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Abstract

Activating transcription factor 3 (ATF3) is one of the most important transcription factors that respond to and exert

dual effects on inflammatory responses. Recently, the involvement of ATF3 in the neuroinflammatory response to acute

brain injury (ABI) has been highlighted. It functions by regulating neuroimmune activation and the production of neuro-

inflammatory mediators. Notably, recent clinical evidence suggests that ATF3 may serve as a potential ideal biomarker of

the long-term prognosis of ABI patients. This mini-review describes the essential inflammation modulatory roles of ATF3

in different disease contexts and summarizes the regulatory mechanisms of ATF3 in the ABI-induced neuroinflammation.
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Introduction

Activating transcription factor 3 (ATF3), a transcrip-
tion factor with a basic leucine zipper, has long been
recognized as a member of the ATF/cAMP response
element binding (CREB) protein family.1 The expres-
sion of ATF3 is at low levels in quiescent cells, but
increases in response to stressors such as oxidative
damage and ischemia/reperfusion.2–4 ATF3 is emerging
as a master regulator of inflammation in multiple
pathophysiological processes such as cardiovascular
disease, dementia, and ischemia/reperfusion-induced
damage.1,5–15

Neuroinflammation is one of the key pathological
features of a wide range of acute brain injuries
(ABIs),16–19 which mainly include stroke and traumatic
brain injury (TBI).20,21 Neuroinflammation plays a piv-
otal role in ischemic brain injury during the acute phase
of ABI, with excessive immune cell activation and the
release of inflammatory mediators.22–24 A persistent
neuroinflammatory response will further lead to sec-
ondary neurodegenerative processes such as cognitive
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impairment and dementia.18,25–27 Clinical evidence also
supports that unresolved neuroinflammation continu-
ously shapes the evolving brain pathology and affects
the long-term neurological outcome of patients.16,28–30

Therefore, it’s urgently needed to understand the puta-
tive mechanisms for dysregulated brain inflammatory
responses in the pursuit of improving long-term neuro-
logical outcomes after ABI. Regarding ABI, recent stud-
ies suggested that ATF3 could be an ideal predictor of
outcomes in stroke and TBI,31,32 and ATF3 failure to
regulate inflammatory responses account for poorer
ABI outcomes by exacerbating neuroinflammation.33,34

In this mini review, we describe the regulation of
ATF3 in various inflammatory responses, scrutinize
the latest research findings, and highlight new insights
into the potential involvement of ATF3 in neuroin-
flammation and several common ABIs.

ATF3, is a stress-associated transcription
factor that regulates local and systemic

inflammation

ATF3 is a stress-associated transcription factor and a
key regulator of local and systemic inflammation.
Taking type 2 diabetes mellitus as an example, ATF3
is necessary for the complete induction of matrix metal-
loproteinase (MMP12) expression, a negative regulator
of glucose metabolism, in macrophages, which con-
nects microbiota-dependent inflammation to insulin
resistance.35–37 In addition to proinflammatory effects,
ATF3 deficiency is associated with exacerbated inflam-
mation and inflammation-related disease processes,
such as neuronal apoptosis and, cellular metabolic dys-
function of macrophages and endothelial cells (ECs)
in ischemia/reperfusion injury and cancer thera-
py.2,5,14,38,39 Protein-protein interaction network anal-
ysis further revealed that ATF3 interacts with
48 important stress-relevant proteins including other
transcriptional complexes involved in inflammatory
responses (Rela, Jun, Junb, Jund, Fos), indicating the
core position of ATF3 in cellular adaptive-response
networks.40

