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Abstract 

Detailed knowledge of the genetic variations in diverse crop populations forms the basis for genetic crop improvement and gene functional stud- 
ies. In the present study, we analyzed a large rice population with a total of 10 548 accessions to construct a rice super-population variation map 
( RSPVM ) , consisting of 54 378 986 single nucleotide polymorphisms, 11 119 947 insertion / deletion mutations and 184 736 presence / absence 
variations . Assessment of variation detection efficiency for different population sizes revealed a sharp increase of all types of variation as the 
population size increased and a gradual saturation of that after the population size reached 10 0 0 0. Variant frequency analysis indicated that ∼90% 

of the obtained variants were rare, and would therefore likely be difficult to detect in a relatively small population. Among the rare variants, only 
2.7% were predicted to be deleterious. Population str uct ure, genetic diversity and gene functional polymorphism of this large population were 
e v aluated based on different subsets of RSPVM, demonstrating the great potential of R SPVM f or use in downstream applications. Our study 
provides both a rich genetic basis for understanding natural rice variations and a po w erful tool f or e xploiting great potential of rare variants in 
future rice research, including population genetics and functional genomics. 
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ntroduction 

ice is one of the most important food crops in the world,
eeding more than half of the global population ( 1 ) . Natu-
al genomic variation is an important resource for genetic
mprovement and modern breeding methods to form new
igh-yield, high-quality rice varieties. Genomic variation has
herefore long been a subject of intensive research. Com-
on genomic variation types include single nucleotide poly-
orphisms ( SNPs ) , insertion / deletion mutations ( InDels ) and

arge structural variations ( SVs ) , all of which contribute ex-
ensively to gene functions and phenotypic traits in rice. For
xample, variations in the coding sequence of sd1 that alter
he amino acid sequence are known to reduce rice plant height
o varying degrees ( 2 ,3 ) ; a 1212-bp deletion can increase rice
rain width and weight by regulating GW5 expression ( 4 ,5 ) .
limatic and environmental changes throughout the world
ive great significance to explorations of natural variations in
ice that could be exploited to enhance its ecological adapt-
bility and improve quality and yield. 

Use of larger-scale populations can allow a more compre-
ensive molecular characterization of genomic variations, es-
ecially rare variants, than smaller populations. For example,
 super-large dataset of 64 000 human exomes demonstrated
hat human height and weight are largely affected by rare vari-
nts ( 6 ) , which would likely be difficult to detect in a small
opulation. Rare variants in rice have not yet been effectively
sed. It is therefore important to characterize genetic varia-
ions among a large-scale rice population including multiple
ubpopulations. Several previous rice variation datasets have
een generated from thousands of accessions ( e.g. 3010, 4726
r 5152 accessions ) ( 7–9 ) . However, those studies primarily
ocused on simple sequence variants such as SNPs ( 8 ) ; few sim-
lar studies have included large-scale SV detection. Although
Vs are typically identified from long sequencing reads, cur-
ent tools support SV identification from large-scale datasets
omposed of short sequencing reads, which are significantly
ess expensive to generate. At present, researchers have been
enerating and accumulating genomic sequencing data for
early two decades, and these data could now be combined
o form a broad rice genomic variation database with a super-
arge sample size. 

In this study, we curated a dataset of both short and long
enomic sequencing reads derived from a total of 10 548 cul-
ivated and wild rice accessions; using these data, we con-
tructed the first 10 000-level database of rice variation map
 RSPVM ) with a sample size of 10 548. The database con-
ained a total of 54 378 986 SNPs, 11 119 947 InDels and 184
36 presence / absence variations ( PAVs ) ; 84% of the SNPs and
2% of the InDels both were rare variants, which would be
ifficult to detect in small-scale populations. Through evalu-
tion of this database, we further demonstrated the great po-
ential of this large variation dataset for studying population
tructure, genetic diversity, allele distribution and functional
iversity in plants. 

