioned challenges. Concurrently, we will continuously collect imaging data with 

low correlations to mitigate the negative effects due to data relevancy.

Another interesting research direction involves extending the applications of the proposed 

framework to multi-modal ultrasound data, such as color Doppler and shear wave 

elastography data (Chang et al., 2013). Multimodal data provides complementary but limited 

information because it captures tumor phenotypes from diverse perspectives. Combining 

multimodal data in BUS analysis holds the potential to enhance model performance on 

both tasks. However, various challenges, such as redundancy, uncertainty, and heterogeneity 

among multimodal data, as well as the imbalanced patient cohorts, necessitate careful 

consideration when designing an effective and robust method. Furthermore, we will explore 

other advanced methods to further refine model interpretability, such as counterfactual 

explanation (Goyal et al., 2019) and concept whitening (Chen et al., 2020a), These 

approaches are aimed at providing transparent and safe predictions to support clinical 

decision-making.

7. Conclusions

The proposed method is capable of processing partly-labeled BUS images for joint 

localization and classification tasks. It is designed to address information-sharing conflicts 

inherent in shared-trunk-based MTL methods, to alleviate difficulties of time-consuming 

data annotation in clinical practice, and to suppress the negative effects of the intrinsic 

characteristics of BUS images. Extensive experiments conducted on two BUS datasets 

demonstrated the efficiency, robustness, and generality of the proposed method. The 

proposed method can potentially be applied to real-time clinical applications. It also holds 

the promise to be applied to a number of different problems, such as joint localization and 
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recognition of prostate cancers and renal lesions, for which ultrasound images are commonly 

employed.
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Fig. 1. 
The proposed framework for joint localization and classification in BUS images. FEX: 

Feature extractor; AC: Attention-based classifier; LA-Net: Lesion-aware network; {f1, …, fn}: 

Extracted multi-scale image feature maps by FEX; fmask: Lesion-aware feature maps 

produced by LA-Net. GT denotes ground truth.
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Fig. 2. 
(a) Network architecture of lesion-aware network (LA-Net), including a CBAM and a 

feature fusion module. {f1, …, fn} are multi-scale feature maps extracted from FEX. (b) 

Architecture of the CBAM module. CAM denotes the channel attention module, SAM 

denotes the spatial attention module, and ⊗ denotes element-wise multiplication. (c) 

Architecture of the CAM module. MaxPool involves applying maximum pooling to a feature 

map along the width and height axes to output a vector; AvgPool represents average pooling 

done in the same way. ⊕ denotes element-wise addition. (d) Architecture of the SAM 

module. Channel MaxPool applies maximum pooling to a multi-channel feature map along 

the channel axis to output a single-channel feature map. Channel AvgPool applies average 

pooling similarly.
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Fig. 3. 
Network architecture of attention-based classifier (AC). fn is the top extracted feature map of 

the FEX, fmask is the lesion-aware feature map learned by LA-Net, fatt is the enhanced feature 

map, MAM is the mask attention module in which ⊗ represents element-wise multiplication, 

and ⊕ represents element-wise addition.
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Fig. 4. 
Example images from the BUSI dataset (top row) and MBUD dataset (bottom row). The 

green contours indicate annotated lesion masks. (A) and (B): BUSI dataset examples with 

benign lesions. (C) and (D): BUSI dataset examples with malignant lesions. (E) and (F): 

MBUD dataset examples with benign lesions. Lesion locations are not available for this 

image (E). (G) and (H): MBUD dataset examples with malignant lesions. Lesion locations 

are not available for this image (H).
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Fig. 5. 
Examples of predicted lesion masks using our method in the BUSI dataset (top row) and 

F-MBUD dataset (bottom row). The green contours indicate the GT lesion locations, while 

the red contours show the predicted lesion locations. (A) and (B) are two benign examples 

from the BUSI dataset. (C) and (D) are two malignant examples from the BUSI dataset. (E) 

and (F) are two benign examples from the F-MBUD dataset. (G) and (H) are two malignant 

examples from the F-MBUD dataset.
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Fig. 6. 
Ablation study to investigate the impact of FEX network depth on classification performance 

using (a) BUSI and (b) MBUD datasets. ResNet18 (R18) and ResNet50 (R50) were used as 

