
In silico modeling-based new alternative methods to predict 
drug and herb-induced liver injury: A review

Hyun Kil Shin1, Ruili Huang2,*, Minjun Chen3,*

1Department of Predictive Toxicology, Korea Institute of Toxicology (KIT), 34114 Daejeon, 
Republic of Korea

2Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences 
(NCATS), National Institutes of Health (NIH), Rockville, MD 20850, USA

3Division of Bioinformatics and Biostatistics, National Center for Toxicological Research (NCTR), 
U.S. Food and Drug Administration, 3900 NCTR Rd., Jefferson, AR 72079, USA

Abstract

New approach methods (NAMs) have been developed to predict a wide range of toxicities through 

innovative technologies. Liver injury is one of the most extensively studied endpoints due to its 

severity and frequency, occurring among populations that consume drugs or dietary supplements. 

In this review, we focus on recent developments of in silico modeling for liver injury prediction 

using deep learning and in vitro data based on adverse outcome pathways (AOPs). Despite these 

models being mainly developed using datasets generated from drug-like molecules, they were 

also applied to the prediction of hepatotoxicity caused by herbal products. As deep learning has 

achieved great success in many different fields, advanced machine learning algorithms have been 

actively applied to improve the accuracy of in silico models. Additionally, the development of liver 

AOPs, combined with big data in toxicology, has been valuable in developing in silico models 

with enhanced predictive performance and interpretability. Specifically, one approach involves 

developing structure-based models for predicting molecular initiating events of liver AOPs, while 

others use in vitro data with structure information as model inputs for making predictions. Even 

though liver injury remains a difficult endpoint to predict, advancements in machine learning 

algorithms and the expansion of in vitro databases with relevant biological knowledge have made a 

huge impact on improving in silico modeling for drug-induced liver injury prediction.
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1. Introduction

Due to the threats from severe disease outbreaks posed to human health (Tong et al., 

2022), there is an urgent need for cost-effective and time-efficient toxicity testing methods 

to protect public health by accelerating the development of medicine (Baker et al., 2022). 

Traditional toxicity testing has relied on animal models; however, this approach has its 

inherent drawbacks, including substantial time and costs (Van Norman, 2019), as well as 

limited accuracy when extrapolating results to humans (Parish et al., 2020).

New approach methods (NAMs) are animal-free methods based on innovative technologies 

used to assess hazardous effects of chemicals. Cost-effectiveness and time efficiency are 

critical factors for NAMs, but their ability to accurately predict adverse outcomes in humans 

is also essential. NAMs have been widely used for cosmetics (Cronin et al., 2022), where 

animal testing for cosmetics and their active ingredients is banned in many countries 

(Sreedhar et al., 2020). The use of NAMs has also been considered for the safety evaluation 

of pesticides and industrial chemicals (Stucki et al., 2022; van der Zalm et al., 2022). For 

the evaluation of pharmaceutical toxicity, in vitro tests for predicting organ toxicity were 

developed (Brecklinghaus, 2020), and NAMs for biokinetics prediction can be applied (Punt 

et al., 2020).

Drug-induced liver injury (DILI) has caused significant loss of time and resources in drug 

development projects, since DILI liability is usually identified in the late stages of clinical 

trials (Kaplowitz, 2005). To predict DILI in the early phases of drug development, in vitro 
tests and in silico models have been developed. However, the lack of standardization in 

in vitro test often leads to contradictory results (Atienzar and Nicolas, 2018) and in silico 
models have yet to achieve sufficient sensitivity identifying DILI risk (Matthews et al., 

2009). Despite the substantial progress made in this area, accurately predicting DILI remains 

a challenging endpoint.

Liver injury is also commonly associated with the use of herbal products (Lin et al., 2019). 

In line with the growing consumption of herbal products (Amadi and Orisakwe, 2018), 

reports of herb-induced liver injury (HILI) have significantly increased in past decades 

(Nunes et al., 2022). Herbal supplements are generally extracted from herbs, resulting in 

cocktails of multiple compounds with unknown toxic effects. The interactions between 

compounds in these mixtures could result in synergetic effects leading to HILI, highlighting 

the need of effective methods predicting this type of injury.