ATF3 exerts double-sided effects on inflammatory
response

As a multifaceted and controversial transcription factor,
ATF3 exerts both protective and deleterious effects on
inflammatory responses. Under stress, ATF3 may play a
protective role against inflammation-associated damage
in diseases as a compensatory factor.35 It functions as an
immunomodulator by interacting with nuclear factor
kappa B (NF-jB) and suppressing proinflammatory
cytokines such as interleukin(IL)-6-, IL-12, and toll-
like receptor (TLR) 4 in mice exposed to

lipopolysaccharide (LPS).41–45 Furthermore, ATF3 inter-
acts with BRG1-Associated Factor 60A (BAF60a), a reg-
ulator of obesity-induced adipose tissue macrophages, to
inhibit proinflammatory cytokine production in obese
people.46 In addition to cytokines, ATF3 links to the reg-
ulation of chemokine C-C motif chemokine 4 (CCL4) in
macrophages and the attenuation of inflammatory
responses.47 In the early stress response, acute hypoxia-
induced activation of tumor necrosis factor-alpha
(TNF-a) enhances ATF3 expression in ECs, and ATF3
regulates the activation of the c-Jun NH2-terminal pro-
tein kinase pathway, which protects cardiomyocytes from
doxorubicin-induced death.48 Thus, ATF3 can engage in
a compensatory or adaptive homeostatic response to alle-
viate inflammatory responses during inflammation–relat-
ed pathological processes.

By contrast, ATF3 has also proinflammation prop-
erties and can detect molecular patterns generated by
necrotic cells to induce inflammation.49 In respiratory
infections caused by Staphylococcus aureus (S. aureus),
ATF3 promotes inflammation by upregulating IL-6
and IL-12p40.50 The amplified inflammatory response
supports the antimicrobial effects, and ATF3 stimu-
lates the migration of F4/80 macrophages for pathogen
elimination in S. aureus-induced pneumonia.50

Moreover, the ATF3-dependent upregulation of
IL-6R and IL-6 may increase drug resistance to sora-
fenib and regorafenib in hepatocellular carcinoma.39 In
the tumor microenvironment of an immune-competent
mouse model, shATF3 significantly decreased the
PD-L1 level, thereby boosting the activated CD8þ

T cell population to increase its anti-tumor efficacy.51

Notably, the ATF3/c-Jun/Lgals3 axis may enhance
microglial activation in central diabetes insipidus fol-
lowing hypothalamic damage.52

ATF3 mediates inflammatory responses by
interacting with a complex metabolic-immune
response network

Transcription and metabolic regulation have been rec-
ognized as powerful principles guiding inflamma-
tion.53–56 As an important transcription factor, ATF3
interacts with a complex metabolic-immune response
network in various cells, such as macrophages and
ECs.57 Several studies have suggested that the ATF3
function in metabolic, tumor, and cardiovascular dis-
eases in part originates from its influence on cell metab-
olism.1,58–60

Abnormal metabolism induces stress reactions and
subsequently influences ATF3-mediated inflammatory
responses.36,46,53 Guided by symptoms of lipodystro-
phy and fever among patients with proteasome-
associated autoinflammatory syndromes, scientists
discovered that proteasome dysfunction blocks
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adipogenesis and induces inflammation by activating
ATF3.61 It is of note that ATF3 negatively regulates
the acquisition of a pro-inflammatory phenotype
induced by high-density lipoprotein (HDL) in macro-
phages.20 ChIP-sequencing revealed that several key
pro-inflammatory genes were directly targeted by
ATF3 following its induction by HDL.20 As an
HDL-inducible target gene in macrophages, ATF3
down-regulates the expression of TLR-induced proin-
flammatory cytokines and alleviates cellular stress.20

Another disease that involves ATF3 and lipid metab-
olism is atherosclerosis, a progressive disease charac-
terized by the accumulation of lipids and
inflammatory responses in arteries. The synthetic c-
type lectin receptor 4e (Clec4e) ligand induces nuclear
translocation of ATF3 in a Clec4e-dependent manner
in both peritoneal macrophages and bone marrow-
derived macrophages.21,62–64 On the other hand,
ATF3 can promote cholesterol efflux by regulating
Clec4e signaling in macrophages, alleviate Clec4e-
induced endoplasmic reticulum (ER) stress response,
and reduce the production of pro-inflammatory medi-
ators and growth factors.65 Furthermore, it limits
macrophage foam cell formation and inflammation
in granuloma remodeling and prevents the progres-
sion of atherosclerosis.65 Another way to prevent
macrophage foam cell formation by ATF3 relies on
regulating the intracellular neutral fat accumulation
by inhibiting the cholesterol 25-hydroxylase in macro-
phages and, modulating cytokine production and ER
stress.66 Therefore, ATF3 can be initially activated by
metabolic stressors, then works as a modulator and
inhibitor in response to a variety of inflammatory
stimuli.7,12,50,67

