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Summary:

Inflammation can trigger lasting phenotypes in immune and non-immune cells. Whether systemic 

inflammation, such as that caused by severe coronavirus disease 2019 (COVID-19), triggers innate 

immune memory in hematopoietic cells is unknown. We found that circulating hematopoietic 

stem and progenitor cells (HSPC), enriched from peripheral blood, captured the diversity of 

bone marrow (BM) HSPC, enabling investigation of their epigenomic reprogramming following 

COVID-19. Alterations in innate immune phenotypes and epigenetic programs of HSPC persisted 

for months to one year following severe COVID-19 and were associated with distinct transcription 

factor (TF) activities, altered regulation of inflammatory programs, and durable increases in 

myelopoiesis. HSPC epigenomic alterations were conveyed, through differentiation, to progeny 
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innate immune cells. Early activity of IL-6 contributed to these persistent phenotypes in human 

COVID-19 and a mouse coronavirus infection model. Epigenetic reprogramming of HSPC may 

underly altered immune function following infection and be broadly relevant, especially for 

millions of COVID-19 survivors.

In Brief

Severe COVID-19 can reprogram hematopoiesis and establish epigenetic memory in 

hematopoietic stem and progenitor cells (HSPC) and progeny myeloid cells for up to one year. 

These durable alterations, which could affect post-infection immune responses and equilibrium, 

are controlled in part by the activity of IL-6 during acute disease.

Graphical Abstract
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Introduction

COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 

infection, is characterized by a range of symptoms and severity, and frequently includes 

long-term complications. Innate immune cell activation together with delayed adaptive 

immune and interferon (IFN) responses feature prominently in acute severe COVID-191–13. 

Importantly, the long-term effects of COVID-19 on the immune system and the nature of 

persistent molecular and cellular changes are poorly understood. These durable changes in 

the immune system could influence subsequent immune responses to pathogens, vaccines, 

and contribute to long-term clinical symptom, e.g., post-acute sequelae of SARS-CoV-2 

infection (PASC)14–22 and COVID-19-associated multisystem inflammatory syndrome in 

adults (MIS-A) and children (MIS-C)23–27. While several biomarkers are associated with 

PASC, with examples including elevated antibody responses to Epstein-Barr virus, persistent 

SARS-CoV-2 virus, or low cortisol28,29, the molecular and cellular changes following 

COVID-19 that alter immunity and contribute to ongoing pathology are poorly understood.

Recent studies have established that innate immune cells and their progenitors can 

maintain durable epigenetic memory of prior infection or inflammation, altering innate 

immune equilibrium and responses to subsequent challenges30,31. Innate immune memory is 

primarily attributed to persistent chromatin alterations that modify cell responses, including 

in long-lived innate immune cells30–35, epithelial stem cells36–38, hematopoietic progenitors, 

and their mature progeny cells39–48. Altered chromatin accessibility, has been described in 

mature immune cells one to three months following COVID-1949. Establishing the cellular 

source of such durable epigenetic memory has been a challenge, especially considering 

the short lifespan50 of many mature innate immune cells. Studies in mice indicate HSPC 

can be epigenetically reprogrammed upon exposure to inflammation, leading to long-lasting 

phenotypic changes in progeny cells42,45–48,51. Underscoring the functional relevance of 

this epigenetic reprogramming, enhanced granulopoiesis in response to β-glucan drives 

improved anti-tumor responses47, and IL-1 signaling-induced myelopoiesis contributes to an 

HSC-transplantable model of inflammatory disease46.

While innate immune memory is well-studied in mouse models, the breadth, relevance, and 

molecular features of such phenotypes in humans have been more elusive. Recent studies 

have revealed innate immune memory in humans after receiving Bacillus Calmette-Guérin 

(BCG)43,44,53, a tuberculosis vaccine. Importantly, certain BM HSPC phenotypes, such as 

myeloid cell fate priming, persist for at least three months following BCG vaccination44. 

While controlled vaccine studies have established innate immune memory or trained 

immunity phenotypes in humans, the limited access to experimental studies on human HSPC 

has impeded our understanding of dynamic HSPC phenotypes in disease, especially in the 

context of natural infection.

In this study, we identified epigenetic innate immune memory that results from SARS-

CoV-2 infection by characterizing the cellular and molecular features during the post-

infection period of COVID-19. We focused on analyzing chromatin and transcription at the 

single-cell level in monocytes and their progenitors, HSPC. High-resolution transcriptomic 

and chromatin accessibility maps were generated for diverse HSPC subtypes and PBMC 
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following severe COVID-19. We discovered lasting epigenetic and transcription changes 

in HSPC and monocytes, indicating an altered innate immune response. These changes 

were associated with increased myelopoiesis in HSPC and led to inflammatory, migratory, 

and differentiating monocyte phenotypes. While the blockade of IL-6 signaling modestly 

improved outcomes in critically ill patients54,55, the impact of early activity of this 

pleiotropic cytokine on recovery remains unclear. We found that disruption of IL-6R 

signaling during acute infection resulted in a reduction in post-infection HSPC and 

monocyte inflammatory programs in human patients and mice. Our findings underscore 

the potential of inflammatory cytokine signaling, like IL-6, during acute viral infections to 

induce enduring epigenetic changes in HSPC and progeny innate immune cells, potentially 

influencing various post-infection phenomena in humans, including tissue repair, protection 

against other infections, chronic inflammation, and long-term sequalae.

Results

Altered chromatin accessibility and durable epigenetic memory in monocytes following 
COVID-19

To study the molecular features of HSPC and mature immune cells in convalescent 

severe COVID-19 study participants, we collected blood samples from early convalescent 

(2–4 months after onset of disease, “Early”) and late convalescent participants (4–12 

months after onset, “Late”), and participants recovering from non-COVID-19 critical illness 

(“nonCoV”, requiring ICU admission) for plasma and epigenomic analysis, including Assay 

for Transposase-Accessible Chromatin (ATAC)-seq, and single-cell analysis (Figure S1A-B, 

Table S1). Study participants were enrolled during the first wave of infections in New York 

City prior to administration of COVID-19 vaccines and were infected with 614D and 614G 

variants of the virus56. To comprehensively study cellular and molecular features of immune 

cells in this cohort, we established a multimodal assay and analysis workflow incorporating 

combined single nuclei (sn) RNA and ATAC-seq (snRNA/ATAC-seq) for PBMC and HSPC, 

sorted monocyte and HSPC subset “bulk” ATAC-seq, multiplexed immunoassay-based 

quantitation of plasma proteins, and immunophenotyping by flow cytometry (Figure S1).

To determine if mature circulating CD14+ monocytes from COVID-19 convalescent 

individuals have distinct and durable epigenetic signatures, we profiled chromatin 

accessibility by ATAC-seq (either snRNA/ATAC-seq or conventional ATAC-seq) across the 

four clinical groups: Healthy, nonCoV, Early and Late (n = 57). Bulk and single-nuclei 

“pseudo-bulk” ATAC-seq were analyzed together when appropriate (Figure 1A, STAR 

Methods).

Principal component (PC) analysis of differentially accessible regions (DAR/peaks) revealed 

that individual datapoints clustered by group, with PC1 capturing chromatin accessibility 

features associated with early recovery from critical illness (nonCoV, Early; e.g., monocyte 

differentiation) and PC2 capturing common features of post-COVID states (Early, Late; e.g. 

response to IL-6) (Figure 1B, Figure S2A).

Across all groups, DAR in monocytes clustered into four major groups based on their 

accessibility profiles (Figure 1C-E, Table S3). Epigenetic changes between Early and 
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Healthy were most notable, where cluster 2 (C2), cluster 3 (C3), and cluster 4 (C4) DAR had 

increased accessibility and cluster 1 (C1) had decreased accessibility in Early (Figure 1C, 

1E, Table S3). C4 peak accessibility, while increased in Early, returned toward the Healthy 

baseline in Late and were therefore referred to as “transient” DAR (Figure 1C-E, Table 

S3). These transient C4 DAR were enriched for gene ontology (GO) categories related 

to leukocyte activation, cytokine production, and differentiation (Figure 1D) and were 

annotated to pro-inflammatory and activation molecules (e.g., IL18; CSF1R, the receptor for 

macrophage differentiation and maintenance factor CSF1; IL17RA, receptor for IL17, which 

regulates monocyte differentiation and migration) (Figure 1E-F). In contrast, C2 DAR were 

more accessible in Late than Healthy, though with reduced average magnitude compared 

to Early and nonCoV. We refer to C2 as “persistent” DAR since these disease-related 

epigenetic changes lasted 4–12 months after disease onset. Persistent monocyte epigenetic 

features were annotated to genes including IL21R, MAPKAPK2, TNIP2, CREB1, and 

MMP1 and GO categories related to monocyte activation and cytokine production (Figure 

1D-F). (Figure 1E, boxplots).

Thus, bulk ATAC-seq profiling indicates that circulating monocytes retain altered epigenetic 

landscapes following recovery from severe COVID-19 with distinct signatures in early and 

late convalescence. Notably, increased chromatin accessibility at genes encoding cytokines 

(e.g., IL10, IFNG), adhesion molecules (e.g., ADAM9, ITGAL), and differentiation factors 

(e.g., KLF13, FOXP1) persisted for one year following acute COVID-19, highlighting either 

an active maintenance of these programs through ongoing signaling or durable epigenetic 

memory in monocyte progenitors (Figure 1E).

Altered monocyte phenotypes and transcriptional programs post-COVID-19

Considering that epigenetic signatures of COVID-19 may affect gene expression, we 

performed snRNA/ATAC-seq analysis of PBMC samples from our cohort (n=32) to study 

transcriptional and epigenetic changes and cell type distribution (Figure S4). Notably, 

CD14+ monocytes exhibited the highest number of gene expression changes between post-

COVID-19 and Healthy (Figure S4B, Table S4), indicating innate immune memory in these 

short-lived circulating cells. Given the dysregulation of the myeloid population in acute 

disease57,58, we focused on myeloid populations and their progenitors for exploration of 

innate immune memory phenotypes following COVID-19.

We re-clustered and annotated myeloid cells as CD14+ monocytes, CD16+ monocytes, and 

dendritic cells (DC) (Figure 2A-B). Analysis of CD14+ monocytes uncovered differentially 

expressed genes (DEG) and differential activity in domains of regulatory chromatin 

(DORC)59 between post-illness and Healthy groups (Figure 2C, Figure S2B-C, Table S4-5). 

DORC represent functionally linked non-coding gene regulatory elements, and associated 

genes are enriched for developmental programs and depleted for housekeeping genes59.

Early monocytes showed enrichment of GO terms related to myeloid cell activation and 

cytokine production in both differential DORC and DEG (Figure S2D, Table S4-5). 

Inflammatory programs in Late overlapped with Early and were enriched compared to 

nonCoV (e.g., “antigen processing and presentation”, “response to virus”; Figure S2D). Late 
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group exhibited persistent DORC signatures and gene expression programs (Figure S2D), 

congruent with durable bulk-ATAC-seq signatures (Figure 1).

In line with incomplete resolution of inflammation in Early and nonCoV, we found 

transcriptional upregulation of a broadly defined inflammatory gene module in CD14+ 

monocytes from both groups (Figure S2F), including genes associated with acute 

inflammation and anti-viral responses (Figure 2C, S2F, Table S4). Interestingly, while 

expression of many of these inflammatory genes returned to baseline in Late, other 

inflammatory molecules (e.g., S100A8, S100A9) and genes related to antigen presentation 

(e.g., CD74, B2M) remained upregulated in Late compared to Healthy and Early (Figure 

2C, S2B, S2D-E, Table S4), suggesting a more differentiated phenotype in Late CD14+ 

monocytes.