This review focuses on in silico models for the prediction of hepatotoxicity associated with 

the use of drugs and herbal dietary supplements. The majority of in silico models belong 

to (quantitative) structure-activity relationship, or (Q)SAR, models, which predict target 

endpoints based solely on molecular structures. To improve their prediction accuracy, in 
vitro data have been incorporated into these models as well. Recent developments in in 
vitro assay databases and the adverse outcome pathway (AOP) model have contributed 

significantly to the improvement of hepatotoxicity prediction by providing additional 

information on compounds’ mechanisms of action. Here, this review primarily concentrates 
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on recent and notable achievements in DILI or HILI prediction to minimize redundancy with 

other reviews (Vall et al., 2021).

2. Hepatotoxicity phenotypes

A wide range of (Q)SAR models have been developed to predict hepatotoxicity phenotypes, 

which are typically categorized based on the endpoints being predicted. Most (Q)SAR 

studies begin with data curation; therefore, dataset curation and the model are introduced 

together in this section. A list of free or commercial software for predicting hepatotoxicity 

and relevant endpoints is shown in Table 1.

2.1. DILI annotation

Three different data sources were used to annotate DILI risk in humans: U.S. Food and 

Drug Administration (FDA) labeling, clinical case reports, and literature. There is a wide 

range of datasets curated for DILI prediction; however, DILI annotations from different 

datasets were sometimes contradictory (Thakkar et al., 2018). Since there is no ground truth 

for DILI annotations on drugs, in silico model development studies sometimes go through 

data curation and define their own DILI annotations. Lack of a standardized DILI dataset 

is the major obstacle in validating a model since discrepancies among DILI annotations 

impose inherent prediction errors. To harmonize different DILI datasets, Thakkar et al. 

developed a DILI severity and toxicity (DILIst) dataset (Thakkar et al., 2020) by augmenting 

DILIrank (Chen et al., 2016b) with a large volume of human DILI datasets such as LiverTox 

(Hoofnagle, 2013), Suzuki et al. (Suzuki et al., 2010), Greene et al. (Greene et al., 2010), 

and Zhu et al. (Zhu and Kruhlak, 2014).

2.2. Curation of post-marketing case reports

DILI was often reported during the post-market phase, and the frequency of post-marketing 

reports was considered as evidence for assigning DILI labels to drugs. Zhu et al. (Zhu and 

Kruhlak, 2014) curated the FDA’s Adverse Event Reporting System (FAERS) database to 

annotate drugs on four endpoints: liver damage, cholestasis, liver enzyme abnormalities, 

and bile duct disorders, based on the standardized terms from MeDRA (Medical Dictionary 

for Regulatory Activities) hierarchy. Shin et al. (Shin et al., 2020) used the frequencies of 

post-marketing reports on four indications (cholestasis, cirrhosis, hepatitis, and steatosis) 

collected from the PharmaPendium database to assign positive annotations to drugs, while 

the negative data was obtained from DILIrank (Chen et al., 2016b). However, no databases 

provided drug metabolite structures with their DILI annotations. Therefore, annotations 

from the parent drugs were assigned to the drug metabolites in this study. ToxSTAR is an 

available software product for classification of the liver injury indications for drugs and drug 

metabolites (Shin et al., 2022a).

2.3. DILI biomarker prediction

Since liver injury is diagnosed by serum biomarkers (Robles-Díaz et al., 2016), (Q)SAR 

models were developed to predict abnormal increases in these biomarkers. Rodgers et 

al. developed models for alkaline phosphatase (ALP), alanine aminotransferase (ALT), 

aspartate aminotransferase (AST), lactate dehydrogenase (LDH), and gamma-glutamyl 
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transpeptidase (GGT) based on the Human Liver Adverse Effects Database (Rodgers et 

al., 2010).

An available software for the DILI biomarker prediction is ADMET Predictor. Liu used 

ADMET Predictor to predict HILI using molecular structures of natural products-derived 

compounds (NPCs) (Liu, 2018). In this study, only NPCs predicted to be absorbed in the 

gastrointestinal tract were selected, and possible metabolites from the selected NPCs were 

predicted. The structures of both parent compounds and their metabolites were used to 

predict the abnormal elevation of the biomarkers such as ALT, AST, and LDH.

3. Advances of in silico modeling for predicting liver toxicity

3.1. In silico modeling for predicting DILI in humans

Numerous (Q)SAR models for DILI prediction were developed for binary classification of 

DILI-positive (hepatotoxicant) or negative (no evidence of hepatotoxicity) using machine 

learning algorithms (Vall et al., 2021). Some DILI prediction software is publicly available, 

such as ProTox-II (Banerjee et al., 2018), VEGA, and Derek Nexus (Table 1). ProTox-II 

uses a random forest model, whereas VEGA and Derek Nexus use rule-based models. 