aterials and methods 

aterial collection and identification of variation 

ataset 

e collected relevant resequencing data from public database,
ncluding NCBI, GSA and ENA ( Supplementary Table S1 ) .
uality control of short sequencing reads were conducted
by using Trimmomatic ( 10 ) ( v.0.39 parameter: MINLEN: 75
LEADING: 20 TRAILING: 20 SLIDINGWINDOW: 5:20;
MINLEN = 40, while the read length is < 75 bp ) . The
reads were mapped to Nipponbare genome ( MSU v.7.0 ) ( 11 )
with BWA software ( 12 ) ( v.0.7.17-r1188 ) and then were
used for SNP calling in Sentieon software ( 13 ) ( v.sentieon-
genomics-202112.02 ) . Genetic variant annotation and func-
tional effect prediction were conducted by using SnpEff
( 14 ) ( v.4.3t ) . The long reads of Pacbio and Nanopore from
356 rice accessions were collected ( Supplementary Table
S2 ) , mapped to the Nipponbare genome ( MSU v.7.0 ) ( 11 )
with minimap2 ( 16 ) and NGMLR ( 17 ) and were further
used for SV calling using Sniffles ( 17 ) ( v.1.0.11, parame-
ters: -l 50 -genotype ) and cuteSV ( 18 ) ( v.1.0.13, param-
eters: –max_cluster_bias_INS 100 –diff_ratio_merging_INS
0.3 –max_cluster_bias_DEL 200 –diff_ratio_merging_DEL
0.5 -l 50 -L 1000000 –genotype -S for PacBio reads and
–max_cluster_bias_INS 100 –diff_ratio_merging_INS 0.3 –
max_cluster_bias_DEL 100 –diff_ratio_merging_DEL 0.3 -l
50 -L 1000000 –genotype -S for Nanopore reads ) . Raw SV
results from the two softwares were combined for each acces-
sion and further merged to call SVs for the entire population
in SURVIVOR software ( 19 ) ( v.1.0.7, parameters: 1000 1 1
-1 -1 50 ) . The SVs with lengths from 50 bp to 1 Mb were fil-
tered for constructing the graph-based pan-genome by using
the vg software ( 20 ) ( v.1.36.0 ) . PAVs calling were conducted
with short sequencing reads and the pan-genome by using vg
giraffe ( 21 ) and SURVIVOR ( v.1.0.7, parameters: 1000 1 1 -1
-1 50 ) . PAVs with low-quality or unexpected length ( > 1 Mb
or < 50 bp ) were removed. From 1000–10 000 samples, each
increase of 1000 samples was a gradient with 50 replicates per
gradient set to detect saturation of SNP, InDel and PAV. 

Detection of rare and deleterious variants 

Allele frequencies for both SNPs and InDels were calcu-
lated with VCFtools ( 15 ) ( v.0.1.16 ) . These variants with
MAF < 0.01 were defined as rare variants. PCR experiments
were conducted to verify seven and eight selected PAVs from
short- and long-read datasets, respectively ( Supplementary
Figure S1, Supplementary Table S3 ) . Primers were showed
in supplementary information ( Supplementary Table S3 ) .
The non-redundant ( nr ) protein sequence database was
downloaded from NCBI ( https:// ftp.ncbi.nlm.nih.gov/ blast/
db/ FASTA/ ) and was used for annotating the functional ef-
fects of the genomic variations with SIFT4G ( 22 ). These vari-
ants with SIFT_SCORE < 0.05 were annotated as deleterious
variations. 

Analysis of population structure 

To construct a core variant dataset, the VCFtools ( 15 )
(v.0.1.16) was used to remove the variant site with a high
missing rate (–max-missing 0.9, –maf 0.05) and the remained
dataset was further filtered to remove the rice accessions with
missing genotypes > 20%. Genotype imputation of missing
sites and phasing were performed using Beagle ( 23 ,24 ) (v.5.4).
The results then were filtered based on linkage disequilibrium
(–indep 50 5 2) in plink ( 25 ) (v.v1.90b6.26). Phylogenetic trees
were constructed using FastTree ( 26 ) (v.2.1.11) with default
parameters, and were visualized by iTOL ( 27 ) (v.6.3.1). Princi-
pal component analysis (PCA) was conducted with plink ( 25 )
(v.v1.90b6.26). Population structure of the rice accessions was
estimated by using ADMIXTURE ( 28 ) (v.1.3.0). 