Human monocytes are transcriptionally heterogeneous60. To investigate this heterogeneity in 

post-COVID-19 monocytes, we annotated three additional subclusters in CD14+ monocytes 

(M.SC1, M.SC2, and M.SC3), based on marker gene expression (Figure 2D-E, Table S2). 

While M.SC1 was equally distributed across groups, M.SC2 was enriched in Early and 

nonCoV, returned to baseline in Late (Figure 2B), and displayed epigenomic signatures 

associated with inflammatory programs (Figure S2G). Notably, M.SC3 was uniquely 

enriched in Late and characterized by increased expression of inflammatory monocyte 

and DC signature genes, including those relating to antigen presentation (e.g., CD74, 
HLA genes), migration (e.g., ITGB2), and inflammation (e.g., S100A6, LYZ) (Figure 2B-

E, Table S2). M.SC3 cells resembled intermediate monocytes61,62, and highly expressed 

intermediate monocyte transcriptional program62 (Figure S2H). Thus, Late monocytes 

exhibit distinct characteristics including epigenomic signatures, M.SC3 enrichment, and 

differential enrichment of epigenetic and transcriptional signatures linked to antigen 

presentation, activation, differentiation, and anti-viral responses.

To examine whether epigenetic and transcriptional signatures in post-COVID-19 monocytes 

are associated with functional differences, we stimulated monocytes from PBMC with 

TLR7/8 agonist R848 and IFNα for 6 and 24 hours to model an anti-viral response 

(Figure 2F, top). We found significantly higher secretion of IL-6, GM-CSF, and TNFα 
at 24 hours in post-COVID-19 monocytes compared to Healthy (Figure 2F, bottom; S3A), 

consistent with a more differentiated and hyper-responsive molecular phenotype (Figure 2D-

E, Table S7). We performed RNA-seq to globally assess stimulation-induced transcription 

(6hr) and found that genes more highly expressed in the post-COVID-19 group were 

enriched for GO terms related to response to virus and cytokines, and differentiation 

(Figure 2G, S3B-C, Table S7). To investigate the contribution of epigenetic poising to the 

hyper-responsiveness of post-COVID-19 monocytes, we compared stimulation-induced gene 

expression changes with altered chromatin accessibility in unstimulated post-COVID-19 

monocytes. Several hyper-responsive genes (e.g., IL7R, CCL5, CXCR4, IFI30, OASL, 

GBP5) showed increased chromatin accessibility in post-COVID-19 naive monocytes, 

indicating epigenetic poising (Figure 2H-J, S3D-F). Collectively, our findings suggest 

persistent epigenetic alterations in post-COVID-19 monocytes, including epigenetic poising 

associated with hyper-responsiveness to stimulation.
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Circulating HSPC reflect BM HSPC composition and phenotypes

Since circulating monocytes have short lifespan and are continuously replenished from 

HSPC, we hypothesized that the distinguishing characteristics of post-COVID-19 monocytes 

may stem from altered hematopoiesis or epigenetic phenotypes in HSPC that are conveyed 

through development.

To overcome the impracticalities of obtaining HSPC from BM to study hematopoiesis 

and epigenetic memory in human disease, we developed a platform to enrich and 

analyze circulating CD34+ HSPC (~0.05% of PBMC). We aimed to determine if these 

circulating HSPC accurately represent the heterogeneity and epigenetic/transcriptional 

phenotypes of their BM counterparts. To achieve this, we purified CD34+ HSPC from 

BM mononuclear cells (BMMC) and PBMC of the same donors and reintroduced them 

into the respective tissues’ total mononuclear cells at enriched frequencies. Using snRNA/

ATAC-seq, we comprehensively profiled these cells (Figure 3A, Table S1). The co-clustering 

of CD34+ HSPC from both BMMC and PBMC was evident in RNA and ATAC-seq 

UMAP plots, indicating shared transcriptional and epigenomic programs (Figure 3B). 

Based on known marker genes, we annotated the HSPC as hematopoietic stem cells 

and multipotent progenitors (HSC/MPP), lymphoidprimed MPP (LMPP), megakaryocyte-

erythroid progenitors (MEP), erythroid progenitors (Ery), granulocyte-monocyte progenitors 

(GMP), and basophil-eosinophil-mast cell progenitors (BEM)63 (Figure 3B-C). The 

expression of lineage-defining marker genes in both BM and peripheral HSPC subtypes 

confirmed that circulating HSPC encompass the molecular diversity and characteristics of 

BM HSPC (Figure 3B-C).

Given observed similarity between circulating and BM HSPC, we pursued study of 

circulating HSPC paired with the mature immune cell populations, using an experimental 

workflow we termed PBMC analysis with Progenitor Input Enrichment (PBMC-PIE). This 

approach is particularly suitable for single-cell profiling of peripheral HPSC in infectious 

and inflammatory diseases, as it utilizes readily available PBMC samples. We applied the 

PBMC-PIE workflow to samples from our post-COVID-19 cohort to study phenotypes and 

epigenetic memory in HSPC (Figure 3D, S4C).

Durable chromatin accessibility signatures in HSPC following severe COVID-19

Using snRNA/ATAC-seq, we analyzed PBMC-PIE samples from a subset of our cohort 

to investigate gene expression and chromatin accessibility. We examined 28,069 peripheral 

CD34+ HSPC after pre-processing and cell-type annotation. Projecting these RNA-based 

annotations onto the snATAC-seq HSPC UMAP also labeled distinct subclusters (Figure 

3F, right), indicating co-segregating expression and epigenetic profiles among major HSPC 

subtypes.

Additionally, we annotated peripheral HSPC by incorporating bulk-ATAC-seq data 

from FACS-sorted BM HSPC subsets in our previous studies64; and scRNA-seq data 

from BMMC65. Both projections demonstrated substantial consensus, supporting the 

representative diversity of peripheral HSPC and their similarity to BMMC HSPC (Figure 

3F-G, S4K-L). Notably, the HSC/MPP cluster was prominently represented among 
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peripheral HSPC, with high expression of CD164 (an early hematopoietic stem cell marker) 

in the HSC/MPP subcluster identified through bulk-ATAC-seq-guided annotation (Figure 

S4L-M).

Regarding HSPC epigenetic programs, PCA analysis of bulk ATAC-seq DAR revealed 

group-specific clustering of individual samples (Figure 4A-B, Table S3). PC score 

distributions between groups were significant, with similarities observed between Early 

and nonCoV (PC1) and distinguishing features in Late (PC2) (Figure 4B, box plots). 

DAR analysis revealed three clusters including persistent (C1) and transient (C2) epigenetic 

programs in HSPC (Figure 4C, Table S3). DAR in C1 were annotated to genes enriched for 

GO terms related to differentiation, migration, activation, and cytokine-mediated signaling, 

suggesting establishment of long-lasting epigenetic memory in HSPC. DAR in C2 were 

associated with genes related to myeloid differentiation, activation, and cytokine production 

(Figure 4C-E, Table S3). Notably, while monocytes from both nonCoV and Early shared 

some epigenomic features (Figure 1), their HSPC exhibited more distinct profiles (Figure 

4B-C, Table S3). The prominence of the transient program (C2) in Early, compared to 

nonCoV, may reflect the direct effects of increased systemic inflammation on HSPC in 

severe COVID-19, which could be relevant to the durable epigenetic effects observed in Late 

monocytes and HSPC, as well as functional differences in stimulated monocytes (Figure 

2I). Persistent (C1) and transient (C2) HSPC DAR shared programs for cell migration, 

activation, and differentiation. while cytokine-mediated signaling was specific to C1, and the 

coagulation program was specific to C2 (Figure 4D, Table S3).

Durably altered hematopoiesis following severe COVID-19

To determine whether epigenomic signatures in post-COVID-19 HSPC correspond to 

changes in transcriptional programs and altered progenitor subsets, we analyzed differences 

in RNA and chromatin accessibility (DORC) between Healthy and diseased groups 

in HSPC. DEG and active DORCs in all convalescent groups compared to Healthy 

were enriched for erythrocyte differentiation and antigen presentation programs, likely 

reflecting common responses to inflammation and stress (Figure 5A, S5B-C). In contrast, 

programs of myeloid differentiation and platelet activation were selectively enriched in the 

post-COVID-19 state. Differential DORC analysis revealed GO terms related to cellular 

activation and cytokine production, suggesting epigenetic poising of these programs across 

disease conditions.

Dysregulation of hematopoiesis was evident in post-COVID-19 HSPCs, with DEG linked to 

myelopoiesis, including KLF2 and CEBPD (Figure 5A, S5B-D, Table S4). Notably, GMP 

frequencies among HSPC were significantly increased in the disease groups, particularly 

in the Late group, indicating that skewed myelopoiesis is a durable progenitor phenotype, 

independent of emergency hematopoiesis (Figure 5B, S5E). While gene set signatures in 

Early and Late were similar when compared to Healthy (enrichment of differentiation and 

immune response programs; Figure 5A), comparative analysis of gene expression between 

Early and Late HSPCs distinguished enrichment of differentiation, antigen presentation, 

and adhesion programs in Late HSPCs, while Early HSPCs exhibited enrichment of viral-

response and stimulus-response programs (Figure 5D).
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To study transcriptional regulation of granulopoiesis and myelopoiesis we defined a GMP 

module comprising GMP cluster-defining marker genes and assessed the distribution of this 

module score among individual cells from each group (Figure 5E, S5F). We also defined a 

module consisting of DORC accessibility at GMP and neutrophil differentiation associated 

genes (Figure 5F). Both expression and chromatin modules of GMP and neutrophil 

differentiation were significantly increased in nonCoV, Early, and Late, indicating a durable 

epigenetic program driving granulopoiesis and myelopoiesis following severe COVID-19 

(Figure 5E-F).

We next explored relationships between durable epigenetic programs in post-COVID-19 

HSPC and GMP programming by TFs. The activity of characteristic GMP TFs (AP-1 and 

CEBPA) was enriched in GMP and low but present in HSC/MPP (Figure 5G-I, Table S6). 

Notably, AP-1 (FOS/JUN) and CEBPA activity in HSPC was significantly higher in both 

Early and Late at the level of individuals and cells (Figure 5H-I, Table S6). Together, these 

findings revealed prominent alterations in HSPC epigenomes and transcriptomes following 

COVID-19 infection, including programs favoring myelopoiesis and antigen presentation.

Post-COVID-19 epigenetic signatures and TF programs are shared between HSPC and 
monocytes

In addition to skewing differentiation, durable post-COVID-19 epigenetic programs in 

HSPC may be inherited by mature progeny cells thereby conferring altered phenotypes. 

Chromatin accessibility signatures in HSPC (Figure 4) and monocytes (Figure 1) revealed 

shared epigenetic and transcriptional programs (e.g., Figure S2D, Figure 5A, Table S4-5). 

Differential TF motif accessibility analysis in Early and Late (compared to Healthy) revealed 

the prominent activity of inflammation-responsive TFs, including the enrichment of AP-1 

(FOS/JUN) and IRF family motifs, in Early HSPC and monocytes (Figure 6A). Late 

HSPC maintained increased CEBP family and JUN activity, consistent with increased GMP 

frequencies post-COVID-19 (Figure 5B). While most AP-1 activity diminished in Late, IRF 

activity remained enriched in both HSPC and monocytes (Figure 6A, S6A-B, Table S6). 