Apart from the anti-inflammatory properties men-
tioned above, persistent ATF3 expression induced by
excessive reactive oxygen species (ROS) or ER stress
may have detrimental effects, overwhelming its initial
compensatory property. For instance, triglyceride-rich
lipoprotein (TL) lipolysis products promote nuclear
ATF3 accumulation in carotid artery ECs of mice
and increase vascular apoptosis,68 whereas ATF3 pro-
motes lipolysis products-induced transcription of
E-selectin and IL-8 in human aortic Ecs.68 Hence,
ATF3 deletion can prevent vascular apoptosis by decreas-
ing triglyceride-rich lipoproteins and lipolysis products-
induced inflammation.68 Additionally, decreased ATF3
levels were necessary for HDL-induced inhibition of sat-
urated fatty acid-mediated enhancement of LPS-induced
inflammatory responses in ECs.69 In response to lipotoxic
brain microvascular damage, ATF3 mainly governs
TL-induced inflammation and TNF signaling in the cere-
brovascular system and increases EC apoptosis.67 The
ATF3 effects on inflammation depends on the various
cellular environments under stress (Figure 1).

In summary, ATF3 may be therapeutically targeted
to combat excessive inflammatory responses, or con-

versely, ATF3 can be repressed to strengthen an insuf-
ficient immune system.

Neuroinflammation is an emerging

therapeutic target for improving

neurological function following ABI

ABI triggers robust inflammatory- responses,28,70–72

then peripheral and brain immune dysregulation initi-
ate a cascade of inflammatory signaling events,
ultimately resulting in neuroinflammation.73 The

resulting intense neuroinflammation can last for years
and trigger secondary neurodegeneration due to the
excessive neuroimmune reaction induced by both resi-
dent brain cells and infiltrating peripheral inflammato-

ry cells.26,74–77 Thus, controlling disproportionate
neuroinflammatory responses represents a promising
therapeutic strategy to improve neurological outcomes
after ABIs.25,78,79

Both innate and adaptive immune cells are highly
involved in ABI–induced neuroinflammation. Neutrophils
are the first leukocyte subtype to infiltrate the lesion

site within 30min after stroke and release excessive
ROS, proinflammatory cytokines (IL-1b, IL-6,
TNF-a) and chemokines (MCP-1, MIP-1a, IL-8),
MMPs and adhesion molecules (PSGL-1, L-selectin),

which may exacerbate brain injury.80 Microglia are pri-
mary innate immune cells within the central nervous
system (CNS) and can produce pro-inflammatory fac-
tors in response to noxious stimuli, such as IL-1b,
interferon c, TNF-a, nitric oxide, and ROS.81,82

Representative adaptive immune cells T and B lympho-
cytes migrate into the brain at a later stage than neu-
trophils after brain injury, they can significantly
influence microglial phenotype and function.75,83

Neuroinflammation is also driven by neuroimmune–
related inflammatory mediators, for instance, comple-
ment activation promotes neuroinflammation and
secondary brain injury after ABI, such as stroke,

TBI, and intracerebral hemorrhage.84–86 Inhibition of
complement can reverse neuroinflammatory transcrip-
tome changes and significantly improve cognitive per-
formance after TBI.76,84,87,88 TLR represent another
recently emerging target for modulation of neuroin-

flammation after ABI89–92 Inhibition of TLR4 signal-
ing pathways has been suggested to reduce microglia/
macrophages activation and neutrophil infiltration,
thereby ameliorating neuroinflammation and improv-

ing neurological function in animal models of ABI.93,94

In addition to basic research, clinical studies also

emphasize the significance of neuroinflammation in
patients with ABI.95 Imitating the pathogenesis of
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ischemic stroke, neonates receiving cardiac surgery