https://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/
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Figure 1. Identification and e v aluation of the genomic variants. ( A ) Geographical distribution characteristics of the 10 548 accessions in this study 
(n min = 1, n max = 4620). ( B ) Distribution of SNP and InDel on different chromosomes. ( C ) Comparison of deletion (DEL) and insertion (INS) detected in 
356 rice accessions in this study and a previously reported population with 230 rice accessions. This comparison presented the additional detected 
variations caused by a larger population. ( D ) Allele frequency distribution for PAV sites in 356 rice accessions. ( E ) Size distribution characteristics of PAV 
in 10 548 accessions. ( F ) Saturation curves of different variations in 10 548 accessions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Haplotype analysis of known functional genes 

All mutant loci in the transcript region were used to ana-
lyze the haplotypes of functional genes. And the nonsynony-
mous mutant loci were used to estimate functional haplotypes
(alleles) and construct the phylogenetic tree in FastTree ( 26 )
(v.2.1.11). The significance of differences between phenotypic
traits of different haplotype groups was calculated by using a
t -test. 

Conduction of the Tools module in RSPVM 

Four phenotypic datasets were collected from previous studies
and denoted as 3kRice ( 7 ), BMCPB ( 29 ), SCLS-CN-Mix ( 30 )
and SCLS-NE-GJ ( 30 ), respectively. Those phenotypic data
were combined with the genetic variant data in this study to
conduct genome-wide association study (GWAS) analysis. The
vcftools ( 15 ) (v.0.1.16) were used to filter the variants (–max-
missing 0.9, –maf 0.05,–min-alleles 2 –max-alleles 2). The first
five principal components and matrix of IBS kinship were cal-
culated by using plink ( 25 ) (v.v1.90b6.26) (–pca 10) and EM- 
MAX ( 31 ) (v.beta-07Mar2010) (emmax-kin -v -h -d 10), re- 
spectively, and further used as covariates for GWAS analysis.
GWAS was performed using a mixed linear model in EMMAX 

( 31 ) software (v.beta-07Mar2010). The threshold for GWAS 
was calculated using the Bonferroni test (0.05 / SNPs). The SN- 
Phub package ( 32 ) was used to construct the SNP and InDel,
Variation map, Haplotype network, Sequence maker, Phylo- 
genetic tree and Visualization of variant frequency sections in 

RSPVM. The geneHapR pacage ( 33 ) was used to construct 
the ANOVA (analysis of variance) of haplotypes section. 

Results 

Construction of a large genomic variation dataset 
from a 10 0 0 0-level population 

Resquencing data ( 7 , 30 , 34–50 ) were collected for a total of 
10 548 accessions of Asian cultivated rice ( Oryza sativa ) and 
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wild rice and Asian cultivated rice accessions were classified as 
sian wild rice ( Oryza rufipogon ) from 98 countries in four
ontinents (Figure 1 A). These data were used to generate a
uper-large rice genomic variation dataset. Using Nipponbare
MSU v.7.0) ( 11 ) as the reference genome, a total of 54 378
86 SNPs and 11 119 947 InDels were identified among
ll accessions, with average densities of 146 SNPs / Kb and
0 InDels / Kb. Chromosome 11 showed the highest variation
ensity, with 159 SNPs / Kb and 34 InDels / Kb; chromosome
 had the lowest variation density, with 131 SNPs / Kb and 28
nDels / Kb (Figure 1 B). This indicated a potentially abnormal
istribution of genetic diversity between chromosomes. To ac-
urately identify PAVs from the resequencing dataset, a graph-
ased pan-genome was generated using long sequencing reads
rom 356 cultivated and wild rice accessions. This dataset con-
tituted a 15.4% increase in the number of genomes compared
o the 230 Asian rice accessions included in our previously re-
orted rice pan-genome ( 49 ) (Figure 1 C). A total of 315 655
Vs, including 254 051 PAVs, were detected in the 356 rice
ccessions; 94% of the PAVs had a relatively low frequency
 < 0.05) (Figure 1 D). Using the pan-genome as a reference, we
ere performed PAV detection from short sequencing reads of
 10 000-level population for the first time. From the 10 548
ccessions, we identified a total of 184 736 PAVs: 116 371 in-
ertions and 68 365 deletions. The lengths of 58% of the PAVs
anged from 51 bp to 1 kb, and only 0.87% of the PAVs ex-
eeded 10 kb (Figure 1 E). These results indicated that shorter
AVs were more readily detected with this method. Saturation
f the three types of variants was tested by randomly sampling
ubsets of the entire variation dataset 50 times. The numbers
f SNPs, InDels and PAVs all initially showed rapid increases
long with the sample size, then gradually stabilized until the
ample size surpassed 10 000 (Figure 1 F). The number of iden-
ified SNP increased by 61, 22 and 7% when 10 000 samples
ere used compared to 1000, 3000 and 6000 samples, respec-

ively. Compared to SNPs and InDels, the number of PAVs
dentified reached saturation at a lower sample size (Supple-
entary Figure S2). These results strongly demonstrated the
ecessity and advantages of establishing a super-large-scale
ariation dataset. 