For example, IRF2 showed activity in HSC/MPP and GMP subclusters among HSPC and 

in the Late-enriched M.SC3 monocyte subcluster (Figure 6B-C, UMAP plots). IRF2 activity 

was also increased in HSPC and monocytes from Early and Late (Figure 6B-C, violin 

plots). Late HSPC and monocytes exhibited increased activity of other TFs associated with 

monocyte differentiation and activation, including HOX factors, NRF1, and CTCF (Figure 

6A, S6B-C, Table S6).

Moreover, several monocyte activation-related genes such as CD74 and S100As, showed 

coordinated upregulation in both HSPC and monocytes, most prominently and consistently 

in Late (Figure 6D). To investigate a shared epigenetic program from HSPC to monocytes, 

we generated module scores for the Late-enriched M.SC3 using marker genes and projected 

the scores onto the HSPC UMAP. This analysis revealed the expression of the M.SC3 

module in HSPC, with enrichment in HSC/MPP and GMP subclusters (Figure 6F, left). 

Further, the distribution of M.SC3 module activity increased in post-COVID-19 HSPC, 

especially in Late (Figure 6F, right), corresponding to its sustained activity in monocytes up 

to one year after COVID-19.
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IL-6R blockade attenuates post-COVID-19 epigenetic phenotypes

While all aforementioned post-COVID-19 molecular and cellular features showed between-

group differences (e.g., Healthy vs. Late), we studied within-group variance in GMP 

frequencies within the Late group to determine association with any clinical characteristics. 

We focused on the increased GMP frequency in Late, considering it a foundational 

program for associated progeny monocyte phenotypes. Strikingly, IL-6R blockade treatment 

(Tocilizumab) during acute infection was significantly associated with most of the 

variance in Late GMP frequencies after multiple hypothesis test correction. Importantly, as 

Tocilizumab administration was near-random during the Spring/Summer 2020 COVID-19 

peak in New York City, there were no discernable clinical or demographic features 

influencing the analyses (Table S1). The untreated Late group (Late: no aIL-6R) had 

significantly higher GMP frequencies compared to both Healthy and Late that received 

IL-6R blockade treatment (Late: aIL-6R; Figure 7A, S7A). Clinical features such as 

comorbidities and variable recovery may link to GMP phenotypes, however, the size 

and clinical complexity of our post-COVID-19 cohort limited our power to detect such 

correlations (Figure S7A). In contrast, IL-6R blockade resulted in a clear and significant 

cellular readout persisting for months to one year. We next evaluated TF activities (inferred 

by motif accessibility) characteristic of IL-6R signaling and myelopoiesis between the 

Healthy and Late groups with and without IL-6R blockade. Comparing the untreated 

group to the Healthy and treated groups, we found increased chromatin accessibility at 

motifs for STAT3, an IL-6R signal-activated TF (Figure 7B). Anti-IL-6R treatment also 

reduced accessibility of motifs for IRF and CEBP TF families, which were persistently 

elevated in the untreated group (Figure 7B). CEBPA and CEBPB program steady state 

or emergency myelopoiesis, respectively, while CEBPE regulates granule formation in 

developing granulocytes66,67. Increased chromatin accessibility at STAT3 and other motifs 

may either represent sustained TF chromatin binding or maintained chromatin accessibility 

independent of TF binding. Interestingly, the crucial erythropoiesis program TF, GATA1, 

showed an opposite effect, implying that long-term consequences of IL-6R signaling 

direct progenitor cell fate towards myelopoiesis over erythropoiesis (Figure 7B). Altered 

epigenomic and TF programs were complemented by transcriptional changes in Late, with 

IL-6R blockade decreasing expression of post-COVID-19 programs associated with antigen 

presentation and inflammation, while increasing expression of genes associated with an 

HSC/hematopoiesis maintenance program (e.g., MEIS1, CD34; Figure 7C, S7B). Together, 

these results suggest that IL-6 signaling during acute severe COVID-19 durably programs 

increased GMP frequencies and myelopoiesis via epigenetic mechanisms involving IL-6R 

signal-activated TFs. IL-6R signaling blockade during acute COVID-19 appears to mitigate 

these long-term programs.

IL-6R signaling programs post-infection myelopoiesis in mice

We employed IL-6R blockade during acute coronavirus infection and recovery in mice to 

investigate the long-term effects of IL-6 on post-infection myelopoiesis. We employed an 

established mouse model of SARS-CoV-2 convalescence by infecting susceptible A/J mice 

with murine hepatitis virus 1 (MHV-1). This model was selected because it mimics many 

aspects of severe COVID-19 and convalescence observed in human68.

Cheong et al. Page 10

Cell. Author manuscript; available in PMC 2024 August 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In the MHV-1 infection model, mice received MHV-1 with or without anti-IL-6R antibody 

injection on day 0 (Figure 7D). Convalescent mice cleared virus within two weeks 

and regained weight by 30 days (Figure S7C). To study post-infection epigenomic and 

transcriptomic phenotypes, and assess the effects of IL-6R blockade, we performed snRNA/

ATAC-seq profiling on lineage-depleted BMMC, comparing naïve mice to recovered mice 

(with and without anti-IL-6R) at 30 days post-infection.

Analyzing HSPC subclusters and hematopoietic trajectories (Figure 7E, S7D), the frequency 

of HSC/MPP remained consistent across all conditions, suggesting resolution of acute 

inflammation and emergency hematopoiesis. In contrast, the frequencies of GMP and 

monocyte lineage clusters were increased in the recovered groups. Notably, these 

frequencies were reduced in the anti-IL-6R treated group compared to the recovered mice 

without treatment (Figure 7F). Interestingly, the frequency of the erythroid lineage cluster 

exhibited an opposite pattern, decreasing upon infection and normalizing with anti-IL-6R 

blockade (Figure 7F).

Examining TF scores related to myelopoiesis and erythropoiesis, we observed increased 

accessibility for STAT3, IRF1, and IRF8 (activated in response to IL-6R signaling) in 

post-infection HSC/MPP, and these activities were reduced in the IL-6R blockade group 

(Figure 7G). Post-infection, there was also increased activity of CEBPB and CEBPE, 

though to a lesser extent in the anti-IL-6R treated group (Figure 7G). Consistent with the 

establishment of differentiation bias in early progenitors and our human data, accessibility 

of the erythroid TF GATA1 decreased in post-infection HSC/MPP and was normalized by 

anti-IL-6R treatment (Figure 7B, 7G). These findings reveal that IL-6R blockade in mice 

reflect many changes in TF activity and associated modulation of hematopoiesis detected in 

convalescent patients treated with IL-6R blockade.

To investigate the transcription program of early differentiation bias, we examined the 

GMP module expression score in HSC/MPP across conditions. The GMP module score 

was significantly higher in recovered mice compared to both naïve and anti-IL-6R treated 

groups (Figure 7H), consistent with the GMP frequency distributions observed in our 

human cohort (Figure 7A). This suggests that MHV-1 infection causes post-infection 

alterations in hematopoiesis by epigenetically and transcriptionally reprogramming the 

HSC/MPP population, partially via IL-6 signaling. Overall, our mouse model of coronavirus 

convalescence recapitulated several key results from our human studies, including increased 

frequencies of GMP and monocyte progenitors post-infection, enhanced STAT3, IRF, and 

CEBP activities, and the mitigation of these phenotypes by IL-6R blockade (Figure 7A-C).

Correlation between hematopoietic and tissue phenotypes in coronavirus convalescence

Increased myelopoiesis and epigenetic poising of inflammatory genes in HSPC in the 

post-infection period may influence tissue recovery and inflammation. To characterize 

post-infection tissue phenotypes in recovered MHV-1 infected mice, we analyzed 

bronchoalveolar lavage fluid (BALF) cells using snRNA/ATAC-seq, assessed lung 

histopathology, and conducted flow cytometric and imaging analysis of the brain. While 

we focused on BALF macrophage phenotypes and heterogeneity given the established role 

of monocyte-derived macrophages in respiratory viral infections and their recent derivation 
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from HSPC, we also observed significant increases in T and B cells in total BALF 

cells post-infection. Using both transcriptome and TF motif accessibility, we identified 

macrophage subclusters, Mac1 and Mac2 (Figure 7I). Mac1 featured TF activity, including 

BHLHE41 and PPARγ
69, along with gene expression associated with tissue resident 

phenotypes (Figure S7G-H). Conversely, Mac2 expressed genes related with macrophage 

activation, differentiation, and migration, and exhibited TF activity from the IRF and AP-1 

families (Figure S7G-H). Mac1 (resident macrophages) predominated in the naïve group, 

while Mac2 (differentiated and monocyte-derived macrophages) predominated in the post-

infection groups (Figure 7I-J).

We evaluated the effect of IL-6R blockade on lung macrophages. The proportion of 

activated/recruited cells increased strikingly in both post-infection groups, though to a 

lesser extent in the IL-6R blockade condition, suggesting reduced monocyte recruitment 

and differentiation (Figure 7J). Similar to mouse HSC/MPP data, lung macrophages 

exhibited increased STAT3 motif accessibility post-infection, which was normalized by 

IL-6R blockade (Figure S7I). However, unlike HSC/MPP, IRF TF accessibility in lung 

macrophages increased post-infection and remained unperturbed by IL-6R blockade (Figure 

S7I).

We defined DEG in macrophages between post-infection groups. Macrophages treated 

with anti-IL-6R blockade had decreased expression of genes associated with response 

to stimulus and cell migration (Figure S7J-K). Histopathology analysis of lung tissue 

aligned with the inflammatory phenotypes observed in the single-cell analysis, revealing 

alveolar wall widening, extensive inflammatory cell infiltrates, and lymphoid aggregates 

with macrophages. Notably, mice that received IL-6R blockade showed milder pathology 

(Figure S7L).

Our findings in the MHV-1 mouse model of post-coronavirus lung pathology are 

consistent with a recent study conducted on post-mortem lung tissue from post-acute 

COVID-19 patients. The study revealed persistent alveolar type 2 dysfunction and 

structural derangement70. Imaging mass spectrometry analysis from this study unveiled 

increased accumulation of monocytes, neutrophils, and macrophages in the lungs of post-

acute COVID-19 patients, compared to healthy controls (Figure 7K, S7M). Although 

the non-hematopoietic cell composition remained largely unchanged, hematopoietic cells, 

particularly myeloid cells such as monocytes, neutrophils, and macrophages demonstrated 

significant alterations (Figure S7M). These findings align with our observations of elevated 

monocyte-derived macrophages and lung inflammation in mice following recovery from 

MHV-1 infection (Figure 7I-J).

In contrast to the lung, the brain features delayed (detectable only on day 4) and low-level 

infection (4–5 logs lower viral titers than lung), that quickly resolves (cleared by day 7)71. 

We observed notable myeloid infiltration and activation in the brain, consistent with linked 

effects of hematopoietic and circulating monocyte phenotypes. Flow cytometric analysis 

revealed increased monocyte numbers in the brain 30 days post-infection, a response 

reduced significantly by IL-6R blockade (Figure 7L).
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Together with myeloid infiltration in MHV-1 recovered mice, we observed a significant 

reduction in myelin basic protein (MBP) staining, indicating extensive demyelination, and 

this was reduced by IL-6R blockade (Figure 7M). Additionally, microglia and astrocytes 

(identified by IBA-1 and GFAP, respectively) increased in recovered mice, and were 

partially normalized by IL-6R blockade (Figure S7N). These observations collectively 

suggest a persistent monocyte recruitment to the lungs and brain post-infection, likely driven 

by enhanced myelopoiesis and tissue migration programmed, at least in part, by IL-6R 

signaling during acute infection.

