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Abstract 

Gene regulation pla y s a critical role in the cellular processes that underlie human health and disease. The regulatory relationship between 
transcription f actors ( TFs ) , k e y regulators of gene expression, and their target genes, the so called TF regulons, can be coupled with computational 
algorithms to estimate the activity of TFs. Ho w e v er, to interpret these findings accurately, regulons of high reliability and co v erage are needed. In 
this study, we present and evaluate a collection of regulons created using the CollecTRI meta-resource containing signed TF–gene interactions for 
1186 TFs. In this conte xt, w e introduce a w orkflo w to integrate information from multiple resources and assign the sign of regulation to TF–gene 
interactions that could be applied to other comprehensive knowledge bases. We find that the signed CollecTRI-derived regulons outperform 

other public collections of regulatory interactions in accurately inferring changes in TF activities in perturbation e xperiments. Furthermore, w e 
sho w case the v alue of the regulons b y e xamining TF activity profiles in three different cancer types and exploring TF activities at the le v el of 
single-cells. Ov erall, the CollecTRI-deriv ed TF regulons enable the accurate and comprehensive estimation of TF activities and thereby help to 
interpret transcriptomics data. 
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Introduction 

The regulation of gene transcription plays a fundamental role
in development, cell differentiation, tissue homeostasis, and
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f numerous diseases, including cancer, autoimmunity, neuro-
ogical disorders, developmental syndromes, diabetes, or car-
iovascular disease ( 1 ) . In particular, deregulated activity of
ranscription factors ( TFs ) —key regulators of transcription -
as been implicated in the development of cancer and can gen-
rally alter the core autoregulatory circuitry of a cell ( 1–3 ) .
ranscription factors bind to specific regions of the DNA and
ogether with cofactors and other proteins influence the tran-
criptional rate of a specific set of target genes ( TGs ) ( 4 ) collec-
ively known as the TF’s regulon. The combined interactions
f all TFs to their target genes are often referred to as a gene
egulatory network ( GRN ) , a simplified representation of the
nderlying regulatory circuits ( 5 ) . Coupling GRNs with activ-
ty inference algorithms ( 6 ) can facilitate the interpretation of
ranscriptomics data and provide a more effective means of
nderstanding the underlying regulatory mechanisms in the
ystem of interest. TF activity estimation has been used to bet-
er understand diseases, for example breast cancer ( 7 ) , human
yocardial infarction ( 8 ) and oligodendroglioma ( 9 ) , drug re-

ponse ( 2 , 10 , 11 ) , immunotherapy ( 12 ) , aging ( 13 ) and devel-
pment ( 14 ) . Since the choice of TF-regulons can substantially
ffect the results ( 15 ) , it is important to use TF-regulons of
igh quality, minimizing false-positive interactions, while hav-

ng the highest coverage possible to not miss potentially rele-
ant TFs. 

Various methods are available for identifying TF regu-
ons, both on a small and large scale. Experimentally, high-
esolution identification of TF binding sites in vivo can be
chieved using chromatin immunoprecipitation followed by
igh-throughput DNA sequencing ( ChIP-seq ) ( 16 ) and DNase
 hypersensitivity coupled with DNA sequencing ( DNase-seq )
 17 ) . Despite identifying TF–DNA binding events in their na-
ive environment, binding events might not correspond to ac-
ual changes in the expression of the target gene, and do not
ake into account other cofactors that bind indirectly to the
arget genes ( 18 ) . In silico , the prediction of TF–gene interac-
ions can be done using the genomic sequence recognised by
ach TF, also known as binding motifs ( 19 ,20 ) . Such meth-
ds involve probing the entire genome for regions that con-
ain these binding motifs to identify potential target genes.
owever, this approach is limited to TFs with known binding
otifs and does not account for context-specific interactions,
here regulatory interactions take place only in a specific cell

ype or condition. Furthermore, GRNs can be inferred in a
ata-driven manner, as in co-expression analysis where the
orrelation between the expression patterns of a TF and its
otential target genes is investigated ( 21 ) . Lastly, manual cu-
ation of TF–gene interaction from the literature is another
ommon strategy. Such curation efforts are usually incorpo-
ated in databases such as IntAct ( 22 ) , SIGNOR ( 23 ) and TR-
UST ( 24 ) . While being very attractive for their high quality,
anual curations are hard to come by since curation is a gen-

rally cumbersome task, and curated databases rarely overlap
ue to the different curation standards and protocols ( 15 ,25 ) .
or that, curation efforts can be significantly enhanced with
he aid of text-mining for the identification of TF–gene inter-
ctions, as previously shown ( 26 ) . 

Despite the availability of the afore-described methods, the
ack of a general consensus on the inference of TF–gene in-
eractions remains a challenge as each approach has its own
trengths and limitations. A few frameworks to create TF
egulons based on a combination of resources have been
roposed. Such frameworks include DoRothEA ( 15 ) , which
combines TF–gene interactions identified by ChIP-seq experi-
ments, inferred interactions by gene expression and TF bind-
ing motifs and manual curation, and ChEA3 ( 27 ) , which pri-
marily contains co-expression and ChIP-seq-inferred interac-
tions. Other examples include Pathway Commons, which is a
resource that integrates various types of interactions ( i.e. bio-
chemical, complex binding and physical interactions between
proteins, RNA, DNA and small molecules ) ( 28 ) and Reg-
Network, which compiles experimentally observed or motif-
based predicted interactions among TFs, microRNAs and tar-
get genes ( 29 ) . However, such meta-resources can include
a high number of false interactions due to the use of high
false-positive generating methods ( i.e. co-expression and co-
occurrence ) ( 30 ) , and, with the exception of DoRothEA, they
do not include the information about the sign of interactions
( i.e. activating or inhibiting interactions ) . 

In this study, we introduce a set of TF regulons created
using information on TF–gene interactions from the Col-
lecTRI ( Collection of Transcription Regulation Interactions )
meta-resource ( 26 ) which integrates multiple sources of in-
teraction data, including public databases, text mining, and
manual curation. The CollecTRI-derived regulons represent
43175 signed TF–gene interactions for 1186 TFs. Addition-
ally, we propose a workflow for defining the sign of inter-
actions ( activating or repressing ) based on ( i ) information
about the sign curated in the resources compiled in Collec-
TRI and on ( ii ) regulon properties to assign a predominantly
activating or repressing role to TFs. The proposed workflow
can also be applied to other comprehensive knowledge bases.
We benchmarked the performance of CollecTRI-derived reg-
ulons against TF regulons from four other meta-resources:
DoRothEA, ChEA3, RegNetwork and Pathway Commons.
The CollecTRI-derived regulons outperformed the other net-
works by accurately inferring changes in TF activities in TF
perturbation experiments collected in the KnockTF data ( 31 ) .
Lastly, we demonstrated the value of the CollecTRI-derived
regulons through two different case studies. We estimated
the differential activities of TFs in three cancer types us-
ing public data from the Clinical Proteomic Tumor Anal-
ysis Consortium ( CPTAC ) and were able to identify TFs
with known roles in cancer biology and the studied cancer
types. Furthermore, we used the CollecTRI-derived regulons
to estimate TF activities on a single-cell dataset of periph-
eral blood mononuclear cells ( PBMCs ) and identified cell-type
marker TFs. In summary, we provide a new high-confidence,
high-coverage collection of TF-regulons that we make freely
available via the OmniPath ( https:// omnipathdb.org/ ) ( 32 ),
DoRothEA ( https:// saezlab.github.io/ dorothea/ ) ( 15 ) and de-
coupler ( https:// saezlab.github.io/ decoupleR/ ) ( 33 ) packages. 

Materials and methods 

TF–gene data sources 

The CollecTRI source data were introduced in ( 26 ) and have
since been updated by gathering more recent data from SIG-
NOR and GO, and by adding three new resources: DoRothEA
A ( 15 ), Pavlidis 2021 ( 34 ) and the NTNU Curated subset of
ExTRI (Lægreid, in preparation). Pavlidis consists of informa-
tion extracted from the supplemental materials of the publica-
tion. The code that implements the gathering and merging of
the data is available within the ExTRI Rbbt workflow ( https:
// github.com/ Rbbt-Workflows/ ExTRI ). Each data source is

https://omnipathdb.org/
https://saezlab.github.io/dorothea/
https://saezlab.github.io/decoupleR/
https://github.com/Rbbt-Workflows/ExTRI
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processed to a common format with transcription factors and
target genes expressed as human gene symbols. For databases
that list genes and proteins of different organisms, the UniProt
protein to protein identifier equivalences from the Protein In-
formation Resource ( https:// proteininformationresource.org/ )
were used to identify the proper human protein, which was
then translated to its gene symbol ( 35 ). Each resource was pro-
cessed to update all gene symbols to the most recent version
(gene set in Ensembl release 109 from February 2023). When
merging databases, entries for AP1 and NFKB complex mem-
bers are allowed to match the complex names so that their
information is merged across them. The result of this pro-
cess is a table where each TRI (TF–gene pair) is listed with
its databases of origin, along with information from those
databases, such as mode of regulation, when available, and
literature references provided as PubMed ID (PMID). 