Recently, Li et al. developed DeepDILI for DILI prediction. Usually, DILI prediction 

models take molecular structure as an input; however, in their study the input of the deep 

neural network were the outputs from a set of (Q)SAR models (Li et al., 2021). Graph 

neural network (GNN) can be used for node classification, edge prediction, and graph 

classification. Molecular structure can be represented as a graph with atoms as nodes and 

covalent bonds as edges, and DILI prediction can be converted into a graph classification 

problem, where GNN predicts DILI annotation from a molecular graph.

Xu et al. used undirected graph recursive neural networks (UGRNN) for DILI prediction 

in which UGRNN gathers atomic information sequentially to each root atom for encoding, 

and then feeds encoded vectors to the output layer for prediction. In this study, multiple 

DILI annotation datasets were integrated to expand the sample size and improve model 

training (Xu et al., 2015). Similarly, Ma et al. used a multi-view graph recursive neural 

networks (MV-GNN) model to encode atom and bond-oriented input representation for 

predicting DILI risk. Since a large volume of data is required for MV-GNN to learn 

appropriate molecular representation, four toxicity datasets (hERG, phospholipidosis, Ames 

test, and mitochondrial membrane potential) were combined with DILI annotation data 

and multilabel training was applied. (Ma et al., 2021). These studies demonstrate the 

effectiveness of deep learning methods, such as UGRNN and MV-GNN, for improving 

DILI prediction.

Some studies applied (Q)SAR models to predict hepatotoxicity of NPCs (Kim and Nam, 

2017; Li et al., 2018). In the study by Li et al., a support vector machine model with a 

MACCS (Molecular ACCess Systems keys) fingerprint achieved the highest accuracy, and 

the model was used to identify DILI-positive components in the herbal products. Kim and 

Nam proposed a novel fingerprint by assigning weights on each bit of PubChem fingerprint 

based on Bayesian probability calculated from DILI annotations. Because both studies 

applied (Q)SAR models derived from synthetic drug compounds for predicting HILI, there 
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is a potential gap in model generalization considering differences in chemical space between 

NPCs and synthetic drug compounds (Stratton et al., 2015). Applicability domain analysis is 

suggested to reduce the model’s uncertainty and improve reliability of the prediction values 

(Weaver and Gleeson, 2008; Sutton et al., 2020).

3.2. in silico modeling for predicting liver toxicity in animals

Currently, in vivo animal studies are mandatory submissions to a regulatory agency 

in support of first-in-human studies. Considering animal studies’ high cost and time 

commitment, animal-free NAMs are proposed, including in silico models developed from 

accumulated animal studies to predict in vivo outcomes. Mulliner et al. curated data 

based on the hierarchical endpoint tree, in which hepatotoxicity was branched into clinical 

chemistry findings or histological reports for defining hepatobiliary or hepatocellular injury. 

Binary classification was defined for humans based on clinical and post-marketing data, and 

preclinical data with doses of less than 500 mg/kg, respectively. The investigators identified 

the best performance model for the internal use of early preclinical safety in-silico workflow 

within their institutes. (Mulliner et al., 2016).

On the contrary, He et al. labeled drugs for hepatotoxicity by integrating human data 

(clinical data), animal experiment, and in vitro assay results. Thus, the model prediction 

is positive if evidence of hepatic injury is found in clinical studies, animal experiments, 

or cell-based assays (He et al., 2019). Cotterill et al. compiled hepatic steatosis datasets 

based on in vivo histology data and human clinical data retrieved from the literature, and 

a binary classification model was developed (Cotterill et al., 2020). Additionally, VEGA 

1.2.0 provides a hepatotoxicity prediction model based on animal data (Table 1), which 

can predict NOAEL (No Observed Adverse Effect Level) and LOAEL (Lowest Observed 

Adverse Effect Level) in the liver.

