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Abstract
Motivation: High-quality computational structural models are now precomputed and available for nearly every protein in UniProt. However, the
best way to leverage these models to predict which pairs of proteins interact in a high-throughput manner is not immediately clear. The recent
Foldseek method of van Kempen et al. encodes the structural information of distances and angles along the protein backbone into a linear string
of the same length as the protein string, using tokens from a 21-letter discretized structural alphabet (3Di).

Results: We show that using both the amino acid sequence and the 3Di sequence generated by Foldseek as inputs to our recent deep-learning
method, Topsy-Turvy, substantially improves the performance of predicting protein–protein interactions cross-species. Thus TT3D (Topsy-Turvy
3D) presents a way to reuse all the computational effort going into producing high-quality structural models from sequence, while being suffi-
ciently lightweight so that high-quality binary protein–protein interaction predictions across all protein pairs can be made genome-wide.

Availability and Implementation: TT3D is available at https://github.com/samsledje/D-SCRIPT. An archived version of the code at time of sub-
mission can be found at https://zenodo.org/records/10037674.

1 Introduction

Experimental protein–protein interaction (PPI) data remain
sparse in most model organisms and even more so in other
species. Recent deep learning methods that predict PPIs solely
from sequence seek to address this limitation. In prior work,
we introduced D-SCRIPT (Sledzieski et al. 2021) and Topsy-
Turvy (Singh et al. 2022), two deep learning methods that
rapidly predict whether two proteins will physically bind in
the cell using only protein sequence information. We call these
methods lightweight deep-learning methods, since they are
computationally efficient enough to be run genome-wide.
These methods can be contrasted with classical PPI docking
methods (Porter et al. 2019) that require different inputs
(namely the 3D structures of the proteins), and also produce
different outputs (in addition to predicting if the proteins
bind, they also model how they bind).

The advent of large deep learning methods for structure
prediction like OmegaFold (Wu et al. 2022), AlphaFold2
(Jumper et al. 2021), ESMFold (Lin et al. 2023), and
RoseTTAFold (Baek et al. 2021), however, mean that high-
quality 3D protein structural models can now be produced

when only protein sequence is available as input. While these
methods are too expensive to run from scratch at genome-
wide scale, thanks to large community-wide efforts, there is
no longer a need to run them from scratch: high quality com-
putational structural models are now being made publicly
available for nearly every protein in UniProt (Varadi et al.
2022, Burley et al. 2023). In this work, we ask how this
wealth of computational work and high-quality predicted
structural information can be re-used to improve lightweight
deep-learning methods that rapidly predict whether two pro-
teins will physically bind in the cell. One potential approach is
to run computational fold-and-dock methods such as
AlphaFold-Multimer (Evans et al. 2021, Zhu et al. 2023), or
full complex structure prediction (Weissenow et al. 2022,
Burke et al. 2023, Harini et al. 2023, Lensink et al. 2023).
While these approaches are powerful for a small set of candi-
date pairs, they are still too computationally expensive to
scale genome-wide, e.g. to create a full predicted PPI atlas for
a nonmodel organism.

However, the wide availability of protein structure predic-
tion methods has also coincided with breakthroughs in
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compact representation of protein structure and structure
search. One such example is Foldseek (van Kempen et al.
2023), which uses a vector-quantized variational autoencoder
(VQ-VAE) (Van Den Oord et al. 2017) to encode a protein
structure as a sequence of discrete embedding vectors, each of
which is then mapped onto a set of characters which called
the 3D interaction alphabet (3Di). This process maps the 3D
space of protein structure into a single dimensional 3Di se-
quence, which can then be used with fast sequence search
tools such as BLAST (Altschul et al. 1997) or MMseqs2
(Steinegger and Söding 2017) to identify structurally similar
proteins (Barrio-Hernandez et al. 2023).

Here, we introduce Topsy-Turvy 3D (TT3D), which builds
off of prior work in sequence-based PPI prediction (Singh
et al. 2022) to incorporate structure by jointly modeling both
amino acid sequence and 3Di sequence. We demonstrate that
TT3D is able to take advantage of the compact representation
of protein structure to improve the accuracy of PPI prediction
in a cross-species context. In an era where high-quality predic-
tions of protein structure are readily available for many pro-
teins, we expect that TT3D can be easily substituted into
pipelines which use lightweight sequence-only deep learning
prediction methods to make high-quality predictions, while
remaining fast enough to be applied at genome scale.

2 Materials and methods

TT3D augments the inputs to the basic Topsy-Turvy architec-
ture with encodings of the Foldseek-generated 3Di sequence
(see Fig. 1) (van Kempen et al. 2023). In Topsy-Turvy, the
amino acid sequence x ¼ x1x2 . . . xn is numerically encoded
using the Bepler & Berger protein language model (Bepler
and Berger 2019, 2021) as X 2 R

n�6165, which is then re-
duced in dimension via a multi-layer perceptron to a projec-
tion X� 2 Rn�100.

In TT3D, we additionally convert the protein sequence x to
a 3Di sequence y ¼ y1y2 . . . y2 using Foldseek. If a crystal
structure is available for the protein, Foldseek can be directly
applied. If the sequence is not available in the PDB, we query
for an exact match for it in AlphaFoldDB (Varadi et al.
2022), and this structure is then used for extraction of the 3Di
sequence by Foldseek. If no such hit can be found, we conser-
vatively add an uninformative all-X 3Di sequence. We repre-
sent y with a one-hot encoding, yielding Y 2 R

n�21. We then

concatenate the embeddings from the language model and
from Foldseek, resulting in a joint embedding
E ¼ ½X�; Y� 2 Rn�121. Given two protein sequences x1;x2, we
combine embeddings E1;E2 as in D-SCRIPT and Topsy-
Turvy (Sledzieski et al. 2021, Singh et al. 2022) to predict a
probability of interaction. The Topsy-Turvy loss function is
used to train the model using back-propagation.