Filtering TF–gene interactions 

CollecTRI, as well as all other regulon collections (Reg-
Network, ChEA3, Pathway Commons, DoRothEA), were
filtered to contain only transcription factor (TF)–gene
interactions from TFs classified as DNA-binding (dbTFs), co-
regulatory (coTFs) or general initiation (GTFs). dbTFs were
downloaded from Lambert et al. ( https://ars.els-cdn.com/
content/ image/ 1- s2.0- S0092867418301065- mmc2.xlsx ), 
Lovering et al. ( https:// ars.els-cdn.com/ content/ image/ 1-
s2.0- S1874939921000833- mmc1.xlsx ) and TFclass ( http:
// tfclass.bioinf.med.uni-goettingen.de/ suppl/ tfclass.ttl.gz ). 
Additionally, we retained all proteins annotated in Gene
Ontology (GO) ( 36 ) with either the specific term or any
child term of DNA-binding transcription factor activity
(GO:0003700) for dbTFs, transcription coregulator activity
(GO:0003712) for coTFs or general transcription initiation
factor activity (GO:0140223) for GTFs through QuickGO
( 37 ) on 2023-03-07. 

Assigning the TF–gene mode of regulation 

For each TF–gene interaction from the CollecTRI meta-
resource the PMIDs were aggregated across databases. Each
PMID is considered evidence of whichever mode of regulation
is specified in that database, if any. Database entries that are
not supported by PMIDs are thus not considered when build-
ing the TF regulons. PMIDs can only count as evidence for a
TF–gene interaction once, even if they were curated by sev-
eral databases. Only in the infrequent case of the same PMID
featured as supporting different modes of regulation in differ-
ent databases, these were considered twice for determining the
mode of regulation to use in the CollecTRI-derived regulons. 

We then explored different strategies to assign a mode of
regulation (activating or repressing) to each TF–target inter-
action based on multiple sources of information. Initially, we
compared two approaches: assigning the mode of regulation
per TF–target interaction based on the prevalence of PMIDs
associated with a specific mode, versus assigning a mode of
regulation for the entire regulon of a TF based on its general
mode of regulation. To determine the general mode of reg-
ulation for a TF, we extracted regulatory information from
GO terms ( 36 ) and Uniprot keywords ( 38 ), as well as struc-
tural information about the Krüppel associated box (KRAB)
domain and the characterization and classification of effector
domains of 594 human TFs provided by Soto et al. ( 39 ). More
specifically we checked if the TF was annotated with either the
specific term or any child term of RNA polymerase II-specific 
DNA-binding transcription acti vator acti vity (GO:0001228),
DNA-binding transcription repressor activity (GO:0001217),
transcription coacti vator acti vity (GO:0003713), transcrip- 
tion corepressor activity (GO:0003714), positive regulation 

of transcription by RNA polymerase II (GO:0045944) or 
neg ativ e regulation of transcription by RNA polymerase II 
(GO:0000122). From the UniProt keywords we extracted 

the information on the TF role based on the UniProtKB 

keywords Activator (KW-0010) and Repressor (KW-0678).
KRAB-proteins were assigned a repressive mode of regu- 
lation and identified by their InterPro-membership ( 40 ) in 

the IPRO3651_superfamily, while excluding members of the 
IPRO03655_ancient KRAB family, as the ancient KRAB pro- 
teins are known to act both as repressors and activators. If 
all sources—GO term classification, UniProt keywords, KRAB 

domain presence and effector domain information—agreed 

on the regulatory effect of a TF, we assigned the mode of 
regulation to all target genes accordingly. Overall, we iden- 
tified 348 TFs classified as general activators and 232 clas- 
sified as general repressors leading to a total of 10 313 and 

3191 TF–gene links where we assigned an activating and re- 
pressing mode of regulation, respectively, using this strategy.
In comparison, we assigned an activating and repressing mode 
of regulation to 13 847 and 5694 TF–gene links, respectively,
based on the prevalence of PMIDs. Since both approaches re- 
sulted in a majority of interactions being assigned a positive 
mode of regulation (PMIDs: 71%, TF classification: 76%), we 
also assigned an activating mode of regulation in cases where 
no information was available from either the PMIDs or the 
regulatory effect of a TF. We evaluated both approaches indi- 
vidually by comparing their performance in our benchmark- 
ing approach (See methods: Benchmark procedure) against the 
CollecTRI version, where the mode of regulation of all edges 
was considered to be activating. Additionally, we examined 

the effect of combining both approaches: First, we assigned 

a mode of regulation based on the PMIDs for TF–gene in- 
teractions, and where this information was not available, as- 
signed a mode of regulation based on the general mode of 
regulation for the TF, defined by the GO terms and UniProt 
keywords. All remaining TF–gene interactions were again as- 
signed an activating mode of regulation. Furthermore, we con- 
sidered information from other interactions within a TF’s reg- 
ulon to assign a likely activating or repressing mode of reg- 
ulation to the TF. We analyzed all TF–gene interactions in 

the regulon with an assigned mode of regulation based on 

the PMIDs and classified the TF based on whether the ma- 
jority of these interactions were linked to activation or re- 
pression. We then assigned the mode of regulation accord- 
ingly, resulting in an activating and repressing mode of regu- 
lation for 1750 and 154 TF–gene links, respectively and again 

tested the performance in our benchmark approach. Addi- 
tionally, we evaluated the effect of adding the general mode 
of regulation for a TF as before, to all TF–gene interactions 
without any information from the PMIDs and the regulon 

classification, 
Lastly, we systematically compared the effect of assigning 

an activating or repressing mode of regulation by default in 

cases where no information was available from any of the 
sources. 

After evaluating the benchmarks, in the published 

CollecTRI-derived regulons we assigned the mode of regu- 
lation for each TF–gene interaction primarily based on the 

https://proteininformationresource.org/
https://ars.els-cdn.com/content/image/1-s2.0-S0092867418301065-mmc2.xlsx
https://ars.els-cdn.com/content/image/1-s2.0-S1874939921000833-mmc1.xlsx
http://tfclass.bioinf.med.uni-goettingen.de/suppl/tfclass.ttl.gz
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Table 1. Ov ervie w tested TFs per netw ork 

Network Total number of TFs covered in benchmark 

ChEA3 ARCHS4 156 
ChEA3 ENCODE 46 
ChEA3 Enrichr 146 
ChEA3 GTEX 155 
ChEA3 Literature 66 
ChEA3 ReMap 101 
CollecTRI 171 
DoRothEA ABC 125 
RegNetwork 158 
Pathway Commons 121 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

umber of literature references and secondarily based on
ther TF–gene interactions in the regulon. TF–gene interac-
ions without any information were assigned an activating
ode of regulation. 

mplementation of the CollecTRI-derived regulons 

n OmniPath 

fter filtering the CollecTRI-derived regulons to include only
F–gene interactions from regulators classified as TFs (Meth-
ds: Filtering TF–gene interactions), and assigned the mode
f regulation to each TF–gene link (Methods: Assigning the
F–gene mode of regulation), we incorporated the CollecTRI
egulons into the OmniPath database ( 32 ), enabling conve-
ient distribution and integration with other databases. We
reated methods in Pypath, the database builder of OmniPath,
or processing CollecTRI. The database build process ensures
hat each gene is represented by its primary UniProt ID and
rimary HGNC symbol. It also translates the interactions to
heir mouse and rat counterparts by orthologous gene pairs.
n OmniPath, all varieties of complexes ‘AP1’ and ‘NFKB’ are
isted explicitly, according to Bejjani et al. ( 41 ) and Hoffmann
t al. ( 42 ). For ‘AP1’ we did not include the extended definition
escribed in Bejjani et al. but solely considered members from
he Jun and Fos families in the dimer collection. Integrated
nto OmniPath, CollecTRI is distributed in the web service at
ttps:// omnipathdb.org/ along with other OmniPath datasets,
nabling access by the OmniPath Python, R and CytoScape
lients. 