4. In silico models for predicting hepatotoxic key events of AOPs

AOPs define series of biological events that lead to adverse outcomes, including a molecular 

initiating event (MIE), which is the first biological target that interacts with the molecule, 

and key events (KEs). AOPs could improve understanding of the systematic biological 

processes initiated by toxicants; thus, information defined and curated in AOPs provides a 

good starting point for developing in silico or in vitro NAMs (Ankley et al., 2010). The 

development of high-throughput screening technologies and the integration of AOPs and in 
vitro data has paved a way for developing mechanistically driven in silico models for DILI 

prediction.

Liver AOPs provide a wide range of MIEs and KEs relevant for DILI prediction. Multiple 

liver AOPs have been developed and are available in the AOP wiki (Table 2). The MIEs 

in the AOPs can be target proteins for DILI or HILI prediction. Gadaleta et al. developed 

an in silico model for hepatic steatosis prediction by compiling ToxCast in vitro assay 

data on MIEs of hepatic steatosis AOPs (Gadaleta et al., 2018). In this study, (Q)SAR 

models for predicting MIEs, such as PXR, LXR, AhR, NRF2, PPARα, and PPARγ, were 

developed and demonstrated the capability for virtually screening chemicals that can cause 

hepatic steatosis. Based on the key characteristics of hepatotoxicants (Rusyn et al., 2021), 
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we selectively discuss certain target MIEs/KEs relevant to DILI, including bile salt export 

pump inhibition, oxidative stress, mitochondria dysfunction, and drug bioactivations, as well 

as the (Q)SAR models used for predicting these targets.

4.1. Bile salt export pump (BSEP) inhibition

Cholestasis is caused by disruption in bile flow, and the BSEP is one of the hepatic 

transporters responsible for excreting bile acids from hepatocytes. BSEP inhibition by drugs 

would lead to accumulation of drugs in hepatocytes and cause cholestasis as a consequence. 

(Chen et al., 2016c) Many drugs causing DILI in humans have shown the inhibitory activity 

to the BSEP. In AOP 27 (cholestatic liver injury induced by inhibition of the BSEP), BSEP 

inhibition is defined as a MIE since accumulated evidence suggests that BSEP inhibition is 

associated with the development of DILI. Currently, several (Q)SAR models were developed 

to predict BSEP inhibitors and non-inhibitors. Notably, different criteria were used to label 

compounds as BSEP inhibitors or non-inhibitors (Kenna et al., 2018); therefore, model 

predictions need to be interpreted carefully based on their specific definitions for BSEP 

inhibitors. A BSEP inhibition model is available in admetSAR (Table 1) (Yang et al., 2019).

Accurate prediction of BSEP inhibition using molecular structure alone is a challenging 

task due to the complicated mechanisms involved. BSEP inhibition can occur by interfering 

with ATP binding (competitive inhibitors) or BSEP kinetics (non-competitive inhibitors). To 

improve prediction performance, (Q)SAR models were used together with pharmacophore 

and molecular modeling techniques. Welch et al. used pharmacophore modeling to extract 

significant substructures present in the inhibitors. The (Q)SAR model was developed to 

predict inhibition of the BSEP and multidrug resistance protein 4 (MRP 4) as DILI was 

linked to the inhibition of both transporters (Welch et al., 2015). Jain et al. used molecular 

docking and molecular dynamics for analyzing BSEP protein structures generated through 

the homology modeling (Jain et al., 2017). Recently, crystal structures of BSEP complexed 

with inhibitors at the binding pocket have been reported (Wang et al., 2022), which provided 

a valuable resource for molecular modeling.

4.2 Oxidative stress and glutathione depletion

Oxidative stress can be induced by reactive oxygen species (ROS) generated in the 

hepatocytes. It is one of the critical events for the development of liver injury due to 

formation of reactive intermediates through hepatic metabolism (Villanueva-Paz et al., 

2021). In AOP 220 (CYP2E1 activation leading to liver cancer), cytochrome P450 2E1 

(CYP2E1) is identified as an MIE that subsequently induces oxidative stress. CYP2E1 

bioactivates numerous molecules and generates reactive metabolites that can cause oxidative 

stress.

A (Q)SAR model was developed to predict activation of the antioxidant responsive element 

(ARE) pathway, which help to alleviate oxidative stress (Zhang et al., 2020). In another 

study by Jia et al., structural alerts and ARE assay data were incorporated to predict 

hepatotoxicity (Jia et al., 2022). The nrf2 ARE assay was selected among 24 in vitro assays 

for its high correlation to hepatotoxicity. A (Q)SAR model was developed to predict ARE 

assay outcome to fill data gaps caused by the lack of testing results for certain compounds. 