Discussion

Persistence of HSPC alterations and molecular phenotypes post-COVID-19

HSPC are long-lived self-renewing precursors to diverse immune cells72 and have unique 

potential to store inflammation-induced epigenetic memory, impacting hematopoiesis 

and progeny innate immune cell phenotypes. These programs have been observed in 

infections and vaccine responses in mice42,73, and in controlled human vaccine studies44. 

We considered that acute viral infections, particularly SARS-CoV-2 causing severe 

COVID-19 and systemic inflammation, could trigger such a response. Previous reports noted 

alterations in HSPC during and immediately following acute COVID-1974,75, consistent 

with emergency hematopoiesis during infection76–79.

We uncovered linked and persistent epigenetic and transcriptional reprogramming of HSPC 

and monocytes in convalescent COVID-19 patients up to one-year post-infection. Severe 

COVID-19 durably increased GMP frequency and expression of GMP signatures in HSC/

MPP. Epigenetic poising of inflammatory genes, shared between HSPC and short-lived 

monocyte progeny correlated with monocyte hyper-responsiveness to stimulation. IL-6R 

signaling during acute infection contributed to durable epigenetic phenotypes in HSPC 

and monocytes. These results align with earlier studies of altered myelopoiesis and innate 

immune memory that derive from HSPC in non-COVID-19-related inflammatory contexts. 

Our study demonstrates lasting HSPC alterations and epigenetic phenotypes following 

COVID-19. Enrichment and in-depth single-cell analysis of circulating HSPC from 

peripheral blood enabled insights into post-infection hematopoiesis and HSPC phenotypes 

providing a valuable approach for future studies of HSPC in diverse human diseases and 

conditions.

Implications for post-infection pathology and recovery

Our study indicates persisting post-infection transcriptional and epigenetic programs in 

monocytes (and their progenitors) associated with activation, differentiation, migration, and 

antigen presentation. These programs may contribute to ongoing pathology in tissues with 

inflammation and activated vasculature. Our in vitro activation experiments suggest that 

these epigenetic changes can augment inflammatory responses. In MHV-1 infected mice, the 

prolonged monocyte infiltration in the brain and lung is consistent with recent descriptions 

of PASC, including neurological symptoms and increased inflammatory microglia68. 

Incomplete recovery after infections or critical illness, including post-ICU syndrome (PICS), 

lacks clear etiology. These data suggest that hematopoietic reprogramming, including 
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skewed myelopoiesis and epigenetic poising of inflammatory genes, may contribute to 

persistent myeloid-driven tissue pathology post-infection.

Prior immune stimulation with BCG and b-glucan boosts myelopoiesis and responsiveness 

of innate immune cells, providing innate immune-driven protection against heterologous 

infection42,45. Additionally, monocytes develop a long-term “anti-viral resilience” program 

following adjuvanted influenza vaccine (H5N1+AS03), enhancing responses to Zika and 

Dengue infection80. Further work is needed to understand the mechanisms of long-term 

changes in hematopoiesis and immune tone following acute infection, and their association 

with phenotypes ranging from PASC to protection against heterologous infection.

IL-6 regulates post-infection phenotypes

Our data uncovered activation of the IL-6R signaling pathway as a potential mediator of 

durably altered hematopoiesis and innate immune memory. IL-6, a pleiotropic cytokine, 

activates immune cells, promotes cytokine secretion and cell recruitment, and the 

maintenance and differentiation of HSPC81. Additionally, IL-6 plays beneficial functions 

in epithelial repair, as a myokine and metabolic regulator, and affects appetite and visceral 

adipose regulation81–84. Furthermore, maternal IL-6 induces epigenetic memory in neonatal 

intestinal epithelial stem cells, altering the response of neonates to gastrointestinal infection. 

This intestinal stem cell IL-6 memory signature shared features with the HSPC IL-6 memory 

program we describe, including genes associated with antigen presentation (CD74 and 

MHCII)85. Therefore, IL-6 may program diverse adult stem cell populations for augmented 

response to future inflammatory or infectious challenge.

In severe cases of COVID-19, elevated IL-6 levels correlate with tissue damage, 

immune cell recruitment/activation, and acute respiratory distress syndrome (ARDS)86. 

IL-6R blocking antibodies in critically ill patients with COVID-19 modestly improve 

outcomes87–89. The lasting impact of high-level IL-6R signaling during acute inflammation 

on cellular phenotypes is unknown. Surprisingly, IL-6R blockade during acute infection 

strongly influenced GMP levels up to one-year post-infection; untreated individuals featured 

higher GMP frequencies, while IL-6R blockade-treated individuals featured lower GMP 

levels. We validated these findings by modeling IL-6R blockade in a severe mouse 

coronavirus infection, recapitulating similar results from human. One durable molecular 

signature of IL-6R signaling during acute infection was sustained chromatin accessibility at 

STAT3 motifs in both HSPC and monocytes/macrophages.

Notably, a previous study reported that STAT3, in conjunction with AP-1 TFs, can establish 

and maintain epigenetic memory of inflammation in epidermal stem cells37, highlighting 

the possibility of an analogous mechanism in post-COVID-19 HSPC. We found that STAT3 

motif accessibility corresponds with increased accessibility of motifs for CEBPβ (also 

named nuclear factor IL-690), a prominent myelopoiesis TF. In addition, both STAT3 and 

CEBPβ motif accessibility in convalescence was reduced by IL-6R blockade during acute 

infection.
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We also identified sustained chromatin accessibility associated with other TF programs in 

HSPC and monocytes, including IRFs. Notably, sustained IRF motif accessibility was also 

described in monocytes following adjuvanted influenza vaccination (H5N1+AS03)80.

Circulating HSPC Analysis: An approach to studying HSPC in a post-COVID-19 cohort

We performed deep characterization of HSPC in a human cohort by enriching rare 

circulating CD34+ HSPC from PBMC and pairing this with snRNA/ATAC-seq analysis. 

Paired blood and BMMC samples from the same donors confirmed that rare circulating 

CD34+ HSPC accurately capture the diversity and major transcriptomic and epigenomic 

signatures of BM HSPC subsets. Our approach provides a valuable resource for 

characterizing the effects of diverse challenges and diseases on human HSPC without 

invasive BM biopsy collection. It enables the evaluation of HSPC and their mature immune 

cell progeny from PBMC samples facilitating the identification of developmentally linked 

epigenomic and transcriptomic programs. This has implications for understanding dynamic 

blood cell development and innate immune memory in inflammatory disease, vaccine 

responses, vaccine design, and non-genetic variance in immune responses to infection.

While our study focused on blood cells, other cell types also harbor inflammatory epigenetic 

memory. It is likely that the HSPC and blood cell phenotypes described here interact 

extensively with tissue resident cells, which may also change in frequency, differentiation 

programs, and activity within tissue communication circuits38. These interactions may have 

enduring influence on tissue defense or pathology.

Limitations of the study

We aimed to identify conserved cellular and molecular features post-COVID-19, but 

lacked sufficient power to directly associate these features with clinical outcomes, 

including PASC. Future studies should investigate the contribution of altered hematopoiesis, 

myeloid cell differentiation, and epigenetic priming of inflammatory genes in tissue 

recovery and pathology in the context of SARS-CoV-2 and PASC. Understanding if mild 

COVID-19 induces similar programs is an important topic for future work. The role of 

durable IL-6R-dependent hematopoietic phenotypes in persistent tissue infiltration and 

their interaction with non-hematopoietic IL-6 targets within tissues remains unknown. 

The influence of mature granulocytes on post-infection changes and tissue infiltration 

and pathology, which were minimally studied due to granulocyte depletion in sample 

preparations, requires dedicated investigation. While we directly assayed BM HSPC in 

mouse, our human progenitor studies relied on the enrichment of rare circulating HSPC. 

Further, our datasets indicate the potential for similar progenitor-progeny programs in 

diverse lineages (e.g., lymphoid lineages) opening avenues for further exploration of these 

concepts. Understanding the complex contribution of IL-6R signaling to tissue repair and 

how therapeutic targeting of IL-6 may alter post-infection pathology warrant thorough 

investigation, especially considering the pleiotropic and potential salutary effects of IL-691.
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STAR★Methods

RESOURCE AVAILABILITY

Lead Contact—Further information and requests for the resources should be directed to 

and will be fulfilled by the lead contact, Steven Josefowicz (szj2001@med.cornell.edu)

Materials Availability—This study did not generate new unique reagents.

Data and Code Availability—All raw and processed data are deposited 

on GEO database under accession number GSE196990. All other data types 

used for analysis in this research are present in the manuscript or the 

Supplementary Materials. We created a web-based interface to query all multiome 

data of HSPC, myeloid, and whole PBMC for DORC, expression, and 

transcription factor activities (https://buenrostrolab.shinyapps.io/covid_myeloid/). (https://

buenrostrolab.shinyapps.io/covid_pbmc/, https://buenrostrolab.shinyapps.io/covid_hspc/, 

https://buenrostrolab.shinyapps.io/covid_myeloid/) The code used for the downstream 

analysis is available in github repository (https://github.com/sharmasiddhartha231/

Final_Covid19_Scripts, 10.5281/zenodo.8097411). The codes for visualizations are 

available upon request to the lead contact. De-identified clinical cohort information used 

in this study is available in supplementary table. Any publicly available data that we 

reanalyzed are listed in the key resources table. Any additional information required to 

reanalyze the data reported in this paper is available from the lead contact upon request. 

Additional Supplemental Items are available from Mendeley Data at http://dx.doi.org/

10.17632/pfwyrmffdp.1.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Human Study Cohort—A total of 168 study participants were enrolled at Weill-

Cornell Medicine/New York-Presbyterian Hospital between March 2020 and March 2021. 

Participants were recruited from the inpatient division of New York-Presbyterian Hospital 

and the Weill-Cornell Medicine pulmonary and post-ICU clinics. No statistical methods 

were used to predetermine sample size. COVID-19 severity scoring was based on the 

COVID-19 World Health Organization (WHO) Severity Classification118 Study participants 

were binned into the following groups: i) healthy volunteer donors, ii) recovered severe 

COVID-19 patients (WHO score 6–7), iii) recovered non-COVID-19 critically ill patients. 

The recovered severe COVID-19 group was partitioned into an early convalescent group 

(2–4 months following admission, “Early”) and a late convalescent group (4–12 months 

following admission, “Late”); this Early and Late delineation of the severe convalescent 

group was determined based on clinical management and features, namely that patients were 

monitored in ICU “step down” units until discharged from 2–4 months and then seen as 

out-patients in post-ICU clinic from 4–12 months. Inclusion criteria for each group were 

as follows; i) healthy volunteer donors: absence of clinical COVID-19 symptoms at any 

time prior to blood collection (prior negative SARS-CoV2 PCR and/or seronegative status 

also considered when available), ii) severe COVID-19 patients: PCR-proven SARS-CoV2 

infection with the presence of clinical COVID-19 symptoms requiring admission to ICU-

level care and the use of mechanical ventilation, iii) recovered non-COVID-19 critically ill 
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patients: absence of SARS-CoV2 infection as measured by PCR and negative serology on 

admission and/or throughout hospital admission and non-COVID-19 related critical illness 

requiring admission to the medical, neurological, or cardiology intensive care unit. Prior 

infection status in healthy volunteer donors was established by SARS-CoV2 serological 

testing after donation. There were no specific exclusion criteria other than an inability 

to provide informed consent or SARS-CoV2 positive serology in asymptomatic healthy 

volunteers (asymptomatic infection) and non-COVID-19 critically ill participants. Blood 

was collected in EDTA or sodium heparin-coated vacutainers and kept on gentle agitation 

until processing, and all blood was processed on the day of collection. Age, sex, and 

comorbidity data were obtained through EPIC EHR records or when unavailable through a 

standardized form at the time of donation, and are indicated in Table S1.