egNetwork, ChEA3, pathway commons and 

oRothEA 

egNetwork ( 29 ) human regulons were downloaded from
heir website ( https:// regnetworkweb.org/ download.jsp ). The
F regulons from ARCHS4_Coexpression (ChEA3 ARCHS4),
NCODE_ChIP-seq (ChEA3 ENCODE), Enrichr_Queries
ChEA3 Enrichr), GTEx_Coexpression (ChEA3 GTEX),
iterature_ChIP-seq (ChEA3 Literature) and ReMap_ChIP-
eq (ChEA3 ReMap) were downloaded from their website
 https:// maayanlab.cloud/ chea3/ ) ( 27 ). DoRothEA ( 15 ) was
ownloaded using the function get_dorothea from the decou-
ler v2.4.0 bioconductor package ( 33 ) once filtered by its con-
dence levels A, B and C and once including all confidence lev-
ls (A, B, C, D). For each TF–gene interaction where the sign
f regulation was not stated, an activating mode of regulation
as assigned by default. 

omputing TF–gene weights 

e employed two different tools, namely MatrixRider ( 43 )
nd FIMO ( 44 ), to perform motif enrichment analysis and
alculate binding weights for the TF–gene interactions in the
ollecTRI-derived regulons. Specifically, we used the Ma-

rixrider v1.30.0 and memes v1.6.0 bioconductor packages.
efore running the methods, we extracted 1000 base pairs

bp) upstream and 100 bp downstream of the transcription
tart site of each gene (TSS), defining the promoter region, as
ell as 10 000 base pairs (bp) upstream and 100 bp down-

tream of the TSS, reflecting proximal regulatory regions us-
ng the TSS.TxDb.Hsapiens.UCSC.hg38.knownGene v3.4.6
ackage ( 45 ). Human TF binding motifs were downloaded
rom MotifDb v1.40.0 ( 46 ). TF–gene pairs for which either
he promoter sequence or the TF binding motif were not
vailable were removed from the network. For the remaining
40 440 TF–gene pairs the two different tools were used as fol-
lows. MatrixRider was used to calculate binding weights for
each TF–gene interaction as described in their reference man-
ual. TF binding motifs were provided as position frequency
matrices, DNA sequences of the target genes as DNAString
objects and a cutoff parameter of 0 were passed to the get-
SeqOccupancy function within the Matrixrider v1.30.0 pack-
age. For FIMO, TF binding motifs and DNA sequences were
passed to the runFimo function within the memes v1.6.0 pack-
age and the highest score was kept as the binding weight. For
both methods, calculated binding weights were shifted to posi-
tive values with a pseudo count of 1 and normalized. We used
two different normalization strategies. First, we normalized
the weights per TF, meaning that the weights for all targets
of a specific TF were divided by the highest TF–gene binding
weight of that TF. Secondly, we normalized the weights per
gene, meaning that the weights for all TFs regulating a spe-
cific gene were divided by the highest TF–gene binding weight
of that gene. The final weights were compared with each
other using Pearson correlation. The benchmark procedure
was then repeated for the weighted network, using the calcu-
lated weights from MatrixRider with a window frame of 1000
bp before normalization, and compared to the non-weighted
CollecTRI regulons. Additionally, TF–gene links with bind-
ing weights in the lowest 10, 20 and 30% quantile were re-
moved from the network and their performance evaluated in
the benchmark. 

Benchmark data 

Differentially expressed gene tables and meta data were
downloaded from 907 manually curated RNA-seq and mi-
croarray experiments, collected in knockTF ( 31 ) ( http://www.
licpathway.net/ KnockTF/ download.php ). These datasets in-
clude knockdown / knockout experiments across multiple tis-
sues and cell types associated with 456 different disrupted
TFs. Perturbation experiments with a perturbed TF’s log fold
change greater than –1 were excluded from the final bench-
mark set, leading to 388 data sets covering 234 unique per-
turbed TFs. For each resource only perturbation experiments
of TFs covered in that network were used for the benchmark
(Table 1 ). 

TF activity estimation 

TF activities were estimated based on the log fold-changes of
the direct target genes after perturbation. Each network was
first filtered to keep only TF–gene interactions of genes mea-
sured in the experiment. We then selected TFs with at least five
gene targets and estimated TF activities using the univariate

https://omnipathdb.org/
https://regnetworkweb.org/download.jsp
https://maayanlab.cloud/chea3/
http://www.licpathway.net/KnockTF/download.php
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linear model (ulm) method from the decoupler v1.2.0 Python
package ( 33 ). 

Benchmark procedure 

The benchmark was performed using the benchmark func-
tion from the decoupler v1.2.0 Python package ( 33 ). To glob-
ally evaluate collections of TF regulons, TF activity scores ob-
tained as described above are first multiplied by the sign of
the perturbation (knockout: negative, overexpression: posi-
tive) for each perturbation experiment. The activity scores ma-
trix (rows: experiments, columns: TF activities) is then flat-
tened across experiments into a single vector. The objective is
to distinguish between perturbed TFs, the true positives, from
all unperturbed ones, true negatives. Due to differences in class
imbalance across networks, a downsampling strategy is em-
ployed within the benchmark. For each permutation, an equal
number of positive and negative classes are randomly selected
to calculate the area under the Receiver Operating Character-
istic (AUROC) and Precision-Recall Curve (AUPRC) metrics.
This process is repeated 1000 times per network, obtaining
distributions of performance measurements. 

The performance evaluation for specific TFs was performed
only for TFs for which at least five experiments were avail-
able in the KnockTF dataset (after filtering out experiments
with insufficient perturbation, Methods: Benchmark data). In
this setting, the objective is to distinguish between perturbed
experiments for each retained TF, the true positives, from all
the unperturbed ones, true negatives. The same strategy as
described above is used, but instead of flattening the activity
scores matrix, only the vector of one TF is extracted for eval-
uating the performance. This was done separately for each of
the TFs in Supplementary Figure S3. 

Evaluation of size bias 

For the three top performing regulon collections, namely Col-
lecTRI, DoRothEA ABC and RegNetwork, we used a two-
sided t -test which was adjusted for multiple testing using
Benjamini–Hochberg correction to compare if there was a dif-
ference in the number of targets for TFs that were part of
the benchmark data set, compared to the TFs that were not.
Pearson correlation coefficients were computed to assess the
relationship between the number of targets and the absolute
activity scores of TFs across all benchmark experiments in-
cluded in the benchmark. We then summarized the correlation
between the absolute scores and the number of targets across
experiments with the mean correlation and compared it across
networks. 

Case study 1: TF estimation in cancer tissues 

We tested the network by estimating TF activities in three
types of cancer: Uterine Corpus Endometrial Carcinoma
(UCEC), Lung Adenocarcinoma (LUAD), and Clear Cell Re-
nal Cell Carcinoma (CCRCC), retrieved from the third phase
of the Clinical Proteomic Tumor Analysis Consortium (CP-
TAC). The data was provided by Gaytan et al. (in prepara-
tion) which was collected from NCI’s Genomic Data Com-
mons (GDC) ( 47 ) using the GDC transfer tool. Raw count ta-
bles were subjected to VSN normalization, after filtering genes
with a low number of counts ( 48 ). For each cancer type, we
then performed differential expression analysis between tu-
mor and normal tissue samples using the limma R package
( 49 ). The t -values were used to infer TF activity as described
previously. A significance threshold of 0.05 was applied. Ad- 
ditionally, the correlation between TF activity and TF expres- 
sion was calculated. 