Shin et al. Page 6

Food Chem Toxicol. Author manuscript; available in PMC 2024 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Twenty-seven structural alerts for oxidative stress were identified and combined with ARE 

assays for classifying compounds into three categories: toxic, non-toxic, or inconclusive. 

The combination model predicted compounds as toxic or non-toxic when structural alerts 

and ARE assays were both positives or negatives, and inconclusive if they did not agree 

with each other. This mechanistically driven model demonstrated a high correlation to 

hepatotoxicity (positive predictive value=0.64) and confirmed the importance of oxidative 

stress as a critical toxicity event leading to hepatotoxicity. ProTox-II provides a nrf2/ARE 

classification model (Table 1).

4.3 Mitochondrial dysfunction

As adenosine triphosphates (ATPs) are produced in mitochondria, mitochondrial damage 

can lead to ATP depletion, and eventually to cell death. Mitochondrial impairment has 

been identified as a significant key event in the development of liver injury. In AOP 273 

(mitochondrial complex inhibition leading to liver injury), an inhibitor binding to one of the 

mitochondrial complexes from I to V is defined as an MIE for liver injury. DILI drugs and 

certain herbal products were frequently reported to cause mitochondrial toxicity, including 

free radicals generation, membrane potential loss, and mitochondrial permeability transition 

(Ramachandran et al., 2018).

Several (Q)SAR models were developed to predict mitochondrial toxicity based on 

databases including Tox21, ChEMBL, PubChem, and DrugBank (Hemmerich et al., 2020; 

Bringezu et al., 2021; Zhao et al., 2021). Rana et al. used mitochondrial toxicity assays 

and physicochemical properties of drugs to predict hepatotoxicity, cardiotoxicity, and 

nephrotoxicity. Compared to other organ toxicities, more hepatotoxic compounds tested 

positive in the mitochondrial assay. Specifically, an isolated rat liver mitochondrial inhibition 

assay showed a higher correlation for hepatotoxicity prediction compared to that of other 

assays (Rana et al., 2019). DILIsym is a physiologically-based pharmacokinetic (PBPK) 

model to predict biomarkers of DILI. It runs simulations through the molecular properties, 

physiological parameters, and mechanistically driven in vitro assay data. DILIsym is 

particularly useful for examining the importance of mitochondrial toxicity involved in 

development of liver injury, since some of parameters were obtained from MITOsym, an 

in silico model for predicting mitochondrial dysfunction (Lin et al., 2022). A mitochondrial 

toxicity classification model is available in admetSAR, and a mitochondrial membrane 

potential classification model in ProTox-II. (Table 1)

4.4 Drug metabolism and bioactivation

Drug metabolism increases hydrophilicity of xenobiotics to create metabolites that are more 

easily excreted from the body. However, reactive metabolites (RMs), which are electrophilic 

species that can covalently bind to proteins and DNA and leads to toxicity, can also be 

formed via drug metabolism. RMs were well-known to be involved in development of liver 

injury (Weaver et al., 2020). Chen et al. developed a logistic regression model using daily 

dose/Cmax, logP, and RM formation for DILI prediction. RM formation was identified 

as the most significant factor in the model prediction because the highest coefficient was 

assigned to RM formation in the model (Chen et al., 2016a). A wide range of models are 

available for drug metabolism prediction, such as cytochrome P450 substrate classification, 
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site of metabolism prediction, and drug metabolite structure prediction (Table 3). However, 

these models are still struggling with insufficient accuracy in drug metabolism prediction. 

For example, drug metabolites were usually generated through interactions with more than 

one drug metabolizing enzyme (DME), while the current developed models predict drug 

metabolism from a single DME; thus, significant gaps exist between the prediction and 

practice in drug metabolism.

4.5 Identification of key events based on toxicogenomic database

Understanding the mechanism of DILI is as important as accurately predicting DILI. 

Toxicogenomic data provide a landscape of biological perturbations caused by toxicants. 

These data have been used to understand DILI mechanisms and identify possible key events 

(Shin et al., 2022b), as well as to design human liver cell models (Lauschke, 2021). Table 4 

summarizes the toxicogenomics databases that have been used to enrich our understanding 

of the mechanisms underlying the adverse outcomes.