with deep hypothermic circulatory arrest showed

immediate inflammatory responses based on the anal-

ysis of their vena cava superior blood samples, showing

increased immune cell counts and cytokine concentra-

tions.96 The neuroinflammatory biomarker MMP-9

was highly correlated with poor prognosis of patients

with ischemic stroke.97,98 Moreover, atorvastatin and

rosuvastatin exhibited in TBI patients neuroprotective

effects with better functional outcomes due to the anti-

inflammatory properties of statins.99,100

The efforts of limiting neuroinflammation after ABI

are rewarded by improved neurological recovery, there-

fore, attracting increasing attention and interest in the

exploration of novel neuroinflammatory modulators.

The emerging role of ATF3 in ABI

associated neuroinflammation

Stroke, divided into cerebral ischemic and hemorrhagic

strokes, is, together with TBI the most typical ABI

which is characterized byneuroinflammation.101,102

Subsequently, the activation of cerebral resident

neural and peripheral immune cells amplifies neuroin-

flammatory responses due to the compromised

permeability of the blood brain barrier (BBB) and the

proinflammatory cytokine storm.103,104

Evidence shows that ATF3 can be expressed in

microglia,105,106 brain ECs,67,107 and neurons9,108 in

the CNS and can exert effects on neuroinflammatory

modulators to affect brain physiologic function or

development.31,32 Similarly, the expression of ATF3

in peripheral immune cells, such as macrophages, is

involved in peripheral inflammation.57 Thus, the

underlying regulatory mechanism of ATF3 in inflam-

mation is highly correlated with its participation in

neuroinflammation.

ATF3 inhibits neuronal apoptosis following

ischemic stroke

ATF3 has been implicated in the cellular response to

ischemia/reperfusion of the brain,5 which features by

inflammatory responses109–111 (Figure 2). Accumulating

evidence suggests that ATF3 is activated in the ischemic

brain.32,112,113 Recently, ATF3 as an immediate early

gene was proposed as a potential biomarker for diagnosis

and prognosis in elderly women with focal ische-

mia.1,32,112,113 Studies discovered that gene transcript and

protein levels of ATF3 were increased at the acute stage

after ischemia/reperfusion, inhibiting glutamate-induced

Figure 1. The interplay of ATF3 with metabolism on inflammation. HDL mediates anti-inflammatory reprogramming of macrophages
via ATF3 in macrophages, but also induced ATF3 activity in endothelial cells then promote inflammation. ATF3 regulates Clec4e
signaling to increase cholesterol efflux and reduce ER stress and inflammation. TL increases nuclear ATF3 accumulation. The accu-
mulation of ATF3 can down-regulate TNF signaling and alleviate inflammation and apoptosis. ATF3 can also increases lipolysis, which
exacerbates apoptosis and inflammation in carotid artery endothelial cells in the cerebrovascular system.
ATF3: activating transcription factor 3; HDL: high-density lipoprotein; TLR: toll-like receptor; Clec4e: c-type lectin receptor 4e;
ER: endoplasmic reticulum; TL: Triglyceride; TNF: tumor necrosis factor.
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apoptosis.114 Reasonably, knockout of ATF3 significant-

ly increased the infarct volume, worsening neurological

function, as well as eliciting the cellular inflammatory

response 3 days after transient middle cerebral artery

occlusion (MCAO).33 Although it was reported that

ATF3 expression was decreased 3 days after MCAO,32

ATF3 overexpression attenuated neuronal caspase-

dependent apoptosis, microglial activation, and pro-

inflammatory cytokine production to alleviate brain

injury.32,113 For example, ATF3 can block CCL2 tran-

scription and TLR4/NF-jB signal activation to reduce

the activation of microglia and prevent neuronal apopto-

sis. Another is to prevent neuronal apoptosis induced by

c-Jun N-terminal kinase by promoting the expression of

the anti-apoptotic neuronal survival factor HSP27 and

activation of Akt.32,113 As mentioned above, ATF3 can

be therapeutically targeted to modulate ischemic stroke.