Case study 2: TF estimation in single-cell RNA data 

Single-cell RNA-seq processing 
Single-cell RNA-seq data from peripheral blood mononu- 
clear cells (PBMCs) was downloaded from 10x Ge- 
nomics ( https:// cf.10xgenomics.com/ samples/ cell/ pbmc3k/ 
pbmc3k _ filtered _ gene _ bc _ matrices.tar.gz ) and processed 

according to the standard preprocessing workflow as de- 
scribed in the Seurat ( 50 ) tutorial using Seurat v4.3.0 : Cells 
with > 5% mitochondrial counts or unique feature counts 
> 2500 or < 200 were filtered using the subset function. The 
feature expression measurements for each cell in the data 
was then normalized by the total expression, multiplied by 
a scaling factor of 10 000 and log-transformed with the 
NormalizeData function. The FindVariableFeatures function 

was utilized to calculate 2000 features with high cell-to-cell 
variations, employing ‘vst’ as the selection method. Next, a 
linear transformation was applied using the ScaleData func- 
tion. On the scaled data, principal component analysis (PCA) 
was performed using the calculated variable features. For 
clustering, the cells were embedded in a K-nearest neighbor 
graph based on the euclidean distance in PCA space with 

edges drawn between cells with similar feature expression 

patterns using the FindNeighbors function. We next used the 
Louvain algorithm to iteratively group cells together using the 
FindClusters function with a resolution of 0.5. The clusters 
were visualized using uniform manifold approximation and 

projection (UMAP). Marker genes defining each cluster were 
identified via differential expression using the FindAllMark- 
ers function. Only genes with a log fold change > 0.25 and an 

expression observed in at least 25% of the cells in a cluster 
were considered to be markers. Clusters were annotated by 
mapping marker genes to canonical cell type markers taken 

from the Seurat tutorial. 

TF activity estimation in PBMCs 
For each cell in the PBMC dataset we employed the univari- 
ate linear model method implemented in decoupleR v2.4.0 to 

estimate TF activities from the normalized counts using the 
CollecTRI-derived regulons. To identify TF markers for each 

cell type within the PBMC dataset, we applied the FindAll- 
Markers function using a Wilcoxon test from Seurat v4.3.0 on 

the expression of all TFs and the inferred activity of all TFs.
TFs with an adjusted p-value smaller than or equal to 0.05, a 
log fold change > 0.5 and an expression or activity observed 

in at least 15% of the cells in a cell type were considered to 

be markers for that specific cell type. The total number of TF 

cell type markers based on expression and activity were then 

quantified. 
To evaluate if the activities of transcription factors are bet- 

ter conserved than their expression within cell types, we as- 
sessed the potential of TF expression and activity to cluster 
cells from the same cell type together. For both the expression 

and the activity matrix we performed the following steps: we 
applied a linear transformation using the ScaleDate function 

from Seurat v4.3.0 and performed PCA using all TFs. We cal- 
culated the euclidean distance in the first 30 PCA dimensions 
and computed the silhouette width using the silhouette func- 
tion from the cluster v2.1.4 R package ( 51 ). Silhouette widths 

https://cf.10xgenomics.com/samples/cell/pbmc3k/pbmc3k_filtered_gene_bc_matrices.tar.gz
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Table 2. Resources of TF–gene interactions used in CollecTRI 

Database Content extracted for compilation Reference 

ExTRI All (cross-species) Vazquez, 2022 ( 26 ) 
TFactS All (human, mouse, rat) Essaghir, 2010 ( 53 ) 
HTRIdb All (human) Bovolenta, 2012 ( 54 ) 
IntAct Subset: protein-gene interactions (human, mouse, rat) Kerrien, 2012 ( 55 ) 
GOA (updated) Subset: protein-gene regulatory interactions (human, mouse, rat) Huntley, 2015 ( 56 ) 
TRRUST All (human, mouse) Han, 2015; Han, 2018 ( 24 ,57 ) 
SIGNOR (updated) Subset: interactions labeled with interaction mechanism 

‘transcriptional regulation’ (human, mouse, rat) 
Perfetto, 2016 ( 23 ) 

CytReg All (human, mouse) CarrascoPro, 2019 ( 58 ) 
GEREDB Subset: interactions with regulator TFClass TF (human) Huang, 2019 ( 59 ) 
Pavlidis (new) All (human, mouse) Pavlidis, 2021 ( 34 ) 
DoRothEA A (new) All (human) Garcia-Alonso, 2019 ( 15 ) 
NTNU Curation (new) Subset of about 20K sentences manually curated from ExTRI Lægreid, in prep. 

The table indicates whether all interactions or subsets of them were included in CollecTRI. 
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f all cells were aggregated and the average silhouette width
erived from TF activity and TF expression compared using a
wo-sided t -test. 

esults 

ources of prior knowledge on TF–gene regulatory 

nteractions 

ollecTRI (Collection of Transcription Regulation Interac-
ions) is a compilation of available transcription regulation
nformation from databases integrated with information ex-
racted from the text-mined resource ExTRI ( 26 ), which ex-
racts sentences containing descriptions of transcription regu-
ation events, known as TRIs (Transcription Regulation Inter-
ctions). Here, we used those resources after updating some of
he databases and including three new ones (Table 2 ): Pavlidis
 34 ), NTNU Curated (Lægreid, in prep) and DoRothEA A
 15 ) (Supplementary Figure S1). NTNU Curated are a sub-
et of ExTRI sentences manually curated for validity of TF–
ene interaction and mode of regulation, and DoRothEA A
ontains the TF–gene interactions with the highest confidence
evel of the DoRothEA meta-resource ( 15 ), which is also eval-
ated in this publication separately. Note that DoRothEA
ompiles some of the same resources as CollecTRI; how-
ver, the overlap is taken into account for the creation of
he CollecTRI-derived regulons as it is based on the number
f unique PubMed IDs (PMIDs) supporting each annotation
cross resources. 

From the resources, all instances of genes or proteins have
een translated into human gene symbols, including mentions
o rat or mouse entities which were translated with the help
f orthology tables. We decided to also consider TF–gene in-
eractions from mouse and rat, as it is a common practice in
he field to assume that the TRIs translate across murine or-
anisms and humans due to the high conservation of regula-
ory mechanisms across these organisms ( 52 ). Additionally, a
arge component of CollecTRI is extracted from text-mining,
here it is often difficult to assign the correct species to infor-
ation extracted from PubMed abstracts; in fact, this infor-
ation may be missing entirely from abstracts. 
Moreover, two TF dimers, AP1 and NFKB, were treated as

ranscription factors themselves in CollecTRI since they, in the
iterature, are very frequently mentioned only by their dimer
ame. When merging the CollecTRI resources, the informa-
ion regarding the monomer AP1 or NFKB constituents (e.g.
JUN- or FOS-family or NFKB1) was merged into information
referring to the complex (i.e. AP1 for JUN and FOS) and vice
versa, see details in ( 23 ). 

Construction of TF regulons from CollecTRI 

From the compiled information in CollecTRI we constructed
signed and directed CollecTRI-derived regulons which can be
used for the inference of TF activities. Each regulon consists
of all target genes of one particular TF as reported in the
meta-resource. To ensure reliability of the TF–gene interac-
tions and account for the overlap across resources, we gath-
ered the unique PMIDs for each TF–gene interaction and re-
moved those lacking any reference (Figure 1 A). Furthermore,
to focus on proteins with a direct regulatory effect on gene ex-
pression, we included only TF–gene links from TFs classified
as DNA-binding transcription factors (dbTFs), co-regulatory
transcription factors (coTFs) or general initiation transcrip-
tion factors (GTFs) based on criteria from TFclass ( 60 ), Lam-
bert et al. ( 61 ), Lovering et al. ( 6 ) or gene ontology (GO) an-
notations ( 36 ). 

We then assigned a mode of regulation to each TF–gene
pair, indicating the sign of transcriptional regulation from the
TF to its target gene. Specifically, we determined whether the
TF activates or represses the expression of its target gene.
Hereby, activation corresponds to an increase in the expres-
sion of the target gene, whereas repression corresponds to a
decrease in expression. In order to determine the mode of tran-
scriptional regulation for each TF–gene pair in the CollecTRI-
derived regulons, we considered integrating different sources
of information (Supplementary Figure S2A) (Methods: As-
signing the TF–gene mode of regulation). Initially, we exam-
ined the impact of incorporating specific knowledge for each
TF–target link, which was based on the prevalence of PubMed
references associated with a specific mode of regulation. Ad-
ditionally, we considered including general prior knowledge
about the mode of regulation of a TF, obtained from GO
terms ( 36 ) and Uniprot keywords ( 38 ), as well as structural
information about the Krüppel associated box (KRAB) do-
main, known to function as a transcriptional repressor do-
main ( 62 ), and the classification of effector domains of 594
human TFs provided by Soto et al. ( 39 ). The effector domain,
being capable of activating or repressing the expression of a
TF’s target genes through multiple mechanisms, offers supple-
mentary information for categorizing TFs as either activators
or repressors ( 56 ). We assessed the impact of both approaches
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A