Since the cost of toxicogenomic database generation is high, Chen et al. proposed ToxGAN, 

a generative adversarial network (GAN) using artificial intelligence, as an alternative 

method to generate toxicogenomic data for chemicals (Chen et al., 2022). The ToxGAN 

model uses molecular structure, dose, and exposure time as inputs and generates predicted 

toxicogenomic profiles through a deep neural network. While the data gap remains, deep 

learning and biological big data present new opportunities for improving the accuracy of in 
silico models for DILI prediction.

5. Integration of in silico and in vitro data

Since both in silico and in vitro models alone are insufficiently accurate for predicting DILI 

in humans, there has been increasing interest in the integration of these two data types. Chen 

et al. suggested a two-tiered approach for DILI prediction based on rule of two (RO2) and 

high content screening (HCS) assays. The RO2 classifies a drug as positive if a daily dose 

is equal to or more than 100 mg/day and its logP is greater or equal to 3. HCS would be 

only applied to those classified as negative by RO2, which significantly reduced the number 

of molecules to be screened (Chen et al., 2014). This study showed that the integration of in 
vitro data can improve hepatotoxicity prediction compared to use of the RO2 alone. Another 

benefit of incorporating in vitro assay data is its interpretability, enabling the mechanism 

of toxicity to be understood, while (Q)SAR models were usually “black-box” due to use of 

chemical descriptors together with complicated machine learning/deep learning algorithms. 

As in vitro assay data in the public domain has been increasingly accumulated through 

projects such as Tox21 and ToxCast, in silico models can be developed together with in vitro 
data to improve toxicity prediction.

Xu et al. developed multiple models for predicting organ toxicities by using chemical 

structure and in vitro assay data (Xu et al., 2020). The liver toxicity prediction model 

achieved the highest performance using structural information and in vitro assay data 

together. Interestingly, more in vitro data were used than structural data to achieve good 

accuracy, whereas other organ toxicity models used less in vitro data. Khadka et al. 

developed a DILI prediction model using drug properties and in vitro data, and relevant 
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KEs from liver AOPs were used to guide the selection of in vitro assays from Tox21 and 

L1000 datasets (Khadka et al., 2020). Williams et al. developed a Bayesian model using a 

mechanistically relevant hepatic safety in vitro assay together with logP and Cmax values 

(Williams et al., 2020). In this study, DILI occurrence at different doses was tested by 

modifying the exposure of the chemical through Cmax, which is one of the model variables.

The integration of in silico and in vitro data has not always been reported to improve 

prediction accuracy in DILI models. Ye et al. showed that DILI prediction models based 

on in vitro and structural information achieved similar prediction accuracies with the model 

based on structural information alone. One possible reason for this could be insufficient 

coverage of the biological response space by available in vitro data (Ye et al., 2022). In some 

senses, biological information is critical for achieving good prediction of DILI. Kohonen 

et al. developed a DILI prediction model from toxicogenomic and cytotoxicity data, 

assuming that transcriptional response patterns could be shared among similar hepatotoxic 

drugs. (Kohonen et al., 2017). The developed genomic model was reported to consistently 

outperform predictions generated from (Q)SAR analysis.

6. Challenges

In silico modeling for liver injury prediction has made significant progress in the past 

decade; however, further improvements are still needed to accurately predict liver liabilities 

caused by drugs and dietary supplements. Existing DILI prediction models often suffered 

from low sensitivity, typically 55–65%. Additionally, the general applicability of the models 

to other datasets is limited since the models were trained and tested on specific datasets. 

Recently, advancements in machine learning algorithms and expansion of in vitro databases 

have made significant impacts on in silico modeling for DILI prediction. However, due 

to the complicated mechanisms underlying the development of DILI, even the models of 

integrating in silico and in vitro data are still limited by insufficient prediction performance.

DILI is often reported with the administration of multiple drugs and dietary supplements. 

Currently, the methods covered here are not sufficient for predicting liver injury caused 

by mixtures of chemicals. Moreover, many DILI events are immune-mediated and cannot 

be easily modeled through in silico or in vitro systems. Growing evidence has suggested 

that DILI results from interactions between drug properties, as well as environmental and 

host factors (Chen et al., 2015). Variations in the human leukocyte antigen genes are also 

reported to be associated with DILI susceptibility (Daly, 2023). These factors, in addition to 

individual differences in DMEs and hepatic transporter expression, should be considered in 

order to develop an improved model for DILI prediction in humans.
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