are and deleterious variants 

he allele frequencies of specific variants were investigated to
nderstand the distribution patterns in a super-large popula-
tion. Variations with a minor allele frequency (MAF) < 0.01
were classified as rare variations, which are expected to be dif-
ficult to accurately detect in a small population. A total of 45
509 726 SNPs (84% of the total number identified) and 10
197 265 InDels (92%) were classified as rare variants, with
per-chromosome averages of 3 792 477 SNPs (ranging from
2 878 047 to 4 855 139) and 849 772 InDels (ranging from
634 897 to 1 153 153) (Figure 2 A). Of these, ∼19% of the
rare variations were in a coding sequence, indicating that these
rare variants may have genetic and phenotypic functional ef-
fects (Figure 2 B). A total of 5 758 803 (12.65%) rare variants
were non-synonymous mutations locating in 55 343 genes,
in which 4011 genes are previously reported to be related to
important traits such as plant growth and development, yield
related traits and rice quality characteristics, biotic and abiotic
stress response ( 51–54 ). This indicates that these rare variants
could contribute largely to the genetic and phenotypic diver-
sity in rice. 

Deleterious variations during crop domestication have cu-
mulative effects that are crucial for understanding potential
crop improvement methods ( 55 ,56 ). Predictions of deleterious
SNP sites were performed using SIFT4G ( 22 ), which revealed
a total of 1 486 089 deleterious variant sites. These were un-
evenly distributed across genes; 3513 genes contained more
than 100 deleterious SNPs each, whereas 32 881 genes had
fewer than 10 deleterious SNPs each. This suggested gene-
specific preferential accumulation of deleterious SNPs. We
combined the deleterious variant data with the rare variant
data and found that only 2.7% of the rare variants identi-
fied here were predicted to be deleterious. These results re-
vealed the powerful advantages of using a super-large dataset
for mining both rare and deleterious variants. 

Analysis of population structure 

To further assess potential applications of the large varia-
tion map, we selected 9066 samples as a core collection from
the entire population by filtering out samples containing only
variants with high missing rate. For the population analysis,
variations of the core collection were further filtered by adopt-
ing an LD-based SNP pruning procedure to produce a repre-
sentative dataset consisting of 36 405 variants from the 9066
rice accessions. Based on this representative dataset, common
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two distinct clusters. Common wild rice was divided into three
subpopulations, Or1 (containing 246 samples), Or2 (99 sam-
ples) and Or3 (67 samples). Asian cultivated rice was divided
into 10 subpopulations, namely the five indica subpopulations
XI1 (1744), XI2 (1796), XI3 (282), XI4 (447) and XI5 (1026)
and the six japonica subpopulations GJ1 (260), GJ2 (42), GJ3
(99), GJ4-1 (601), GJ4-2 (111) and GJ5 (2246). Most of the
accessions in subpopulation XI4 were Aus rice and most of the
GJ4-2 members were Basmati rice accessions. The neighbor-
joining phylogenetic tree (Figure 3 A) and PCA (Figure 3 B–D)
yielded consistent results; the subpopulations described before
were clearly clustered into different clades of the phylogenetic
tree and into distinct regions of the PCA map. 

Allelic genotypes and associated functional 
di ver sity 

We further investigated allelic genotypes and associated func-
tional variations in known genes caused by all variations in
the core collections. A total of 8223 genes were included in
the PAVs of the 9066 wild and cultivated rice accessions. Of
these genes, five were selected and analyzed to determine the 
distinct PAV patterns between subpopulations (Figure 4 A).
The rice cadmium resistance gene OsLCD was present in a 
34 708-bp deletion, which caused the widespread absence of 
this gene in numerous accessions in both the cultivated and 

wild rice subpopulations. However, it was retained in nearly 
all accessions in the XI1 and XI3 subpopulations. The rice 
high-affinity nitrate transporter protein gene OsNRT2.4 ( 57 ),
which is an important gene related to nitrogen metabolism,
was found to have a rare absence variation only in several ac- 
cessions in the XI subpopulation. These PAVs of known func- 
tional genes provided a valuable basis for further use of di- 
verse rice germplasm. 