B

C

D

Figure 1. Description of transcription factor (TF)–gene interactions in the CollecTRI-derived regulons and comparison to other regulon collections. ( A ) 
Collecting transcription factor (TF)–gene links to construct regulons from CollecTRI. Depicting prior knowledge resources used to collect links, which 
were aggregated within CollecTRI. ( B ) Flow chart describing how the mode of regulation (MoR) was assigned to each TF–gene link. The MoR, indicating 
the direction of transcriptional regulation from the TF to its target gene, was determined for each TF–gene link, based on factors such as PubMed 
references (PMIDs) and the MoR of other genes in the regulon. ( C ) Summary of the MoR for TF–gene interactions in CollecTRI. Total number of 
interactions f or activ ating and repressiv e TF–gene links (left) and percentage of TFs that purely function as activators, repressors, or ha v e a dual mode of 
regulation (right). ( D ) Comparison of the number of unique TFs (top) and interactions (bottom) across different resources—with ChEA3 ARCHS4, ChEA3 
GTEx and ChEA3 Enrichr being solely based on co-expression or co-occurrence. Any TF or interaction present in more than one resource is considered 
shared. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

for assigning a mode of regulation to the TF–gene interactions,
both individually and in combination, by evaluating their in-
fluence on the performance of the CollecTRI-derived regu-
lons in recapitulating the changes in gene expression caused
by the perturbation of a TF (Methods: Benchmark proce-
dure). Our findings revealed that assigning a mode of regula-
tion based on the prevalence of PMIDs yielded better bench-
mark performance compared to TF regulons with the mode
of regulation for all TF–gene rendered activating (adjusted P -
value < 2.2 × 10 

−16 , t -value equal to 103 and 69.6 for AU-
ROC and AUPRC, respectively). However, assigning a general
mode of regulation for TFs based on prior knowledge led to a
decrease in performance (adjusted P -value equal to 6.5 × 10 

−5

and 1.5 × 10 

−10 , t -value equal to 4 and 6.5 for AUROC and
AUPRC, respectively) (Supplementary Figure S2B). Next, we
considered information from other interactions within a TF’s
regulon to make informed decisions on whether a TF is more
likely to activate or repress the expression of its target genes
and included this information for TF–gene interactions that
lacked direct information from the PMIDs. This additional in- 
formation significantly improved the benchmark performance 
of the CollecTRI-derived regulons (adjusted P -value equal to 

2.5 × 10 

−13 and 1.2 × 10 

−33 , t -value equal to 7.4 and 12.3 

for AUROC and AUPRC, respectively) (Supplementary Figure 
S2C). Lastly, we evaluated the effect of assigning an activating 
or repressing mode of regulation by default in cases where no 

information was available from any of the sources and dis- 
covered that a default activating mode of regulation outper- 
formed a default repressing mode of regulation (adjusted P - 
value < 2.2 × 10 

−16 , t -value equal to 337 and 294 for AUROC 

and AUPRC, respectively) (Supplementary Figure S2D). In the 
end, the mode of regulation for each TF–gene interaction in 

the CollecTRI-derived regulons was determined based on the 
prevalence of PMIDs and the classification of the TF based 

on the mode of regulation of other interactions in the regu- 
lon, with TF–gene interactions lacking available information 

being assigned an activating mode of regulation (Figure 1 B).
For 19541 TF–gene interactions the mode of regulation was 
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etermined based on the prevalence of PubMed references.
eanwhile, for 1904 interactions, the mode of regulation was

ssigned by the TF classification based on other interactions
n the regulon. For the remaining 21730 TF–gene interaction
n activating mode was assigned by default (Supplementary
igure S2E). The final annotation procedure led to 86% acti-
ating and 14% repressing TF–gene links. 56% of TFs were
epresented with a dual role in regulation, meaning the TF was
ssigned to either activate or repress the expression of its tar-
et genes. 37% of the TFs had only activating links, whereas
% of TFs are only represented by repressing links. (Figure
 C). With that, the CollecTRI-derived regulons in total cover
186 TFs and 43175 signed TF–gene interactions. 
We then compared the coverage of the CollecTRI-derived

egulons to other known collections of TF regulons, namely
hEA3 ( 27 ), RegNetwork ( 29 ), Pathway Commons ( 28 ) and
oRothEA ( 15 ). ChEA3 contains a collection of gene set

ibraries generated from TF–gene co-expression, TF–target
ssociations from ChIP-seq experiments, and TF–gene co-
ccurrence computed from user-submitted lists to the En-
ichr tool. RegNetwork is a manually curated database of ex-
erimentally observed or predicted transcriptional and post-
ranscriptional regulatory interactions. Pathway Commons is
 resource that compiles information about regulatory net-
orks as well as biological pathways including molecular in-

eractions, signaling pathways, and DNA binding from differ-
nt databases. Finally, DoRothEA integrates information on
ene regulatory interactions with assigned confidence levels
rom multiple sources, including literature-curated resources,
hIP-seq peaks, motif analysis, as well as inference from gene
xpression data. Only DoRothEA among the four regulon col-
ections we compared to the CollecTRI-derived regulons also
rovides signed information about the direction of transcrip-
ional regulation. For a fair comparison between the TF regu-
ons, all collections were filtered to only contain TF–gene in-
eractions from annotated dbTFs, coTFs or GTFs, as described
bove. 

We then compared the TFs and TF–gene links across all
ollections of TF regulons, and we found that the CollecTRI-
erived regulons exhibit the highest TF coverage (1186) be-
ides the ChEA3 gene set libraries ARCHS4 (1612), GTEx
1578) and Enrichr (1393). It is worth noting that these
hEA3 libraries were generated using co-expression or co-
ccurrence strategies, which are known to produce a higher
umber of false positive interactions in TF–target association
tudies ( 30 ). The CollecTRI regulons cover 48 TFs not present
n any of the other four resources. RegNetwork and Path-
ay Commons also provide information on 80 and 42 unique
Fs, respectively, otherwise 91.3% of all TFs across the ana-

yzed resources are present in at least two of them. In terms of
F–gene interactions, resources mainly collecting information

rom curated databases, such as RegNetwork, Pathway Com-
ons, DoRothEA and CollecTRI, generally showed a lower
umber of interactions. As previously mentioned, TF regulons
enerated using co-expression and co-occurrence strategies,
uch as some ChEA3 libraries, tend to have a higher number
f potential interactions that often include many indirect reg-
latory relationships. In general, there was a low overlap be-
ween the resources we compared, with an average of 63.8%
f interactions being unique to each collection of TF regu-
ons and a general low overlap of target genes for shared TFs
cross networks (mean jaccard index of CollecTRI regulons
ompared to all networks equal to 0.01) (Figure 1 D, Supple-
mentary Figure S3). Overall, the CollecTRI-derived regulons
have an extensive coverage of TFs with high-confidence in-
teractions and, in contrast to most other regulon collections,
include information about the sign of the transcriptional reg-
ulation. 

We also integrated the CollecTRI-derived regulons into the
OmniPath database ( 32 ), for distribution and integration with
other databases. CollecTRI is available by the web service
at https:// omnipathdb.org/ , enabling convenient access by the
Python, R and CytoScape ( 63 ) OmniPath clients, and connect-
ing it directly to downstream methods and integrated soft-
ware, such as DecoupleR for TF activity inference ( 33 ). 

Systematic comparison of TF activity inference 

from CollecTRI-derived regulons with other 
regulon collections 

We evaluated the quality of the CollecTRI-derived regulons by
assessing how well they are able to recapitulate the changes in
gene expression caused by the perturbation of a TF in com-
parison to other existing regulon collections. As previously de-
scribed, we reasoned that if a TF’s set of targets is reliable,
meaning their expression is regulated by the TF, the regu-
lon’s collective expression pattern should be a proxy of the
TF’s transcriptional activity ( 15 ). To test this, we downloaded
perturbation data from KnockTF ( 31 ), a comprehensive hu-
man gene expression profile database from TF knockdowns
and knockouts studies. KnockTF contains manually curated
RNA-seq and microarray datasets associated with TFs per-
turbed by different knockdown or knockout techniques across
multiple tissues and cell types. For the benchmark, we restrict
the datasets to experiments were the TF perturbation is highly
likely to have been effective, by only including data from ex-
periments where the expression of a TF was markedly de-
creased after its knock down or knock out, leading to a total
number of 388 perturbation experiments covering 234 unique
TFs (Methods: Benchmark data). 