FEXs in our method and the backbone of the RMTL method. The input image size was 256 

× 256 pixels. The statistical significance symbol indicates the t-test result of the selected pair 

of methods. The null hypothesis is that the average metric of the left method is less than or 

equal to the right method. The meaning of p-values is the same as that described in Table 3.
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Fig. 7. 
Ablation study to investigate the impact of FEX network depth on localization performance 

using (a) BUSI and (b) MBUD datasets. The network and parameter settings are the same as 

Fig. 6.
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Fig. 8. 
Classification performance of the proposed method on BUSI-derived datasets with varied 

numbers of location labels. The numbers 25%, 50%, 75%, and 100% on the x-axis represent 

the ratio of training samples with location labels compared to the original BUSI dataset in 

which all samples have both classification and localization labels. Each point represents the 

mean of each metric at the given labeling ratio, and the error bar shows its 95% confidence 

interval. In this experiment, ResNet50 was used as the FEX, and the training image size was 

256 × 256 pixels.
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Fig. 9. 
Localization performance of the proposed method on BUSI-derived datasets with varied 

numbers of location labels. The detailed description is the same as Fig. 8.
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Fig. 10. 
Ablation study to investigate the classification performance of using different training image 

sizes on (a) BUSI and (b) MBUD dataset. The numbers shown on the x-axis represent the 

input image sizes, either 356 × 256 or 512 × 512 pixels. The null hypothesis and meaning of 

p-values remain consistent with the description in Fig. 6.
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Fig. 11. 
Ablation study to investigate the localization performance of using different input sizes on 

(a) BUSI and (b) MBUD dataset. The detailed description is the same as Fig. 10.
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Fig. 12. 
Class activation maps generated by the ResNet18- and ResNet50-based FEXs of our 

methods and vanilla ResNets on the BUSI dataset (panel a) and MBUD dataset (panel 

b). The white dashed rectangles indicate the GT lesion locations. The regions with warmer 

colors represent higher confidence corresponding to the target class label.
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Table 1

Details of the BUSI dataset.

Class label Training images Testing images

Benign 397 40

Malignant 170 40
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Table 2

Details of the MBUD dataset. The numbers within brackets indicate the counts of images in the fully-labeled 

subset F-MBUD dataset.

Class label Training images Testing images

Benign 13440 (220) 2435 (36)

Malignant 4954 (108) 1373 (20)
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Table 4

Localization performance of the proposed method and comparison methods on the partly-labeled MBUD 

dataset.

ID Network Dataset IoU Dice p-value

#1 U-Net F-MBUD 0.445 ± 0.019 0.549 ± 0.009 *

#2 DeepLabV3 F-MBUD 0.441 ± 0.013 0.559 ± 0.020 *

#3 AGN F-MBUD 0.442 ± 0.022 0.526 ± 0.016 *

#4 R18+RMTL F-MBUD 0.377 ± 0.032 0.521 ± 0.030 ***

#5 R50+RMTL F-MBUD 0.383 ± 0.055 0.517 ± 0.057 **

#6 R18+LA-Net (Ours) MBUD 0.410 ± 0.014 0.532 ± 0.019 **

#7 R50+LA-Net (Ours) MBUD 0.382 ± 0.012 0.506 ± 0.022 ***

#8 R18+LA-Net (Ours) F-MBUD 0.449 ± 0.022 0.580 ± 0.035 –

#9 R50+LA-Net (Ours) F-MBUD 0.406 ± 0.035 0.534 ± 0.040 –

Notes: In this experiment, Both ResNet18 and ResNet50 were used as the FEXs. The input image size was 256 × 256 pixels. The p-value shows 
the t-test result of comparing the IoU of a comparison method with our method’s. The null hypothesis is that the IoU of the comparison method is 
larger than or equal to our method’s. The meaning of the p-values is the same as described in Table 3.
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Table 6

Localization performance of the proposed method and the comparison methods on the fully-labeled BUSI and 

F-MBUD datasets.