SNPs were observed on 55 551 genes, and these SNPs gen- 
erated a large number of haplotypes of functional genes. There 
was a total of 4522 haplotypes of GW7 , a major quanti- 
tative trait locus controlling grain length and width in rice 
( 58 ), in the high-quality dataset; the haplotype frequencies 
ranged from 1 to 700 accessions. To explore possible amino 

acid changes associated with these variants, nonsynonymous 
mutation analysis was conducted. This analysis yielded 2155 
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subpopulations due to large deletions. ( B ) Phylogenetic tree based on functional haplotype sequences of GW7 ( I ) and GW8 (II). ( C ) Population 
frequencies of GW7 ( I ) and GW8 (II) haplotype groups in different rice subpopulations. ( D ) The t -test analysis of the grain size between different 
haplotype groups based on 265 rice accessions. 
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unctional haplotypes that could be treated as potential alleles.
he functional haplotypes were classified into five haplotype
roups ( GW7 -hg1 / 2 / 3 / 4 / 5) based on neighbor-joining tree
Figure 4 B), which showed distinct distributions between sub-
opulations (Figure 4 C). For example, GW7 -hg3 showed sig-
ificantly higher grain width than other haplotype groups, and
as mainly observed in members of the GJ2, GJ3 and GJ5 sub-
opulations. In contrast, GW7 -hg2 was associated with the
mallest grain width and was more concentrated in the XI1,
I2 and XI3 subpopulations (Figure 4 D). In the entire varia-
tion dataset, there were 6923 haplotypes of GW8 , an impor-
tant gene that determines grain size, shape and quality ( 51 ,59 ).
A total of 3730 functional haplotypes were identified for this
gene, which were further classified into five haplotype groups
( GW8 -hg1 / 2 / 3 / 4 / 5) based on neighbor-joining tree (Figure
4 B). These groups were unevenly distributed among 14 rice
subpopulations (Figure 4 C). Compared with other haplotype
groups, GW8 -hg2 was associated with higher grain width and
was primarily distributed among members of XI4 and several
GJ subpopulations. GW8 -hg3, GW8 -hg4 and GW8 -hg5 were
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Figure 5. Schematic roadmap of the RSPVM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

associated with relatively low grain width and were mainly
observed in XI subpopulations (Figure 4 D). 

Configuration and usage of the variation database 

Using the materials discussed before and the identified ge-
nomic variations, we constructed an online rice variation
database, RSPVM ( http:// www.ricesuperpir.com/ web/ rspvm ),
which included all of the detected variations, the associated
population frequencies, pan-genome sequences and metadata
for all samples of the analyzed population (Figure 5 ). There
were six sections of this database. The first was basic infor-
mation for all samples used in this study, including the sample
number, material name, classified population, accession num-
ber and data source. The second was a query and view ser-
vice for SNPs and InDels (including rare variants) based on
users’ specifications such as chromosome position, gene ID,
range of MAF, etc. The third was a query and view service
for SVs derived from long reads (356 accessions) and short
reads (10 548 accessions). The fourth was the variation fre-
quency for different rice populations. Two different search
entries were provided to view and compare variant frequen-
cies of different populations. The fifth was a download ser-
vice for rare variations divided by chromosomes and varia-
tion types. The last contained a series of tools for analyzing
variants, which could be summarized as follows: (i) pheno-
type and GWAS information. This dataset was generated by
GWAS analysis based on phenotypic traits of 4790 accessions
from previous studies ( 7 , 29 , 30 ) and the genetic variations in
RSPVM. Phenotype values and frequencies, significant trait-
associated loci for different traits could be obtained from this
tool. (ii) Variation map, visualizing the variants according to
the customized groups and accessions, chromosome regions
or gene IDs, MAF, etc. (iii) Haplotype network, generating
a haplotype network from variants in customized chromo-
some regions or genes. (iv) ANOVA of haplotypes, conduct-
ing an ANOVA analysis for a phenotypic trait between differ-
ent haplotypes and visualizing them in heatmap and boxplot
figures. (v) Sequence maker, generating sequences in FASTA
format according to the customized accessions, and chromo-
some regions or gene IDs. (vi) Phylogenetic tree, generating a
neighbor-joining (NJ) tree or multidimensional scaling (MDS) 
plot based on the user-specified variants. (vii) Visualization of 
variant frequency, visualizing the population frequency and 