We then followed the benchmark pipeline in the decou-
pler python package ( 33 ) to systematically compare the regu-
lons generated from CollecTRI, to the ones from DoRothEA,
Pathway Commons, RegNetwork and the ChEA3 libraries.
Additionally, we used a permuted version of the CollecTRI-
regulons as a baseline of performance. In this version the tar-
get genes and mode of regulation in CollecTRI were shuffled
and randomly assigned to a TF. As such, these TF regulons do
not represent biological information and can thus serve as a
baseline of performance. TF activities were then inferred from
the differentially expressed genes of each KnockTF experi-
ment using the regulons provided by each resource. Only TF
regulons containing at least five target genes among the genes
measured in the experiment were used for the activity infer-
ence, leading to a restricted number of TFs for each resource
(Supplementary Figure S4). All inferred TF activities across
experiments were sorted by their activity scores, and the clas-
sification of TFs based on the estimated activities compared
to the knock-out information was evaluated with the area un-
der the receiver operating characteristic curve (AUROC) and
the area under the precision-recall curve (AUPRC) (Figure 2 A)
(Methods: Benchmark procedure). We performed the compar-
ison of CollecTRI-derived regulons to those from other re-
sources and showed that the CollecTRI regulons had median
A UROC and A UPRC values of 0.73 and 0.77, respectively,
which were higher than those of all other resources (adjusted

https://omnipathdb.org/
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A

B

Figure 2. Systematic comparison of collections of transcription factor (TF) regulons. ( A ) Description of benchmark pipeline for the comparison of 
different regulon collections. First, transcription factor (TF) activities are inferred from the gene expression data of the knockTF perturbation experiments 
using the regulon information from each resource. TFs are presented as differently colored hexagons and experiments are presented as different 
shapes. Activities are then aggregated across experiments and ranked by their activity. A downsampling strategy is applied to have an equal number of 
perturbed and non-perturbed TFs randomly selected 10 0 0 times to calculate area under the R eceiv er operating characteristic (AUROC) and 
P recision–R ecall curv e metrics (AUPR C). ( B ) P redictiv e perf ormance of TF regulons identifying perturbed TFs in knockTF e xperiments. AUR OC (left) and 
AUPRC (right) for each regulon collection classifying TFs as perturbed or non-perturbed based on their activities. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p-value < 2.2 × 10 

−16 , mean t-value across tests equal to
271.8 and 281.8 for AUROC and AUPRC, respectively) (Supp.
File 1, Figure 2 B). Furthermore, all ChEA3 libraries, except
for ChEA3 ARCHS4, did not exhibit a higher performance
compared to the random baseline set by the permuted Col-
lecTRI version ( t -test: adjusted P -value > 0.05). Overall, the
results from the benchmark show that the CollecTRI-derived
regulons outperform other TF regulon collections in identify-
ing perturbed TFs based on TF activities, suggesting that, of
the resources compared, the TF–gene interaction information
compiled in CollecTRI provides the most reliable regulons for
estimating TF activities. 

Since the benchmark data mainly covers TFs that are well
studied and usually have a larger number of targets associ-
ated with them, we tested if the number of genes regulated
by a TF was related to the performance of the networks to
predict perturbed TFs. For the top three performing TF regu-
lon collections, we first tested if there was a difference in the
number of targets between TFs that were part of the bench-
mark data set and those TFs that were not. For all three re-
sources, we observed that the TFs included in the benchmark
had a higher number of targets associated with them (adjusted
P -value = 2.61 

−5 , 1.34 

−3 and 2.81 

−4 , t -value = 4.59, 3.27
and 3.84 for CollecTRI, DoRothEA ABC and RegNetwork,
respectively) (Supplementary Figure S5A). To assess the re-
lationship between the number of targets and the accuracy
estimating TF activities for each experiment included in the
benchmark, we computed Pearson correlation coefficients and
found that the average correlation across all experiments was
equal or < 0.4 for all resources, with the CollecTRI-derived
regulons showing the lowest mean correlation of 0.19 (Sup- 
plementary Figure S5B). Therefore, we concluded that the bet- 
ter performance of the CollecTRI-derived regulons is not in- 
fluenced by an increased bias towards TFs with a higher num- 
ber of targets. 

Another limitation of the current benchmark is that it dis- 
regards possible off-target effects of TF perturbation assum- 
ing that the perturbed TF has the most deregulated activity.
Thus for a limited collection of 12 TFs where we had multi- 
ple perturbation experiments we repeated the benchmark only 
classifying the activity of the perturbed TFs without includ- 
ing non-perturbed TFs (Methods: Benchmark procedure). In 

this benchmark setting, we observed a better performance of 
CollecTRI regulons for the TFs REST, TP53, FLI1, NRF2F2 

and SOX2 in comparison to the other networks with average 
median A UROC and A UPRC value of 0.85 and 0.89, respec- 
tively, (adjusted P -value < 1.8 × 10 

−10 , mean t-value across 
TFs = 73.4 and 78.8 for A UROC and A UPRC, respectively) 
and a perfect classification for REST (Supplementary Figure 
S5A). However, overall all networks performed comparably 
(Supplementary Figure S6B). Although limited to a few TFs,
CollecTRI-derived regulon’s performance was comparable to 

the other networks in this benchmark setting, with an im- 
proved performance for specific TFs. 

TF estimation in cancer tissues 

To showcase the value of using CollecTRI-derived regulons 
for predicting TF activities, we performed a TF activity in- 
ference analysis using differential expression data from three 



Nucleic Acids Research , 2023, Vol. 51, No. 20 10943 

c  

(  

n  

c  

t
 

m  

c  

l  

l  

l  

(  

d  

p  

J  

c  

o  

F  

i
 

c  

a  

i  

w  

w  

F  

d  

r  

w  

w  

i  

b  

4  

T  

e  

s  

T  

(
 

d  

f  

o  

i  

p  

S  

m  

a  

a  

i  

t  

I  

L  

(  

i  

c  

a
 

t  

o  

c  

f  

o  

t  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ancer types: Uterine Corpus Endometrial Carcinoma (UCEC)
 64 ), Lung Adenocarcinoma (LUAD) ( 65 ) and Clear Cell Re-
al Cell Carcinoma (CCRCC) ( 66 ) (Figure 3 A). These datasets
omprise gene expression data of tumors and adjacent normal
issues from multiple patients. 

Based on the differentially expressed transcriptome of tu-
or versus normal tissue, we predicted TF activities for each

ancer type and observed in total 283 significantly deregu-
ated TFs. The activity scores predicted with the univariate
inear model (ulm) in decoupler reflect the direction of regu-
ation of a TF (increased or decreased) and its level of activity
high or low) ( 33 ). Generally, our analysis reflected previously
escribed TF activity changes in cancer tissue. For instance,
roliferation- and cell survival-promoting TFs, such as MYC,
un-, FOS- and E2F family TFs, were found to have signifi-
antly increased activity across the three cancer types. On the
ther hand, cell death-related TFs, such as members of the
OXO family, were found to have significantly reduced activ-

ty (Supp. File 2). 
To highlight the added value of the additional TF–gene

overage of CollecTRI, we compared the predictions of TF
ctivities for those TFs whose regulons are included only
n CollecTRI-derived regulons and not in DoRothEA ABC,
hich was chosen as the main network for comparison as it
as the second-best performing network in our benchmark.
or all three cancer types, approximately 30–40% of the pre-
icted dysregulated TFs were uniquely part of the CollecTRI
egulons and not of DoRothEA ABC. Specifically, in UCEC,
e identified 94 total dysregulated TFs, out of which 40 TFs
ere found to be specific to the CollecTRI regulons. Similarly,

n CCRCC, we detected 153 dysregulated TFs, with 56 TFs
eing specific to CollecTRI. Lastly, in LUAD, we predicted
8 CollecTRI-specific TFs out of the total 150 dysregulated
Fs. To evaluate the validity and relevance of the ‘CollecTRI-
xclusive’ TFs, a literature review for their role in their re-
pective cancer types was conducted, especially focusing on
Fs with a high or low activity compared to normal tissue

Figure 3 B). 
For LUAD, in total five of the 20 TFs predicted to be most

ysregulated were uniquely part of CollecTRI regulons, and
our of those had a previously reported role in several aspects
f LUAD, such as its development and prognosis. HCFC1
s involved in the control of cell cycle and it has been re-
orted to be overexpressed in lung adenocarcinomas ( 67 ).
imilarly, the upregulation of HDAC5 has been found to pro-
ote lung adenocarcinoma by regulating several cell cycle

nd epithelial-mesenchymal transition genes ( 68 ), and in our
nalysis, CollecTRI regulons predicted its increased activity
n LUAD. LMO2 is a tumor suppressor which acts through
he regulation of the Wnt pathway in several tumor types.
n lung adenocarcinomas and other epithelial-derived tumors,
MO2 was found to have a reduced expression and activity
 69 ), as also predicted in our results. Lastly, MYOCD which
s an essential tumor suppressor gene in specific lung can-
ers ( 70 ) was predicted to have a significantly down regulated
ctivity. 