However, existing evidence of ATF3 regulation is cur-

rently described only for ischemic, not hemorrhagic

stroke. No research has investigated the role of ATF3

during the chronic phase of inflammation. Thus, further

research is required in the future.

TBI induces upregulation of ATF3 and exerts dualistic

roles in neuroinflammation and BBB damage

TBI triggers an inflammatory response in the CNS and

poses a substantial risk for neurodegenerative

diseases.115,116 Previous studies shown that ATF3 is

induced 2 hours after TBI31,117,118 and rapidly up-

regulated in neuronal and immune cells, thereby regu-

lating neuroinflammation34 (Figure 2). Similar to

ischemic stroke models, the upregulation of ATF3

occurs within 1–2 hours after TBI and decreases 2–3

days later.34 Functionally, ATF3 is necessary to inhibit

the production of CCL and CXCL chemokines (CCL2,

CCL3, CCL4, and CXCL1), as well as lipocalin-2, sub-

sequently reducing neuroinflammation in the subacute

phase of TBI.34 However, ATF3 overexpression fol-

lowing TBI caused by plasma fibrinogen is associated

with increased BBB permeability119 and memory loss.

The fibrinogen inhibitor fibrinogen antisense oligonu-

cleotide can decrease inflammatory responses and BBB

permeability, thereby ameliorating neurological dis-

eases.120 Further studies are warranted to illustrate

more detailed regulatory mechanisms of ATF3 in TBI

owing to its dual effects in inflammatory responses.

Conclusion

Neuroinflammation is one of the key pathological fea-

tures of a wide range of ABIs. Unresolved neuroin-

flammation continuously shapes the evolving brain

pathology and affects the long-term neurological out-

comes of affected patients.16,30 Neuroinflammation is

Figure 2. The function of ATF3 on acute brain injury. In the ischemic stroke, ATF3 overexpression attenuated neuronal caspase-
dependent apoptosis, microglial activation, and pro-inflammatory cytokine production to alleviate brain injury. ATF3 can block CCL2
transcription and TLR4/NF-jB signal activation to reduce the activation of microglia and prevent neuronal apoptosis. Another is to
prevent neuronal apoptosis induced by c-Jun N-terminal kinase by promoting the expression of the anti-apoptotic neuronal survival
factor HSP27 and activation of Akt. There is a lack of knowledge regarding the regulation of ATF3 in hemorrhagic stroke. In TBI,
upregulation of ATF3 in the brain negatively regulates CCL and CXCL chemokines (Ccl2, Ccl3, Ccl4, and Cxcl1) and lipocalin-2
expression, which then alleviates neuroinflammation after TBI. But increased BBB permeability and loss of memory after TBI are both
caused by Fg-induced overexpression of ATF3.
TLR: toll like receptor; HSP: heat shock protein; TBI: traumatic brain injury; Ccl: C-C motif ligand; Cxcl: CXC chemokine ligand; Fg:
plasma fibrinogen; BBB: blood brain barrier.
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an emerging therapeutic target for improving neurolog-
ical function following ABI.

As an intermediate modulator in various patholog-
ical contexts, ATF3 plays a pivotal role in the regula-
tion of inflammatory responses. In this mini review, we
described that ATF3, a stress-associated transcription
factor, can be rapidly induced in the brain after ABI
and detail multiple ways by which ATF3 can partici-
pate in neuroimmune reactions after ABI, e.g., modu-
lating the production of inflammatory mediators and
altering cerebral vascular integrity. ATF3 might be
therapeutically targeted to combat excessive inflamma-
tory responses to modulate brain damage. However,
there is a lack of knowledge regarding the regulation
of ATF3 in hemorrhagic stroke and subarachnoid hem-
orrhage, in which neuroinflammation plays a critical
role in determining neurological functions. Further stud-
ies are highly warranted to expand our knowledge of
ATF3 regulation following hemorrhagic stroke and sub-
arachnoid hemorrhage. Moreover, the differential role
of ATF3 in acute versus chronic inflammation after
brain injury should be explored in the pursuit of provid-
ing a framework to develop novel therapies for ABI.
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