The Institutional Review Board at Weill Cornell Medicine granted approval for gathering 

samples utilized in this research (Protocol #: 21–05023511). During the enrollment phase of 

the initial studies, all participants gave informed consent, allowing their samples to be used 

for subsequent research, including the present study.

Human Paired BMMC and PBMC Acquisition—BMMC and PBMC were freshly 

isolated from the same two adult donors recruited by AllCells (Alameda, CA). The donors 

gave written consent in accordance with protocols approved by their governing IRB. The 

isolated BMMC and PBMC were cryopreserved as PBMC from our cohort.

PBMC and Plasma isolation—Whole blood from EDTA or Heparin tubes (BD 366643 

and BD 368480, respectively) was spun at 500g for 10 minutes at room temperature with 

no brake. The undiluted plasma was aliquoted to 1.5 ml microcentrifuge tubes and stored at 

–80° C for subsequent analysis.

After removal of plasma, the blood was mixed at a 1:1 ratio with room temperature RPMI 

medium (Corning 10–040-CM), layered over Ficoll-Paque PLUS (GE 17144002), and spun 

at 700g for 30 minutes at room temperature with minimum acceleration and no brake. The 

PBMC layer was isolated and washed with RPMI. Cells were then treated with ACK lysis 

buffer for 3 minutes and counted on a Countess 2 automated cell counter (Thermo Fisher 

AMQAX1000). Cells were centrifuged again and resuspended in freezing medium (90% 

FBS + 10% DMSO) and stored in cryogenic vials in a freezing container (Thermo Fisher 

5100–0001) at –80° C.

Mice—Female A/J mice were purchased from Jackson Laboratories and were 6 weeks old. 

Mice were kept under SPF conditions throughout the entire experiment. All experiments 

were approved by the Sloan Kettering Institute (SKI) Institutional Animal Care and Use 

Committee. The mouse strain were maintained in the SKI animal facility in accordance with 

institutional guidelines.

Virus—Parent stock of murine hepatitis virus 1 (MHV-1) was originally obtained from 

the American Type Culture Collection (ATCC, Manassas, Virginia). It was passaged and 

maintained as described in our previous study120. Briefly, to propagate virus, murine 

SR-CDF1-DBT (DBT) cells were infected with the parent stock using a multiplicity of 
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infection of 0.1, virus was allowed to adsorb onto the cells (30 minutes) before media 

supplementation and culture at 37°C for 24 hours. The cell suspension was harvested, 

centrifuged, and the resulting supernatant containing the virus particles aliquoted for further 

use, with virus titers determined by a standard plaque assay. MHV-1 and MHV-1-infected 

mice were handled under BSL-2 conditions throughout the entire experiment.

METHOD DETAILS

CD34+ and CD14+ Cell Isolation—Frozen PBMC and BMMC were thawed in a 37° 

C water bath, washed with RPMI, and centrifuged. An aliquot of PBMCs was stained 

with 7-AAD (Biolegend 420404, 1:20) alone. The rest of the cells were incubated with 

CD34 microbeads (Miltenyi 130–046-702) and isolated by placing them on a magnetic 

column (Miltenyi 130–042-201) as per the manufacturer’s specifications. The positive 

fraction obtained from the magnetic column was stained with the following antibodies 

– CD34-FITC (Miltenyi 130–113-178, 1:100), CD49f-Pacific Blue (Biolegend 313620, 

1:200), CD90-PE (Biolegend 328110, 1:100), CD38-PE/cy7 (Biolegend 303516, 1:100), 

CD45RA-APC/cy7 (Biolegend 304128, 1:400), Lineage markers (CD20-Biotin {Biolegend 

302350, 1:100), CD16-Biotin {Biolegend 302004, 1:100}, CD3-Biotin {Biolegend 344820, 

1:100}, CD56-Biotin {Biolegend 362536, 1:100}, and CD14-Biotin {Biolegend 301826, 

1:100}), and 7-AAD (Biolegend 420404, 1:20). After incubating in the dark for 30 minutes, 

cells were washed with PBS and incubated with Streptavidin-BV605 (BD 563260, 1:500) 

for an additional 30 minutes. CD34+ cells from the positive fraction and viable PBMC from 

the PBMC aliquot were then sorted on a BD FACSAria cell sorter and mixed at 1:5–1:20 

ratios.

The negative fraction from the magnetic column was stained with the following antibodies 

– CD14-APC (BD 340436, 1:1000), CD8-FITC (Biolegend 300906, 1:400), and 7-AAD 

(Biolegend 420404, 1:20). After incubating in the dark for 30 minutes, cells were washed 

with PBS, and CD14+ cells were sorted on a BD FACSAria cell sorter.

Bulk ATAC-seq CD34+ HSPC and CD14+ Monocytes—To perform ATAC-seq, we 

followed the Omni-ATAC-seq protocol119. We used 50,000 cells for CD14+ monocytes, 

and 3000~5000 for CD34+ HSPC. HSPC were sorted directly into the PCR tubes prior to 

following Omni-ATAC-seq protocol.

A/J Mouse MHV-1 Infection—A/J mice were anesthetized with isoflurane and 

intranasally infected with 5,000 PFU of MHV-1 in a volume of 20ul. Together with the 

virus, 100 ul of mouse anti-IL-6R blocking antibody (2 ug/ul, InVivoMab) was injected into 

the anti-IL-6R group. Weight was measured continuously throughout 30 days post-infection 

and blood was collected on day 4 and day 30 post infection to determine viral titers to 

see whether the mice were recovered or not. At day 30, we collected bone marrow from 

tibia and femurs, BALF from lung, and brain tissue. We depleted lineage-positive cells 

from the bone marrow using microbead-based lineage depletion kit (Miltenyi 130–090-858). 

For single-nuclei Multiome, we used freshly isolated BALF cells and lineage-depleted 

bone marrow cells. H&E staining of the lung specimens for histology was performed by 

HistoWiz.
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Single-cell Library Preparation—Nuclei were isolated from a mix of CD34+ cells 

and PBMC (or BMMC, or mouse progenitor cells or mouse BALF cells) according 

to ‘Low Cell Input Nuclei Isolation’ protocol (10x Genomics CG000365-Rev B) and 

were processed using Chromium Controller & Next GEM Accessory Kit (10x Genomics 

1000202) and Chromium Next GEM Single Cell Multiome ATAC + Gene Expression 

Reagent Bundle (10x Genomics 1000285) following the manufacturer’s User Guide (10x 

Genomics CG000338-Rev D). Targeted nuclei recovery ranged from 5,000 to 10,000. The 

single-cell RNA and ATAC sequencing libraries were prepared using Dual Index Kit TT 

Set A (10x Genomics 1000215) and Single Index Kit N Set A (10x Genomics 1000212) 

respectively and sequenced on Illumina NovaSeq6000 or NextSeq platform.

Monocyte Stimulation Assays—CD14 monocytes were isolated from frozen PBMCs 

using MACS bead separation (Miltenyi Biotec, 130–050-201), and 50,000 cells were 

resuspended in complete RPMI media before being seeded onto 96-well plates in 100 μl 

of media. The cells were then stimulated with IFNα (50ng/ml, PBL assay science) and R848 

(1 μM, InvivoGen) for 6 and 24 hours. At 6 hours, RNA was extracted to generate RNA-seq 

libraries using NEBNext low input RNA library prep kit for Illumina (NEB E6420S). After 

24 hours of stimulation, supernatants were collected, and Legendplex flow-based cytokine 

assays were performed without further dilution.

Plasma Cytokine Analysis—Plasma was shipped to Eve Technologies for their 15-plex 

human pro-inflammatory cytokine assay (Eve Technologies, Calgary, AB, Canada). All 

samples were analyzed in duplicate.

Antibody Assay—The SARS-CoV-2 total RBD antibody (TAb), surrogate neutralizing 

antibody (SNAb), and avidity were used to measure plasma antibody levels on the TOP-Plus 

(Pylon 3D analyzer; ET Healthcare) as previously described121.

Flow Cytometry Analysis of Brain—Mice were euthanized with CO2 and perfused 

through the pulmonary artery followed by the left ventricle with 20 mL of PBS each. Brain 

and lung tissues were removed and placed in 2.5 mL of digestion buffer (PBS, 5% FCS, 1 

mM Hepes) before finely chopping. 400 U of Collagenase D (Roche) were then added to the 

mixture which was incubated at 37°C for 30 minutes before the addition of 50 uL of 0.5 M 

EDTA and an additional 5 minute incubation. Digested tissue was then mashed through a 

70 um cell strainer, collected by centrifugation at 700 x g in a swinging bucket centrifuge, 

and then resuspended in 10 mL of 38% isotonic Percoll. This was then centrifuged at 2000 

RPM for 20 minutes with no brake. The resulting debris layer was removed by aspiration 

and the cell pellet washed once in 10 mL digestion buffer. Cells were then blocked with FcX 

(BioLegend 156604) at a diliution of 1:100 in FACS buffer (DPBS with 1% BSA and 5mM 

EDTA): before a 15 minute incubation with the following antibodies at a 1:200 dilution in 

FACS buffer:

Brain: Ly6g-BUV395 (BD 563978), MHCII-BV421 (ThermoFisher 404–5321-82), 

CD11c-A488 (ThermoFisher 53–0114-82), CD86-PE (Biolegend 105105), CD206-BV605 

(Biolegend 141721), CD4 PE-CF594 (BD 562285), CD19-APC (Thermofisher 17–

0193-82), B220-APC (ThermoFisher 17–0452-82), CD45-A700 (Biolegend 103127), 
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Ly6cPerCP-Cy5.5 (Thermofisher 45–5932-82), CX3CR1-BV786 (Biolegend 149029), 

CD8PE-Cy7 (Thermofisher 25–0081-82), CD11b-APC-e780 (ThermoFisher 47–0112-82) 

all at 1:1200 in FACS Buffer, and Aqua Live/Dead Viability dye (ThermoFisher L34966) at 

a concentration of 1:1000.

Brain Immunofluorescent Microscopy—Mice were euthanized with CO2 and 

perfused through the left ventricle with 20 mL of PBS. Brain tissue was removed, and tissue 

was post-fixed by immersion in 4% PFA overnight. The following day, tissue was washed 

3 times in PBS, and then dehydrarated in 30% sucrose in PBS overnight before freezing in 

OCT media followed by sectioning at 10 um using a cryotome and collection on charged 

slides which were stored at –80C before further processing.

Slides were removed from storage, washed once in PBS, and then blocked with PBS 

containing 0.3% Triton-X-100 and 5% normal donkey serum (Jackson Immunoresearch) for 

30 minutes at room temperature. Sections were then incubated with the following primary 

antibodies at the indicated dilution in blocking buffer overnight at 4 °C: Iba1 (Fujifilm 019–

19741), GFAP (Cell Signalling Technologies 3657), or MBP (Abcam ab40390). Sections 

were then washed in PBS 3 times before incubating in species specific anti-IgG secondary 

antibodies conjugated to A488, A594, or A647 (Jackson Immunoresearch) diluted 1:500 in 

blocking buffer for 1 hour at room temperature.