Among the top TFs for which we estimated altered activi-
ies in UCEC, six were part of only CollecTRI-regulons, four
f which had a previously described role in this specific can-
er type. SMAD2, has been shown to have tumor-suppressive
unctions in endometrial carcinoma cells, and the inhibition
f its activity has been associated with the constituent ac-
ivation of the PI3K / AKT pathway, increased proliferation
and decreased apoptosis ( 71 ). SMAD2 was predicted to ex-
hibit a significantly decreased activity in the UCEC dataset.
The aforementioned histone deacetylase, HDAC5, was pre-
dicted to have an increased activity with the CollecTRI regu-
lons. HDCA5 inhibition with pan-HDAC inhibitors has been
reported to lead to cell cycle arrest in UCEC ( 72 ), suggest-
ing a positive role of the TF in cancer development, which is
also reflected in the increased predicted activity. The HCFC1
transcription factor has an immunomodulatory role in can-
cer by inhibiting immune responses, and by promoting tu-
mor growth and vascularization ( 73 ). In accordance with its
cancer-promoting role, HCFC1 was found to have an in-
creased activity in UCEC. Lastly, the tumor suppressor TCF21
is a hypoxia-driven target of p53 in UCEC ( 74 ), and was also
predicted to have a reduced activity in our analysis. 

CCRCC is one of the three main subtypes of renal cell car-
cinomas (RCCs), all of which have been described for their
distinct transcriptional and epigenetic characteristics. A study
by ( 75 ) reported the main driving TF of each subtype. Among
those main driving TFs, two are found in the predictions by
CollecTRI-regulons. ETS1, which was estimated to be over-
active by our analysis, was found to be one of the two main
TF regulators in CCRCC. On the contrary, FOXI1, a main
TF regulator of another RCC, chromophobe RCC, was found
to be significantly underactive in CCRCC, as would be ex-
pected in this specific subtype. FOXI1 was among the TFs
which were exclusively found with the ColleCTRI regulons.
TFAM is a mitochondrial TF which is also included in the
regulation of pyroptosis. Together with 10 more pyroptosis-
related genes, TFAM, was identified as a risk gene for the prog-
nosis of CCRCC ( 76 ). Additionally, the YBX3 TF, which was
predicted to have a reduced activity in CCRCC, has been sug-
gested to be associated with RCC tumor grading ( 77 ). Two
additional TFs, TRERF1 and DLX1 were inferred to be more
active in tumor than normal tissue. While the role of TR-
ERF1 in CCRCC is poorly understood, TRERF1 is a known
regulator of CYP11A1, which is frequently downregulated in
CCRCC. DLX1 has no reported role in CCRCC, however,
it has a known oncogenic role in other cancer types such as
prostate ( 78 ) and ovarian ( 79 ) cancers. 

To assess the relationship between the expression and pre-
dicted activity of a TF, we calculated the correlation between
the two. As shown in Figure 3 C, TF expression and activity
displayed only a weak positive correlation. This indicates that
alterations in TF expression may not necessarily serve as a re-
liable indicator of changes in its activity. Furthermore, when
examining the number of TFs exhibiting differential expres-
sion and / or differential activity, it was observed that in the
case of CCRCC and LUAD, approximately double the num-
ber of dysregulated TFs were identified based on their activ-
ity compared to their expression (Figure 3 D). Conversely, in
UCEC, there was a contrary trend where more TFs exhibited
changes in expression rather than predicted activity. 

Overall, this comparative analysis highlights the usefulness
of CollecTRI-derived regulons in inferring TF activities. The
presence of cancer-type-relevant TFs in the results showcases
how the augmented TF coverage in CollecTRI-derived regu-
lons appears to balance the identification of meaningful TFs
without overwhelming the output with potentially extrane-
ous information. Additionally, our analysis highlights that
TF activity estimation can provide insights on TF dysregula-
tion which cannot be directly drawn only by gene expression
changes. 



10944 Nucleic Acids Research , 2023, Vol. 51, No. 20 

A B

C D

Figure 3. Workflow and results of the case study of transcription factor activity inference using CollecTRI and decoupleR. ( A ) Schematic representation 
of the w orkflo w f or the inference of transcription f actor activities from transcriptomics data of Uterine Corpus Endometrial Carcinoma (UCEC), Lung 
Adenocarcinoma (LUAD) and Clear Cell Renal Cell Carcinoma (CCRCC). ( B ) Transcription factors (TFs) with differential activities as predicted by 
decoupleR. Each TF is shown as an individual dot and colored based on the inferred activity score. The size of the dot is inversely related to the P -value 
(the bigger the size, the more significant the observation). ( C ) Correlation between predicted activity of a TF (y-axis) and the logarithmic fold change 
(logFC) compared to normal tissue (x-axis). ( D ) Ov ervie w of the number of TFs identified from expression (beige), activity (green) or both (lightblue). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Transcription factor activity estimation in single-cell
RNA-seq 

We employed the CollecTRI-derived regulons to estimate
TF activities in a single-cell RNA-seq dataset of peripheral
blood mononuclear cells (PBMCs) to investigate the ability
of TF activities in elucidating cell type specific regulatory
mechanisms, in particular when compared to TF expression.
The single-cell dataset was processed according to the stan-
dard preprocessing workflow as described in Seurat ( 50 ) and
eight different cell types including B cells, CD14+monocytes,
FCGR3A+monocytes, naïve CD4+T cells, memory CD4+T
cells, CD8+T cells, natural killer (NK) cells, dendritic cells and
platelets were identified based on the expression of canonical
marker genes (Methods: Single-cell RNA-seq processing) (Fig-
ure 4 A). 

For each cell in the PBMC dataset, we predicted TF activi-
ties based on the normalized gene counts using the CollecTRI-
derived regulons and identified marker TFs for each cell type
once based on their expression and once based on their in-
ferred activity profiles (Supp. Files 3 & 4). From the 506 cell
type marker TFs, 93.5% were exclusively identified based on
their inferred activities, and 3.9% based solely on TF expres-
sion. 2.6% of marker TFs were identified both at the activity 
and expression level (Figure 4 B). Our results suggest that TF 

activity estimation could elucidate cell type specific regulatory 
mechanisms that would be missed by looking only at the ex- 
pression level of TFs. For example, PAX5 is a well-known cen- 
tral regulator in B cell development, controlling their identity 
and function throughout the process of B lymphopoiesis ( 80 ) 
and EOMES plays a crucial role in NK cell maturation and 

functionality and its expression is observed across all stages 
of NK cell development ( 81 ,82 ). However, the expression of 
both PAX5 and EOMES is only captured in around 6.7% of B 

and 10.3% of NK cells in the analyzed PBMC dataset, respec- 
tively. In contrast to the expression, we observed a consistent 
high activity of PAX5 and EOMES in their respective cell type 
across all cells (adjusted P -value < 2.2 × 10 

−16 , t-value equal 
to 20.7 and 20.2 for PAX5 and EOMES, respectively) (Figure 
4 C and D). 