3 TT3D outperforms state-of-the-art deep
learning-based methods

We evaluate TT3D in the same cross-species setting where D-
SCRIPT and Topsy-Turvy were originally tested. Following
(Sledzieski et al. 2021), TT3D was trained and validated on
known human PPI from the STRING database (Szklarczyk
et al. 2021), filtered for experimentally determined physical
binding interactions.

Then, the best model trained on human PPIs was tested on
known interactions from other model organisms such as
mouse (Mus musculus), fly (Drosophila melanogaster),
roundworm (Caenorhabditis elegans), Escherichia coli, and
brewer’s yeast (Saccharomyces cerevisiae), also from
STRING. Sequences were clustered with human sequences at
40% similarity using CD-HIT (Li and Godzik 2006) and
those with high similarity to proteins in the training set were
removed. We measure model performance using the area un-
der the precision–recall curve (AUPR). The test sets were con-
structed to have a 1:10 ratio of positives to negatives, so a
random method would have an AUPR of 1=11u0:09.

We compare TT3D to D-SCRIPT and Topsy-Turvy, neither
of which incorporate structural information, and find that
augmenting the Topsy-Turvy model with the encoded 3Di
Foldseek sequence improves its PPI predictions. We also test
against simple sequence and structure homology-based
approaches. In Fig. 2, we show precision–recall curves for
each of the three deep learning methods on the five bench-
mark test sets. TT3D performs significantly better than the
other methods for all organisms that we tested on. In addition
to overall performance, early precision (i.e. precision at low
recall) is important, because often only a small number of
highly predicted interactions are selected for downstream ex-
perimental prediction. We find that the precision values at
low recall are closer to 1 for TT3D, which indicates that its

Figure 1. TT3D model architecture. TT3D follows the structure and training procedures of Topsy-Turvy, but with an augmented protein embedding. We

concatenate a one-hot encoding of the Foldseek 3Di (van Kempen et al. 2023) string to the protein language model (PLM)-based embedding before

passing this representation into the convolutional portion of the architecture.
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top predictions are much more accurate than both D-SCRIPT
and Topsy-Turvy.

4 Comparing TT3D’s performance with simple
sequence and structure homology transfer
approaches

Sequence or structure-based homology approaches can also
be used to transfer PPI annotations across species. We bench-
marked TT3D against two such approaches, one based on
Ensembl-provided sequence homology (Smedley et al. 2009),
and the other based on structural homology inferred using a
pipeline of AlphaFoldDB, Foldseek, and MMseqs2 (see
Supplementary Materials Online). We note two major chal-
lenges with such annotation transfer approaches. First, due to
the bias in how candidate PPIs were chosen for assays, just
knowing that a pair of target proteins have human homologs
turns out to be a surprisingly good predictor of their interac-
tion, achieving precision (recall) of 0.2065 (0.658) and
0.2313 (0.4442) in fly and yeast, respectively. Second, such
an approach does not provide a probability of an interaction,
so neither an average precision nor precision–recall curve can
be computed. Nonetheless, we compared TT3D to these
approaches by generating the exhaustive set of fly (or yeast)
PPI candidates by considering all possible transfers of human
PPIs and scored these against ground-truth PPIs. TT3D out-
performed both sequence and structure-based annotation
transfer, achieving about 5� and 17� greater precision in fly
than sequence and structure-based approaches, respectively
(see Supplementary Materials for detailed precision–recall
metrics).

5 Availability and implementation

For inference with TT3D, as well as with Topsy-Turvy and
D-SCRIPT, we make available a web interface at https://cb.
csail.mit.edu/cb/dscript/. This interface is implemented with
Gradio (Abid et al. 2019) and hosted on HuggingFace spaces,
and allows the user to upload a .fasta formatted file with
sequences and a .tsv file with candidate protein pairs, and
get back predictions for the desired model. This interface ad-
ditionally leverages 3Di sequences from (Heinzinger et al.
2023).

For model training or larger-scale inference from the com-
mand line, TT3D is implemented in Python 3 as part of the
dscript package for predicting PPIs, which is available from
the PIP package repository (pip install dscript) or on
GitHub at https://github.com/samsledje/D-SCRIPT. Model
training and inference was performed on a machine with a
112-core Intel Xeon Gold 6258R CPU and using a single
NVIDIA A100 GPU. TT3D is trained for a maximum of 10
epochs, and the best performing model in cross-validation is

used for making predictions. We make the trained model avail-
able to download at https://d-script.readthedocs.io/en/stable/,
where it can be used to make new predictions with the
dscript predict command.

TT3D requires that Foldseek (van Kempen et al. 2023) be
installed and that 3Di sequences be generated for protein
sequences in the training or inference set. Structures in .pdb
format must be available for all sequences, either natively or
generated by a structure-prediction method such as
OmegaFold (Wu et al. 2022), AlphaFold2 (Jumper et al.
2021), or RoseTTAFold (Baek et al. 2021). Foldseek can be
downloaded and build from source on Github at https://
github.com/steineggerlab/foldseek. For convenience, we pro-
vide the command dscript extract-3Di, which uses the
user’s installed Foldseek to translate a set of structures into a
.fasta file containing 3Di sequences.

To run TT3D, users should run the command dscript
train – allow_foldseek, where – allow_foldseek is
an optional command that runs the training iterations in
“Foldseek” mode. While running in this mode, the user
should provide the corresponding 3Di sequences in .fasta
format using the – foldseek_fasta argument.
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