Sections were then washed once in PBS, once in PBS containing DAPI, and a final time 

in PBS before mounting (Prolong Diamond Antifade, Thermofisher). Coverslipped sections 

were allowed to dry overnight, sealed with clear nail polish, and imaged on a Zeiss LSM 900 

with a Zeiss Plan-Apochromat 20X/0.8 air objective. Images were quantified using ImageJ 

software by creating max projection z-stacks followed by measurement of the mean grey 

value of the entire frame. A total of 4 seperate sections of cortical tissue overlying the 

hipocampus at ~ 1.5 – 2.5 mm posterior to Bregma were captured per mouse.

Imaging Mass Cytometry—We employed imaging mass cytometry data derived from 

post-mortem lung tissue samples as presented in a previously published study70. For our 

analysis, we exclusively utilized data from normal lung tissue samples and post-acute 

COVID-19 samples with negative swab test results.

Single-nuclei ATAC-seq Data Processing—Two single-nuclei ATAC-seq samples 

were preprocessed using the Cell Ranger ATAC 1.2.0 pipeline and aligned to the GRCh38 

(hg38) genome. The cellranger output was processed using Signac92. Individual samples 

were filtered out (Table S1). Amulet93 was used for filtering out doublets. Post QC and 

doublet removal, the remaining steps of the Signac pipeline (TF-IDF normalization, SVD, 

UMAP embedding, and clustering) were completed. UMAP embedding and clustering were 

done using 30 PCs. The cells were annotated by using a reference PBMC scRNA-seq dataset 

with Seurat’s anchor transfer functions.

Multiome Data Processing—The Multiome data (ATAC + RNA) (n=30 for the study 

cohort, and n=2 for paired BMMC and PBMC data, n=5 for mouse Lin- and BALF 

cell data) were preprocessed using the Cell Ranger ARC 1.0.0 pipeline and aligned to 
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the hg38 genome or mm10. The cellranger output was then processed using the Seurat 

Weighted Nearest Neighbor Pipeline94. Low QC cells were filtered out (data S2 for details). 

Doublets were removed using Amulet93 for snATAC-seq and Scrublet95 for snRNA-seq. 

Initial annotations of cells were carried out using the reference PBMC CITE-seq data in the 

Seurat package.

The Multiome data from different individuals were pooled using Seurat and Signac for 

snRNA-seq and snATAC-seq, respectively. Three samples were excluded from the pooling 

process due to poor quality based on the initial clustering. Low QC cells from individual 

samples were filtered out from the pooled data. For the snRNA-seq object, sctransform 

normalization was applied, followed by PCA, and 30 PCs were used for UMAP embedding 

and clustering. The merged dataset was also batch corrected using Harmony96 with all 

samples being used as a batch, and the UMAP embedding and clustering were repeated 

using 20 PCs.

We then pooled snATAC-seq profiles from all human samples and did the first round of 

cell-type annotation based on snRNA-seq annotations. Then we called peaks on each cell 

type using MACS2 (version 2.1.2) with the following parameters: `callpeak --nomodel 

--nolambda --keep-dup all --call-summits. Peak summits from all cell types were combined, 

extended on both sides by 150 bp. Redundant peaks were removed based on the q-value 

from MACS2. Using the generated peak region list, the number of reads overlapping a given 

peak window was determined for each unique cell barcode tag. This generated a peak by 

cell counts matrix corresponding to ATAC reads in peaks for each cell profiled. High-quality 

cells are retained with a fraction of reads in peaks (FRiP)>0.4 and sequencing depth > 1000. 

The cells filtered out in this step were also removed from the snRNA-seq object to ensure 

the same cells were retained across both modalities.

After QC, the human snRNA-seq object was reprocessed using sctranform, PCA, clustering, 

UMAP, Harmony, and PBMC CITE-seq reference annotation. In the end, 23 clusters were 

obtained from the snRNA-seq data using default parameters of Seurat (30 PCs for PCA).

Overall mouse snRNA/ATAC-seq data was processed as above, while skipping Harmony as 

the data belongs to the same batch.

PBMC Cell Type Annotation—Annotations of these clusters were finalized based on 

the expression of marker genes for distinct immune cell types. 2 of these clusters were 

labeled as potential doublets and removed from downstream analyses since they expressed 

marker genes of more than one immune cell type. In the end, 21 clusters were retained that 

included 197,260 cells out of 260K cells in total in the snRNA-seq object. We combined 

and curated to yield 10 annotated cell-type clusters capturing all major PBMC populations 

based on the expression of cell type-specific marker genes. We observed little to no variation 

in the frequency of each cell type in PBMC among clinical groups, with the exception of 

CD4+ T cells and pDCs, which were significantly decreased in the Early group (Figure 

S4D). The same cells were then retained in the snATAC-seq component of the Multiome 

data, and the annotations were transferred. Once the cell type annotations for major cell 

types are finalized, we repeated the peak calling using MACS2 and the aforementioned 
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parameter settings, which are used in the downstream DORC analyses using the ArchR 98 

pipeline. The merged snATAC-seq object was also processed using the Signac pipeline with 

TF-IDF normalization, SVD, UMAP embedding, and clustering. We used Harmony (as part 

of the Signac pipeline) for batch correction in snATAC-seq data using individual samples 

as a batch. For both non-corrected and Harmony-batch-corrected UMAP embeddings and 

clustering, 30 PCs were used.

Human HSPC Annotations—We subseted PBMC-PIE dataset for HSPC-annotated cells. 

We reprocessed the data as above. We used an unbiased workflow to cluster peripheral 

CD34+ HSPC and identify differentially expressed genes among the 10 resulting subclusters 

(Figure S4J). Manual curation of subclusters using marker genes from the literature63–65 

led us to merge select subclusters resulting in six HSPC subsets defined by both well-

characterized and novel marker genes (Figure 3C, S4I).

While we annotated subclusters of snRNA-seq HSPC data based on the expression of 

manually curated marker genes in each cluster, the snATAC-seq data was separately 

annotated for the HSPC subtypes using a previously reported bulk-guided approach64. 

Briefly, using the bulk ATAC-seq peak set, we generated a peak by cell counts matrix. We 

identified 27 principal components (PCs) of variation in reference bulk ATAC-seq samples, 

then scored every single cell by the contribution of each PC. Cells were subsequently 

clustered using the Euclidean distance between these normalized single-cell PCs scores 

and PCs of bulk samples. The annotations based on the bulk ATAC-seq dataset were then 

transferred to the snRNA-seq object based on identical cellular identities. To transfer HSPC 

subtype annotations from public data to our HSPC data, we used public scRNA-seq data of 

BMMC from healthy participants and the Seurat package94. The data available from GEO 

with access code GSE139369. Seurat object was created using BMMC data, normalized, 

then anchors for transferring annotation was defined by FindTransferAnchors() function 

of Seurat package using BMMC data as a reference. BMMC annotation information was 

transferred via anchors to our HSPC data using TransferData().

We observed one isolated cluster with mixed cell type annotation and dominant with certain 

few samples. We generated HSPC UMAP plot after removing this cluster resulting in 28,069 

cells. For downstream analysis of HSPC or its subtype, we used original HSPC subset data.

Mouse Multiome Data Cell Type Annotation—For multiome dataset for lineage-

depleted cells, we further removed mature cell populations to increase the resolution of 

the progenitor population. After removing them, we reprocessed the data as described above. 

RNA-seq data had low library complexity issues, so we used ATAC-seq data for UMAP and 

clustering analysis. Based on the ATAC-seq-based clustering we defined the cluster-specific 

genes. Using these genes we annotated each cluster to subtype. For BALF multiome dataset, 

we used SingleR for reference-based cell type annotation.

snATAC-seq Motif Analysis—Motif enrichment in the pooled snATAC-seq dataset was 

conducted using two methods. Before conducting the enrichment analysis, motif information 

was added to the pooled object using the AddMotifs function in Signac92. Motif information 

for hg38 was added to the object from the JASPAR2020 database.
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For the first approach, we calculated overrepresented motifs in a set of differentially 

accessible peaks. Differential accessibility (DA) analyses were carried out using the pooled 

single-nuclei ATAC object (n=32) using Seurat’s FindMarkers function94 by conducting 

pairwise comparisons among clinical groups for each cell type. The normalized ATAC 

counts matrix was used for DA analyses using a logistic regression framework with a 

minimum fold change value of 0.25 and minimum percentage of cells for feature detection 

at 10%. Differential peaks with an adjusted p-value < 0.05 were kept. We then used these top 

differential peaks to find overrepresented motifs using the FindMotifs function, which uses a 

hypergeometric test to find overrepresented motifs in a set of genomic features.

To visualize the chromVAR score as a heatmap, we first took the mean of each TF 

chromVAR score for each cell. Then median was taken for each group, followed by Z-score 

normalization. We used select TF families to visualize the heatmap.

We also performed footprinting for a smaller select set of transcription factors using the 

Footprint function in Signac. This calculated the footprinting information of the motifs for 

every instance in the genome using the whole genome (Hg38) as a background.

Peak-gene Cis-association and DORC Identification—To calculate peak-gene 

associations, we used our previously published approach. 59 We considered all the peaks 

that are located in the +/−50 kb window around annotated TSSs. We used peak counts 

and imputed gene expression to calculate the observed Spearman correlation (obs) of 

each peak-gene pair. To estimate the background, we generated 100 background peaks for 

each peak by matching accessibility and GC content (chromVAR) 122 and calculated the 

Spearman correlation coefficient between those background peaks and the gene, resulting 

in a null peak-gene Spearman correlation distribution. We then calculated the expected 

population mean (pop.mean) and expected population standard deviation (pop.sd) from 

expected Spearman correlations. The Z score is calculated by z=(obs-pop.mean)/pop.sd. For 

peaks associated with multiple genes, we only kept peak-gene associations with the smallest 

p-value.

To define DORCs, we selected genes with at least 8 peaks per gene. The DORC score was 

calculated at each DORC gene for each cell. We defined the DORC score by summing up 

all the significantly correlated peak counts per gene per cell. We then normalize the DORC 

score by dividing the DORC score by the total unique fragments in peaks and obtain a cell 

DORC score matrix.

Differential Analysis on Single-cell Data—We performed differential analysis for 

single-nuclei gene expression (RNA) and chromatin accessibility (peaks, DORC, and 

chromVAR) data using FindMarkers function in Seurat package. We used Wilcoxon’s test 

and set the log2 fold change threshold to 0. Genes, peaks, or Motifs with adjusted p-value 

< 0.05 were assigned significant. The result was further filtered to exclude genes that have 

RPS, RNP, and MT- in their symbols.

Visualizing Clinical Group Density on UMAP Plots—With the processed Seurat 

RNA-seq object, we extracted shared nearest neighbor graph information94. Using this data, 
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we determined the 50 nearest cells of each cell, then calculated the frequency of each group. 

We then included group frequency information of each cell in the metadata to visualize it on 

a UMAP plot using Nebulosa100.