To evaluate if the activities of transcription factors are bet- 
ter conserved than their expression within cell types, we com- 
pared the potential of the expression and activity of TFs to 

group cells from the same cell type together, as previously 
done by Holland et al. ( 83 ). We calculated a distance matrix 
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A B

C D E

Figure 4. Application of TF activity estimation using CollecTRI on a representative scRNA-seq dataset of peripheral blood mononuclear cells (PBMCs). 
( A ) UMAP of scRNA-seq data of PBMCs ( n = 2638), color corresponds to annotated cell types. ( B ) Ov ervie w of the number of marker TFs identified 
from expression (beige), activity (green) or both (lightblue). ( C ) UMAP of scRNA-seq data of PBMCs showing the activity (top) or expression (bottom) 
le v els of the TFs PAX5 (left) or EOMES (right). TF activities were estimated for each cell using the CollecTRI-derived regulons and the univariate linear 
model method in decoupler. ( D ) TF activity and expression for PAX5 (top) and EOMES (bottom). The expression and activity of PAX5 and EOMES were 
compared between the corresponding cell type (B cells for PAX5 and natural killer (NK) cells for EOMES) and all other cell types. For the expression of 
both TFs, statistical testing was not applied as their expression was captured in less than 15% of cells in the corresponding cell type. ( E ) Comparison of 
cluster correspondence to annotated cell types from TF activity and TF expression through the average silhouette width of all cells. 
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between cells using the expression and activity of TFs indepen-
dently and compared the average silhouette width of all cells
using as reference the cell type annotation provided by the at-
las. Thereby, a higher silhouette width indicates a better corre-
spondence to the annotated cell types. We observed that using
TF activities resulted in higher average silhouette widths than
using TF expression ( P -value < 2.2 × 10 

−16 , t -value equal to
23.8) (Figure 4 E). With that, we concluded that TF activities
inferred using the CollecTRI-derived regulons is more infor-
mative than TF expression alone and can thus provide new
and comprehensive insights into the regulatory mechanism of
distinct cell types. 

Discussion 

Transcription factor (TF) regulons represent regulatory cir-
cuits that depict the coordinated regulation of downstream
target genes by TFs. They can be valuable for understanding
various biological processes, including development, cell dif-
ferentiation, tissue homeostasis, and disease progression. To
derive functional insights from these regulons, TF activities
can be inferred from the expression levels of target genes, as
shown in various studies ( 2 , 7 , 11 , 12 ). However, to interpret
these findings accurately, it is important to critically evaluate
the reliability and coverage of TF regulons. 

In this paper, we present a well-defined, transparent, and
reproducible workflow to generate regulons from CollecTRI,
a meta-resource that compiles TF–gene information from 12
different resources including information inferred from text
mining, manual curations and a number of publicly avail-
able databases ( 26 ). With that, the CollecTRI-derived regu-
lons provide the most extensive coverage of TF–gene interac-
tions compared to other collections of regulons that extract
TF–gene interaction knowledge solely from literature. Since
most publicly available meta-resources of TF–gene interac-
tions contain limited or no information about the mode of
regulation of a TF to its target genes, we propose an evidence-
driven approach to infer the sign of regulation for each TF–
gene link in the CollecTRI regulons, which can also be applied
to other comprehensive knowledge bases. We evaluated the
approach and confirmed that assigning the sign of regulation
to each TF–gene interaction individually based on literature-
annotated information leads to more accurate TF activity in-
ference compared to assuming a general activation or repres-
sion mode of TFs based on prior knowledge. The limited per-
formance of uniformly assigning a sign to each TF can be ex-
plained by TFs often having both activating and repressing
effects on gene transcription. The heterogeneity of the regula-
tory activity of TFs is expected given that gene-specific regula-
tory promoter and distal elements influence the formation of
large protein complexes comprising both DNA-binding TFs
(dbTFs) and cofactors (coTFs). Ultimately the composition
and state of these protein complexes determine the functional
output of transcription regulation ( 4 ). Next, through system-
atic comparison with other known TF regulon collections, we
showed that CollecTRI-derived regulons perform best in iden-
tifying perturbed TFs based on gene expression, suggesting a
high quality in CollecTRI’s TF–gene interactions. Finally, we
showcase the value of the CollecTRI regulons by successfully
identifying known activity changes in TFs for three differ-
ent cancer types and identifying cell type marker TFs based
on their activities in a single-cell dataset of peripheral blood
mononuclear cells (PBMCs). 
Despite the good performance of the CollecTRI regulons in 

the systematic comparison, it is important to bear in mind that 
the current benchmark is limited to a specific set of TFs. Fur- 
ther perturbation studies would therefore be useful to extend 

the current benchmark and allow for a more comprehensive 
evaluation of CollecTRI and other resources. 

While the coverage in the CollecTRI regulons is substan- 
tially larger than those of other resources, it could still be 
expanded by including additional TF–gene interactions from 

other resources, given the low overlap across them. How- 
ever, identifying high-quality TF–gene interactions within a 
resource and distinguishing them from indirect regulatory re- 
lationships is challenging. Additionally, since CollecTRI is pri- 
marily assembled from literature-curated resources, a bias for 
well-studied TFs may be present, and distinguishing whether 
a TF has a higher or lower number of target genes as a result 
of research bias or biological reasons remains challenging. 

Another limitation is that the CollecTRI regulons currently 
only take the sign of regulation into account, omitting the 
quantitative nature of gene regulation ( 4 ). We therefore es- 
timated TF binding weights using motif enrichment analysis,
but observed no benefit in the inference of TF activities (Sup- 
plementary Note 1, Supplementary Figure S7). Since Collec- 
TRI compiles exclusively TF–gene link interactions omitting 
cooperative events between TFs and other proteins, distal in- 
teractions and the chromatin accessibility landscape among 
other processes ( 4 ), it only captures one layer of the cis- 
regulatory code. This might explain why using TF binding 
weights did not increase the overall predictability of perturbed 

TFs. 
Finally, the CollecTRI regulons were constructed as gener- 

alistic interactions and, as such, do not account for cell type- 
specific differences nor specific TF-TF cooperativity events 
( 84 ). Nonetheless, CollecTRI regulons could be used as a 
building block for context-specific interactions using com- 
plementary data types, such as single-cell transcriptomic or 
chromatin accessibility data. Additionally, the inclusion of TF 

binding and proteomics data could yield further insights into 

TF-TF regulatory events ( 85 ). 
In summary, we constructed a collection of TF regulons 

with a high coverage of TFs and high confidence TF–gene in- 
teractions, which is freely available to the community via the 
OmniPath ( 32 ), DoRothEA ( 15 ) and decoupler ( 33 ) packages.
We conducted a systematic comparison with other known re- 
sources, where the CollecTRI regulons showed the best perfor- 
mance in recapitulating changes in gene expression caused by 
the perturbation of a TF. Additionally, we demonstrated how 

the regulons can be applied in different biological contexts 
and can help uncover the role of transcriptional regulation. 

Data availability 

The code for the curation of regulatory interactions of Collec- 
TRI and the construction of the CollecTRI-derived regulons 
is available here: https:// github.com/ Rbbt-Workflows/ ExTRI ,
https:// github.com/ saezlab/ CollecTRI and on FigShare: 
https:// doi.org/ 10.6084/ m9.figshare . 22362604.v2. Files 
necessary to reproduce the presented results can be down- 
loaded from https:// zenodo.org/ record/ 8192729 , including 
the stationary CollecTRI meta-resource ( https://zenodo.org/ 
record/ 8192729/ files/ CollecTRI _ source.tsv?download=1 ) 
and CollecTRI-derived regulons ( https://zenodo.org/ 
record/ 8192729/ files/ CollecTRI _ regulons.csv?download=1 ). 

https://github.com/Rbbt-Workflows/ExTRI
https://github.com/saezlab/CollecTRI
https://doi.org/10.6084/m9.figshare
https://zenodo.org/record/8192729
https://zenodo.org/record/8192729/files/CollecTRI_source.tsv?download=1
https://zenodo.org/record/8192729/files/CollecTRI_regulons.csv?download=1
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dditionally, the CollecTRI-derived regulons are avail-
ble in the DoRothEA ( https:// saezlab.github.io/ dorothea/ )
 15 ) and decoupler ( https:// github.com/ saezlab/ decoupleR )
 33 ) packages through OmniPath ( https:// omnipathdb.org/ )
 32 ), which are also available in Bioconductor ( https:
/ bioconductor.org/ packages/ release/ bioc/ html/ OmnipathR. 
tml , https:// www.bioconductor.org/ packages/ release/ bioc/
tml/ decoupleR.html , https:// bioconductor.org/ packages/
elease/ data/ experiment/ html/ dorothea.html ). Please refer
o the vignettes on how to access the CollecTRI regu-
ons which are available in R ( https://saezlab.github.io/
orothea/ articles/ dorothea.html#collectri , https:// saezlab.
ithub.io/ decoupleR/ articles/ tf _ bk.html#collectri-network , 
ttps:// r.omnipathdb.org/ reference/ collectri.html ) and
n python ( https:// decoupler-py.readthedocs.io/ en/ latest/
otebooks/dorothea.html#CollecTRI-network ). 

upplementary data 

upplementary Data are available at NAR Online. 
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