Dataset Network IoU Dice p-value

BUSI

U-Net 0.46S ± 0.032 0.580 ± 0.049 ns

DeepLabV3 0.495 ± 0.016 0.593 ± 0.016 ns

AGN 0.424 ± 0.022 0.526 ± 0.016 *

R18+RMTL 0.388 ± 0.052 0.515 ± 0.063 ***

R50+RMTL 0.384 ± 0.045 0.501 ± 0.074 ***

R18+LA-Net (Ours) 0.429 ± 0.024 0.530 ± 0.023 –

R50+LA-Net (Ours) 0.438 ± 0.016 0.543 ± 0.018 –

F-MBUD

U-Net 0.445 ± 0.019 0.549 ± 0.009 *

DeepLabV3 0.441 ± 0.013 0.559 ± 0.020 *

AGN 0.442 ± 0.024 0.543 ± 0.022 *

R18+RMTL 0.377 ± 0.032 0.521 ± 0.030 ***

R50+RMTL 0.383 ± 0.055 0.517 ± 0.057 **

R18+LA-Net (Ours) 0.449 ± 0.022 0.580 ± 0.035 –

R50+LA-Net (Ours) 0.406 ± 0.035 0.534 ± 0.040 –

Notes: Two difference networks, ResNet18 and ResNet50, were used as FEXs in our method. The input image size was 256 × 256 pixels. 
The results are represented as a mean value with a ±95% confidence interval. The p-value shows the t-test result of comparing the IoU of the 
comparison method with our method’s. The null hypothesis is that the IoU of the comparison method is larger than or equal to our method’s. 
Here ns represents p-value > 0.05 (no significant improvement). The symbols *, ** and * * * indicate the p-value is less than 0.05, 0.01 and 0.01, 
respectively.
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Table 8

Impacts of three attention modules on localization performance.

Dataset CAM SAM MAM IoU Dice p-value

BUSI

✗ ✓ ✓ 0.411 ± 0.024 0.521 ± 0.018 **

✓ ✗ ✓ 0.413 ± 0.014 0.515 ± 0.005 **

✓ ✓ ✗ 0.419 ± 0.010 0.528 ± 0.007 **

✓ ✓ ✓ 0.438 ± 0.016 0.543 ± 0.018 –

MBUD

✗ ✓ ✓ 0.341 ± 0.039 0.466 ± 0.056 **

✓ ✗ ✓ 0.358 ± 0.024 0.468 ± 0.029 **

✓ ✗ ✓ 0.384 ± 0.051 0.510 ± 0.059 ns

✓ ✓ ✓ 0.406 ± 0.035 0.534 ± 0.040 –

Notes: The symbol ✗means this attention module was removed in our framework. In this experiment, ResNet50 was used as the FEX, and the input 
image size was 256 × 256 pixels. The results are represented as a mean value with a ±95% confidence interval. The null hypothesis and meaning of 
the p-values remain consistent with the description in Table 6.
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Table 10

Impact of sequential semi-supervised learning strategy on localization performance.

Dataset s-SSL IoU Dice p-value

R18+RMTL
✗ 0.377 ± 0.032 0.518 ± 0.017 ns

✓ 0.255 ± 0.042 0.367 ± 0.038 –

R50+RMTL
✗ 0.383 ± 0.055 0.517 ± 0.058 ns

✓ 0.310 ± 0.026 0.415 ± 0.023 –

R18+LA-Net
✗ 0.449 ± 0.022 0.580 ± 0.037 ns

✓ 0.410 ± 0.014 0.532 ± 0.019 –

R50+LA-Net
✗ 0.406 ± 0.035 0.534 ± 0.040 ns

✓ 0.382 ± 0.012 0.506 ± 0.022 –

Notes: This experiment was conducted on the partly-labeled MBUD dataset. The symbols ✓ and ✗show whether the method is trained with or 
without the sequential semi-supervised learning strategy. ResNet50 was used as FEX, and the input image size was 256 × 256 pixels. The outcomes 
are represented as mean value ±95% confidence interval. The null hypothesis and meaning of p-values remain consistent with the description in 
Table 6.
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