functional annotation for the user-specified variants. 
These applications will enable users to quickly obtain ge- 

nomic variants for a gene of interest and to rapidly analyze 
frequency differences between subpopulations. Variations can 

also be analyzed in one target material compared to other ac- 
cessions. These resources and functions are valuable tools for 
research involving population genetics, gene mining and rice 
breeding. 

Discussion 

Globally, there are abundant rice germplasm resources with 

very rich genetic and phenotypic diversity ( 60 ). As rice molec- 
ular genetics methods have been developed, screening of ge- 
nomic variations at a population level has become essential for 
many research areas, e.g. population phylogenetics ( 61 ), ge- 
nomics ( 62 ), pan-genomics ( 48–50 ), genetic diversity analysis,
gene mining, allelic polymorphism analysis ( 63 ), and investi- 
gations into crop origins and domestication histories ( 45 ,64 ).
However, the use of relatively small population sizes ines- 
timably causes omission of rare mutations, resulting in the loss 
of a large amount of genetic information and biasing results. 

To demonstrate potential applications of our dataset, we 
selected 52 genes with known functions ( 30 ) and analyzed 

the distributions and functions of their functional sites in 

our dataset. The proportions of functionally validated natu- 
ral variants in each subpopulation were then analyzed (Sup- 
plementary Figure S3, Supplementary Table S4). Most of the 
results showed identical or similar distribution patterns com- 
pared to a previous report using a relatively small popula- 
tion (66 accessions) ( 44 ). However, in using a much larger 
population, we discovered many genes from different sub- 
populations that were previously reported ( 44 ) as absent in 

the corresponding subpopulations. For example, the nitrate- 
transporter gene NRT1.1B ( 65 ) was previously shown to be 
highly favorable alleles frequency only in indica rice and low 

favorable alleles frequency in japonica rice while in our study 

http://www.ricesuperpir.com/web/rspvm
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t also showed favorable alleles frequency in a few accessions
f the japonica population. Similarly, different patterns were
lso found for sd1 , SCM2 and other genes. These results sys-
ematically demonstrated the potential advantages of using 10
00-level data and extensive rare alleles for comprehensively
nderstanding the functional variation of target genes. 
We here used resequencing data from 10 548 rice acces-

ions to build a comprehensive super-large variation database,
SPVM, containing more variations (e.g. 54 million SNPs)

han a previously reported 3000-level database (29 mil-
ion) ( 7 ), 4700-level database (14 million) ( 8 ) and 5000-level
atabse (18 million) ( 9 ). Providing abundance of rare varia-
ions, RSPVM is a powerful tool with great potential to enable
nd enhance many downstream studies. For example, a com-
rehensive understanding of genomic variations based on a
0 000-level population will yield better insights into genetic
tructure and diversity, more precise molecular fingerprints for
ermplasm identification, more functional variations and alle-
es of target genes for population genetics and functional ge-
omics, and more informative loci and greater potential for
hole-genome selection breeding compared to similar anal-
ses using smaller populations. These potential applications
eveal the broad prospective uses of our database. Some tech-
ical bottlenecks remain that prevent full use of the super-
arge variation dataset. For example, it remains a challenge
o accurately estimate the contributions of rare variations in
enome-wide association analyses, and many SVs (e.g. inver-
ions) should be identified with long sequencing reads, which
imits the possible number of input sequencing datasets. 

ata availability 

he long reads data and short reads data useful for this study
ere obtained from public databases (Supplementary Tables
1 and S2) and 126 genomic sequences were added to the blast
anel of RiceSuperPIRdb ( http:// www.ricesuperpir.com/ web/
last/blast1 ). All variation datasets used in this study could be
ound at RSPVM (available at http://www.ricesuperpir.com/
eb/rspvm ). 

upplementary data 

upplementary Data are available at NAR Online. 
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