Bulk ATAC-seq Data Processing—ATAC-seq paired-end sequences (n=54 for sorted 

CD14+, n=47 for sorted CD34+) were trimmed using trimmomatic101 and the trimmed 

reads were aligned to the GRCh38 (hg38) genome using bwa123. These numbers include 

convalescent COVID-19 groups with mild symptoms. However, samples from these groups 

were excluded from differential analysis. Further processing steps were carried out on the 

aligned data using Picard (http://broadinstitute.github.io/picard/) and Samtools103. MACS297 

was used for peak calling on the processed data using the BAMPE option with default 

parameters. For quality control, FRiP scores were calculated for all samples using the 

featurecounts program available in the Subread package104. Samples with low FRiP scores 

(< 0.15) were removed from downstream analysis. To ensure that the samples being removed 

were indeed poor quality, we conducted visual inspections using IGV105. After FRiP score 

filtering, we were left with 39 CD14+ samples and 18 CD34+ samples, including Mild 

groups.

Pseudo-bulk Profiles—The cells that were annotated as CD14+ monocytes (n=32) and 

HSPC (n=32) from the Multiome ATAC-seq data and single-nuclei ATAC-seq data were 

used to create ‘pseudo-bulk’ profiles for these cell types using snATACClusteringTools. 

(https://github.com/UcarLab/snATACClusteringTools). For each sample, we generated bam 

files for these two cell types. 2 samples were filtered out based on low cell numbers (HDu 

and jcov124) (only for CD14+), three samples were from the same individual and pooled 

together (lgtd17, lgtd18, and lgtd19), two samples were filtered out due to clinical reasons 

(jcov114 from CD14+ only, and jcov49_2 from CD14+ and CD34+), resulting in 28 samples 

for monocytes and 31 for HSPC. Peak calling was done using MACS2 97 with the BAMPE 

option.

Differential Accessibility Analysis on Bulk ATAC-seq Data—For differential 

accessibility (DA) analyses, good quality bulk and pseudobulk ATAC-seq samples for 

CD14+ monocytes (n=70) and HSPC (n=49) were used to generate consensus peak sets 

using DiffBind106 by retaining peaks that are detected at least in 2 samples, resulting in 

123,477 consensus peaks for Monocytes and 126,672 peaks for HSPC. Consensus peaks that 

are not called in the single-cell object were discarded from downstream analyses leaving 

us with 108,370 peaks for Monocytes and 117,871 peaks for HSPC. Consensus peaks were 

annotated using ChipSeeker107 and the peaks were filtered out based on distance to TSS 

threshold (<50 KB). Post filtering, we had 96,241 consensus peaks for monocytes and 

102,784 peaks for HSPC. These peaks were then used to identify differentially accessible 

regions among clinical groups using the cinaR R package. For differential accessibility 

analyses, we used GLM models as implemented in EdgeR108,109 by conducting pairwise 

comparisons among the clinical groups. Due to the variability of ages across clinical groups, 

we used age as a covariate. Finally, to account for known and unknown batches, we used 

Surrogate Variable Analysis using all significant SVs. Differential peaks at FDR 10% were 

kept for downstream analyses. We identified 2,029 differentially accessible regions (DAR) 
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in monocytes and 1,319 DAR in HSPC between clinical groups (Early, Late, Healthy, and 

nonCoV).

Functional Enrichment Analyses—The peaks were annotated, including the closest 

genes using cinaR110 and ChIPSeeker107. The TSS regions were defined as −3KB to 3KB. 

In cases of overlap, the following order of genomic annotations is used: Promoter > 5’ UTR 

> 3’ UTR > Exon > Intron > Downstream (defined as downstream of gene end) > Intergenic. 

Functional enrichment for the differential peak sets was conducted using hypergeometric 

gene set enrichment tests followed by Benjamini-Hochberg FDR adjustment for P-values 

(cutoff adjusted p=0.1). For functional enrichment, we used different curated gene sets from 

the CinaRgenesets package110. For HSPC, Gene Set Enrichment Analysis (GSEA) was 

carried out in addition to the hypergeometric testing since DA peak counts were smaller.

HOMER111 was used for further functional enrichments for KEGG, GO, REACTOME, etc. 

(p-value cutoff=0.1). HOMER was also used to identify TF motifs enriched in differential 

peak sets using default settings both for known and de novo motifs. For motif enrichment 

analyses, we used the default (whole genome) as a background.

Time Series/Trend Analysis—Differential Peaks from bulk and pseudo-bulk ATAC-seq 

data were pooled together for the following 4 comparisons: Early vs. Healthy, Late vs. 

Healthy, and nonCoV vs Healthy for both CD14+ Monocytes and HSPC. These peaks were 

then used to detect trends across different clinical groups using tcseq. The read counts 

and log fold change values associated with the differential peaks for each clinical group 

were used as input, and the clinical groups served as time points for the purpose of our 

analysis. A various number of clusters were tested before we chose number of clusters as the 

ideal number to visualize the different patterns in the clinical groups. The differential peaks 

were then split into clusters, and the Functional Enrichment was conducted for each of the 

individual clusters.

HINT—Footprints are more reliable with deeply sequenced data. To increase the read depth 

of our data, we pooled Pseudo-bulk ATAC-seq profiles from each clinical group into a 

single profile for both CD14+ monocytes and HSPC. Peaks were then called for these 

pooled profiles using macs2. The HINT (Hmm-based IdeNtification of Transcription factor 

footprints) framework112 was then used to identify active transcription factor binding sites 

for each clinical group. We also used HINT to find motifs overlapping with the footprints 

using the JASPAR database for TF motifs analyzed in Figure 6. We then used HINT to 

generate average ATAC-seq profiles around binding sites of transcription factors of interest. 

HINT was also used to calculate the differential changes in TF activity between different 

clinical groups.

The motif regions overlapping with footprints were annotated using ChipSeeker107, and 

based on those annotations, hypergeometric geneset enrichment was carried out for the 

footprinting regions using various genetic datasets. The enrichment results were adjusted 

using the Benjamini-Hochberg FDR adjustment method (FDR = 10%).
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Genome Browsing Tracks—We also visualized Pseudo-bulk profiles using a package 

called SparK113. Firstly, bedgraph files were generated using deepTools124 with the 

following command ‘bamCoverage -b bamfile.bam -o outputfilename.bdg -bs 1 -of 

bedgraph’. Spark was then used to generate genome browser track Figures using the 

bedgraph files for selected loci. Tracks for DORC-associated genes are generated using 

sn-ATAC-seq dataset, and CoveragePlot function of Signac was used.

Gene Ontology and GSEA Analysis—We used ClusterProfiler package114 for all Gene 

Ontology enrichment analyses or GSEA analyses of differentially expressed genes and genes 

associated to differentially accessible regions.

Bulk RNA-seq Analysis—Reads were quantified using STAR115 with GRCh38 

reference genome. Differential gene expression analysis was performed using DESeq2116. 

Differentially expressed genes were identified by absolute log2FoldChance greater than 

1.1 and adjusted p-value less than 0.05. Parallel execution and resources management was 

carried out by Snakemake117.

Module Analysis—For any module analysis used in this paper, we used function 

AddModuleScore function in Seurat. Calculated per-cell module score was used for 

downstream analysis. For GMP and M.SC3 module, we used top highly expressed 

cluster-specific genes. For neutrophil module, we used genes in neutrophil-related GO 

terms (“GO:0030223”, “GO:0042119”, “GO:0002283”, “GO:1990266”, “GO:0043312”). 

For inflammatory module, we used inflammation modules defined in our previous study125.

QUANTIFICATION AND STATISTICAL ANALYSIS

In the relevant Results section and, if applicable, in the figure legends, we provided the 

details of the statistical tests performed and the number of observations, including the 

sample sizes compared. In cases where this information was not explicitly mentioned, we 

utilized the Wilcoxon test to compare the clinical groups with the Healthy group.
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Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Severe COVID-19 programs durable epigenetic changes and hyper-activation 

in monocytes

• Circulating HSPC capture post-COVID changes in hematopoiesis and stem 

cell programs

• Post-COVID HSPC convey epigenetic and transcriptional memory to mature 

progeny cells

• IL-6 contributes to epigenetic reprogramming of mouse and human HSPC 

and myeloid cells
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Figure 1. Durable epigenetic alterations in monocytes following severe COVID-19.
(A) Overview of the cohort and ATAC-seq workflow for epigenetic profiling of CD14+ 

monocytes.

(B) PCA representation of CD14+ monocyte ATAC-seq dataset based on a combined set of 

DAR (n=2029) (left). Boxplots (right) show PC1 and PC2 values for the individuals in each 

clinical group.
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(C) Unsupervised hierarchical clustering of DAR in CD14+ monocytes by clinical group. 

Normalized peak accessibility for individuals and DAR clustered by chromatin accessibility 

trends across clinical groups. (FDR < 0.1 for DAR)

(D) GO analysis of genes associated to cluster-specific DAR in CD14+ monocytes. (p<0.05)

(E) Top: Normalized read density for cluster-specific DAR. Each DAR (group average) is 

represented by a linked line across groups. Bottom: Cluster average of normalized DAR 

density score per individual across clinical groups.

(F) Representative ATAC-seq genome tracks of DAR from C2 and C4 in CD14+ monocytes. 

Boxplots display normalized DAR densities for each study participant.
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Figure 2. Altered CD14+ monocyte programs and function following severe COVID-19.
(A) snRNA-seq UMAP visualization of myeloid clusters.

(B) Frequency of myeloid subcluster within individual’s total myeloid population by clinical 

group.

(C) Average normalized expression of top group-defining genes ranked by adjusted p-value 

in CD14+ monocytes.

(D) Myeloid cluster UMAP showing CD14+ monocyte subclusters.
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(E) Expression of myeloid subcluster-defining genes. Red-dashed box highlights similarities 

between M.SC3 and DC.

(F) Scheme for ex-vivo stimulation of CD14+ monocytes with R848 and IFNα (top). 

Boxplots show concentration of secreted cytokines 24hr post-stimulation.

(G) GO analysis of upregulated genes in post-COVID CD14+ monocytes at 6hr post-

stimulation compared to Healthy.

(H) Correlation of foldchanges in DORC activity (unstimulated) and in gene expression 

(stimulated with R848+IFNα for 6 hours) between healthy and post-COVID groups 

(unstimulated, Early or Late or both). Labeled genes are DORC-associated genes with 

significant upregulation in both DORC and RNA expression (adj.p < 0.05 for both 

differential DORC and gene expression). Homogeneity between quadrant distribution of 

statistically significant and non-significant genes shown by chi-square test of independence.

(I) Genome tracks displaying DORC region for IL7R in CD14+ monocytes by group. 

DORC-associated peaks are connected to the IL7R gene body with loops.

(J) Average DORC score of each study participant across cohorts.
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Figure 3. Epigenomic and transcriptomic analysis of rare circulating HSPC establishes their 
similarity to BM HSPC.
(A) Schema depicting donor-paired PBMC/BMMC analysis with Progenitor Input 

Enrichment (PBMC- and BMMC-PIE), followed by snRNA/ATAC-seq. Approximate 

percentage of HSPCs from pre-enrichment and enriched samples indicated.

(B) UMAP for snRNA/ATAC-seq data of paired BMMC- and PBMC-PIE (n=2). Plots 

annotated for major cell types, and tissue origins. HSPC-only UMAP plots were annotated 

for HSPC subtypes (bottom).
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(C) Expression of HSPC subtype-specific genes in PBMC- (top) and BMMC-PIE (bottom) 

dataset.

(D) Summary of study participants profiled using PBMC-PIE workflow.

(E) UMAP of PBMC-PIE snRNA-seq data.

(F-G) UMAP of HSPC for RNA- and ATAC-seq data. HSPC subtypes are annotated using 

two methods: annotation based on cell type-specific gene expression (F), and annotation 

from ATAC-seq dataset for human BM HSPC subtype64 (G).
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Figure 4. Sustained epigenetic alterations in CD34+ HSPC following severe COVID-19.
(A) Overview depicting clinical groups and ATAC-seq workflow used for epigenomic 

profiling of CD34+ HSPC.

(B) PCA plot of HSPC ATAC-seq samples using the combined set of DAR (left). Boxplots 

(right) show PC1 and PC2 values for each donor across groups.

(C) Top: Normalized read density of all DAR in each clusters by groups. Each DAR (group 

average) is represented by a linked line across groups (top). Bottom: Cluster average of 

normalized DAR density score for individuals within groups.
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(D) GO analysis of genes associated to cluster-specific DAR in HSPC. (p<0.05)

(E) ATAC-seq genome tracks for representative cluster-specific DAR in HSPC. Boxplots 

display normalized DAR densities for each donor across groups.
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Figure 5. Durably altered phenotypes and programs in HSPC following severe COVID-19.
(A) GO analysis of genes with upregulated expression, and chromatin accessibility (DORC) 

in HSPC of each clinical group compared to Healthy.

(B) Frequency of HSPC subcluster among total HSPC for individual across groups.

(C) UMAP of HSPC with subtype annotations.

(D) Gene set enrichment analysis (GSEA) between Early and Late HSPC.
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(E-F) UMAP displaying GMP module score (E) and DORC scores for the neutrophil 

module (F) per cell (left). Distribution of the module scores per cell in each clinical group 

(right).

(G) Heatmap of chromVAR score (Z-score-normalized median) for subtype-defining TFs.

(H-I) chromVAR scores for FOS::JUN and CEBPA in HSPC. TF scores projected on HSPC 

UMAP (left). Average TF score per individual (middle) and per-cell score (right) across 

groups.
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Figure 6. TF programs are durably altered following severe COVID-19 and are shared between 
HSPC and CD14 + monocytes.
(A) Differentially active TFs in HSPC (left) and CD14+ monocytes (right) between Healthy 

and Early/Late groups.

(B-C) chromVAR scores for IRF2 in HSPC (B) and CD14+ monocytes (C). Scores projected 

on myeloid UMAP (left). Per-cell scores across groups (right).

(D) Average expression of representative marker genes of M.SC3 in each individual.

(E-F) M.SC3 module score in myeloid cells (E) and HSPC (F). M.SC3 module score is 

projected onto UMAP (left). Per-cell M.SC3 module score across groups (right).

Cheong et al. Page 47

Cell. Author manuscript; available in PMC 2024 August 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. IL-6R signaling programs post-infection phenotypes
(A) GMP frequency in HSPC for each individual across groups. (Wilcoxon’s test, * p < 

0.05; Healthy-reference)

(B) Average chromVAR score (row-normalized) for selected TFs across groups.

(C) DEG in Late HSC/MPP between aIL-6R treated and non-treated groups.

(Wilcoxon’s test, * adj.p < 0.05, “Late with aIL-6R”-reference)

(D) Experiment schema of A/J mice MHV-1 infection model.
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(E) UMAP of mouse BM lineage-depleted progenitor populations, with celltype annotation 

and simplified trajectories.

(F) Frequency of progenitor subtypes among lineage-depleted cells across groups.

(G) Average chromVAR score (row-normalized) for selected TFs across groups.

(H) Per-cell GMP module score in the HSC/MPP cluster across groups. (Wilcoxon’s test, * 

p < 0.05; Recovered-reference)

(I) UMAP of BALF macrophage and color-scaled density of each group.

(J) Cell count ratio between two macrophage subclusters (Mac2/Mac1) in each group.

(K) Absolute cell density (cells/mm2) of selected cell types in the region of interest (ROI) 

across sample groups in imaging mass cytometry data70 of post-mortem lung tissue. Density 

per ROI is represented by small transparent dots, while larger dots indicate the average 

density per study participant. (ROI value, Wilcoxon’s test, * p < 0.05; Recovered-reference)

(L) Monocyte counts in brain tissue across different groups. (ANOVA, * p < 0.05; naïve, n = 

5; recovered, n = 9; aIL-6R, n=6)

(M) Representative images from immunofluorescence staining of mouse brain in different 

groups showing varying degrees of demyelination and a box plot displaying the average 

intensity of myelin basic protein (MBP) staining per ROI (transparent dot) and per mouse 

across groups (larger dot). (Wilcoxon’s test, * p < 0.05, Healthy-reference)
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Key resources table

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

7-AAD Biolegend Cat#420404

CD34-microbeads Miltenyi Cat#130-046-702

CD34-FITC Miltenyi Cat#130-113-178

CD49f-Pacific Blue Biolegend Cat#313620

CD90-PE Biolegend Cat#328110

CD38-PE/cy7 Biolegend Cat#303516

CD45RA-APC/cy7 Biolegend Cat#304128

CD20-Biotin Biolegend Cat#302350

CD56-Biotin Biolegend Cat#362536

CD14-Biotin Biolegend Cat#301826

Streptavidin-BV605 BD Cat#563260

CD14-APC BD Cat#340436

CD8-FITC Biolegend Cat#300906

CD14-microbeads Miltenyi Cat#130-050-201

Mouse lineage depletion kit Miltenyi Cat#130-090-858

FcX Biolegend Cat#156604

Ly6g-BUV395 BD Cat#563978

MHCII-BV421 ThermoFisher Cat#404-5321-82

CD11c-A488 ThermoFisher Cat#53-0114-82

CD86-PE Biolegend Cat#105105

CD206-BV605 Biolegend Cat#141721

CD4 PE-CF594 BD Cat#562285

CD19-APC Thermofisher Cat#17-0193-82

B220-APC ThermoFisher Cat#17-0452-82

CD45-A700 Biolegend Cat#103127

Ly6c-PerCP-Cy5.5 Thermofisher Cat#45-5932-82

CX3CR1-BV786 Biolegend Cat#149029

CD8-PE-Cy7 Thermofisher Cat#25-0081-82

CD11b-APC-e780 ThermoFisher Cat#47-0112-82

Aqua Live/Dead Viability dye ThermoFisher Cat#L34966

normal donkey serum Jackson Immunoresearch RRID: AB_2337258

Iba1 Fujifilm Cat#019-19741

GFAP Cell Signaling Technologies Cat#3657

MBP Abcam Cat#ab40390

anti-IgG secondary antibodies conjugated to 
A488

Jackson Immunoresearch RRID: AB_2338449
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REAGENT or RESOURCE SOURCE IDENTIFIER

anti-IgG secondary antibodies conjugated to 
A594

Jackson Immunoresearch RRID: AB_2338873

anti-IgG secondary antibodies conjugated to 
A647

Jackson Immunoresearch RRID: AB_2338904

DAPI Prolong Diamond Antifade Cat#P36962

Bacterial and virus strains

MHV-1 ATCC VR-261

Biological samples

Paired PBMC and BMMC AllCells N/A

Whole blood from study participants Weill-Cornell Medicine/New 
York-Presbyterian Hospital

N/A

Chemicals, peptides, and recombinant proteins

R848 InvivoGen Cat#tlrl-r848

mouse anti-IL-6R blocker InVivoMab Cat#BE0047

IFNα PBL assay science Cat#12100

RPMI medium Corning Cat#10-040-CM

Ficoll-Paque PLUS GE Cat#17144002

Collagenase D Roche Cat#11088858001

Critical commercial assays

Chromium Controller & Next GEM 
Accessory Kit

10x Genomics Cat#1000202

Chromium Next GEM Single Cell Multiome 
ATAC + Gene Expression Reagent Bundle

10x Genomics Cat#1000285

NEBNext low input RNA library prep kit for 
Illumina

NEB Cat#E6420S

LEGENDplex Human anti-virus response 
panel (13-plex)

Biolegend Cat#740390

15-plex human pro-inflammatory cytokine 
assay

Eve Technologies N/A

TOP-Plus (Pylon 3D analyzer) for antibody 
level measurement

ET Healthcare N/A

Lung histology HistoWiz N/A

Deposited data

Imaging mass cytometry Rendeiro et al.70 https://doi.org/10.5281/zenodo.4110560

GRCh38 Genome Reference Consortium https://www.ncbi.nlm.nih.gov/assembly/
GCF_000001405.26/

GRCm38 Genome Reference Consortium https://www.ncbi.nlm.nih.gov/assembly/
GCF_000001635.20/

Single-cell RNA-seq of human bone marrow Granja et al.95 GSE139369

ATAC-seq data of human HSPC 
subpopulation

Buenrostro et al.60 GSE96772

Experimental models: Organisms/strains

A/J mouse The Jackson Laboratory Cat#000646

Software and algorithms
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REAGENT or RESOURCE SOURCE IDENTIFIER

Cell Ranger ARC 1.0.0 10X Genomics https://support.10xgenomics.com/single-cell-
multiome-atac-gex/software/downloads/latest

Signac Stuart et al.92 https://stuartlab.org/signac/

Amulet Thibodeau et al.93 https://github.com/UcarLab/AMULET

Seurat Hao et al.94 https://github.com/satijalab/seurat

Scrublet Wolock et al.95 https://github.com/swolock/scrublet

Harmony Korsunsky et al.96 https://github.com/immunogenomics/harmony

MACS2 2.1.2 Zhang et al.97 https://github.com/macs3-project/MACS/wiki/Install-
macs2

ArchR Granja et al.98 https://github.com/GreenleafLab/ArchR

FigR Kartha et al.99 https://github.com/buenrostrolab/FigR

Nebulosa Alquicira-Hernandez et al.100 https://github.com/powellgenomicslab/Nebulosa

trimmomatic Bolger et al.101 https://github.com/timflutre/trimmomatic

BWA Li et al.102 https://github.com/lh3/bwa

Samtools Li et al.103 https://github.com/samtools

Subread package Liao et al.104 https://subread.sourceforge.net/

IGV James et al.105 https://software.broadinstitute.org/software/igv/
download

snATACClusteringTools Ucar Lab https://github.com/UcarLab/snATACClusteringTools

DiffBind Stark et al.106 https://hbctraining.github.io/Intro-to-ChIPseq/lessons/
08_diffbind_differential_peaks.html

ChipSeeker Yu et al.107 https://github.com/YuLab-SMU/ChIPseeker

EdgeR Robinson et al.108,109 https://github.com/StoreyLab/edge

cinaR Karakaslar et al.110 https://github.com/eonurk/cinaR

HOMER 4.11 Heinz et al.111 http://homer.ucsd.edu/homer/

HINT Gusmao et al.112 https://github.com/CostaLab/reg-gen

SparK Kurtenbach et al.113 https://github.com/harbourlab/SparK

ClusterProfiler Yu et al.114 https://github.com/YuLab-SMU/clusterProfiler

STAR 2.7.10b Dobin et al.115 https://github.com/alexdobin/STAR

DESeq2 Love et al.116 https://git.bioconductor.org/packages/DESeq2

Snakemake Mölder et al.117 https://snakemake.readthedocs.io/en/stable/

Other

EDTA tubes BD Cat#366643

Heparin tubes BD Cat#368480

NovaSeq6000 Illumina N/A

Zeiss LSM 900 Carl Zeiss Microscopy N/A

Objective Plan-Apochromat 20x/0.8 M27 Carl Zeiss Microscopy N/A
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