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Relapse of acute myeloid leukemia

after allogeneic stem cell transplantation:
immune escape mechanisms and current
implications for therapy
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Abstract

Acute myeloid leukemia (AML) is a heterogeneous disease characterized by the expansion of immature myeloid cells
in the bone marrow (BM) and peripheral blood (PB) resulting in failure of normal hematopoiesis and life-threating
cytopenia. Allogeneic hematopoietic stem cell transplantation (allo-HCT) is an established therapy with cura-

tive potential. Nevertheless, post-transplant relapse is common and associated with poor prognosis, represent-

ing the major cause of death after allo-HCT. The occurrence of relapse after initially successful allo-HCT indicates

that the donor immune system is first able to control the leukemia, which at a later stage develops evasion strategies
to escape from immune surveillance. In this review we first provide a comprehensive overview of current knowledge
regarding immune escape in AML after allo-HCT, including dysregulated HLA, alterations in immune checkpoints
and changes leading to an immunosuppressive tumor microenvironment. In the second part, we draw the line

from bench to bedside and elucidate to what extend immune escape mechanisms of relapsed AML are yet exploited
in treatment strategies. Finally, we give an outlook how new emerging technologies could help to improve the ther-
apy for these patients, and elucidate potential new treatment options.
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Background

Acute myeloid leukaemia (AML) is a heterogeneous
disease characterized by clonal expansion of immature
myeloid cells in the bone marrow (BM) and peripheral
blood (PB), resulting in failure of normal hematopoiesis
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and life-threating cytopenia [1]. For the majority of AML
patients, allogeneic hematopoietic stem cell transplan-
tation (allo-HCT) is the only treatment with curative
potential [2], whereby the curative effect is mainly based
on the graft-versus-leukaemia (GvL) reaction provided
by the transferred immune cells, mainly T- and NK-cells
[3]. Hence, allo-HCT is considered as the prototype of
cellular immunotherapy. Nevertheless, the occurrence of
relapse after allo-HCT is common and associated with
poor prognosis [4, 5] indicating that despite initial con-
trol by the allogeneic immune system, the leukemic cells
develop escape strategies over time.

Regarding treatment for relapse post allo-HCT, long-
term remission is mainly achieved by treatment concepts
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that include any type of cellular immunotherapy, such as
donor lymphocyte infusion (DLI) or a second allo-HCT
(allo-HCT?2) [6]. Nevertheless, these treatments are still
ineffective in a large proportion of patients, most likely
because the various mechanisms initially leading to eva-
sion of the immune control and relapse are still ongoing
and are not addressed by the therapeutic efforts. Beyond,
in contrast to lymphoid malignancies, the enormous
potential of modern immunotherapeutic strategies, such
as chimeric antigen receptor (CAR) T-cells, immune
checkpoint blockade (ICB) and bispecific antibodies
could not yet be transferred to AML, although this dis-
ease in principle is considered as highly immune-respon-
sive [7]. In fact, the majority of AML patients relapsing
after allo-HCT will eventually die from disease progres-
sion [6]. This might however change in a near future, as
modern genome and molecular based technologies are
providing an unprecedented understanding of the inter-
play between cancer cells and the tumor microenviron-
ment (TME). Consequently, we are now gaining critical
insights about the molecular pathways connected to the
immune escape mechanisms of AML relapse after allo-
HCT, that are yet to be exploited by novel and specific
treatment strategies. It is hoped that increasing knowl-
edge will allow us to approach a new treatment era based
on individualized and therefore hopefully more efficient
immunotherapy for relapsed AML [8].

In this review, we summarize different ways of immune
escape in AML patients after allo-HCT, separating mech-
anisms leading to impaired HLA expression from those
characterized by aberrant immune checkpoint expres-
sion and differential effects leading to a remodeling of
the TME. Beyond, we discuss implications for present
and future therapeutic approaches and give an outlook
on how new innovative technologies could help to iden-
tify new targets to overcome immune escape in relapsing
AML.

Impaired HLA expression

An intact antigen-presentation machinery is critical for
an effective recognition of leukemia cells by the donor
immune system. HLA possess outstanding ability to
elicit an immune response either by presentation of
variable peptides such as minor histocompatibility anti-
gens (miHag) and tumor-associated antigens (TAA), or
as direct target. The genomic HLA molecule disparity
between donor and recipient triggers T-cell allo-recogni-
tion [9]. In contrast, donor-versus-host NK-cell alloreac-
tivity relies on a mismatch between inhibitory receptors
for self-major histocompatibility complex (MHC) class
I on donor NK-cells and the respective ligands on
host T-cells. Consequently, the missing expression of
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self-MHC class I molecules mediates recognition and
attack of allogeneic targets by donor NK-cells [10, 11].

Impaired HLA expression is a quite rare event in hema-
tologic neoplasms at time of diagnosis, but frequently
occurs in patients with relapse after allo-HCT [12-15].
Hence, impaired NK- or T-cell recognition or even spe-
cific anergy caused by disturbed leukemia cell recogni-
tion following either non-genomic aberrations of HLA
expression or HLA loss is one of best-described immune
evasion mechanisms of AML blasts.

Epigenetic downregulation of HLA expression

In the setting of HLA-matched allo-HCT, non-genomic
loss of HLA expression seems to play a major role for
post-transplant relapse. Two seminal studies includ-
ing patients transplanted from matched sibling donors
(MSD), MUD, and MMUD [16] and haploidentical
donors [17] observed a significant downregulation of
classical HLA class II genes (HLA-DP, -DQ, and —-DR)
and other genes involved in antigen processing and pres-
entation by MHC class II (CD74, IFI30, IL-16, CTSS,
CIITA) in 30-50% of AML relapses post allo-HCT. As
a consequence, the originally primed T-cells failed in
antigen-recognition of the disease, thus contributing to
escape of leukemic cells from the GvL effect and relapse.
Importantly, in both studies, comparative analyses with
relapse after chemotherapeutic treatment alone indi-
cated, that this relapse mechanism might again be spe-
cifically linked to the immunological effects of allo-HCT.
Beyond, HLA downregulation occurred largely non-
overlapping with other mechanisms of immune escape
such as dysregulation of inhibitory immune checkpoints
(see next section).

The molecular mechanism behind HLA dysfunction on
leukemia cells has been extensively studied. Downregu-
lation of MHC class II transactivator CIITA (MHC2TA)
by hypermethylation of its promotor has been detected
by gene expression analysis [16, 17]. Beyond, the epige-
netic regulator polycomb repressive complex 2 (PRC2)
was involved in HLA alteration and the CIITA. Tran-
scriptionally driven loss of HLA class II expression was
associated with a PRC2-mediated decrease in chromatin
accessibility, highlighting a novel epigenetic pathway of
immune escape. In the same study, HLA expression could
be restored by pharmacological inhibition of EZH2, the
catalytic subunit of PRC2, in AML relapse in vivo and
in vitro [18]. This was accompanied by a consistent res-
cue of anti-leukemic T-cell activity. A third mechanism
of HLA downregulation comprises mouse-double-min-
ute-2 (MDM2), which is overexpressed on malignant
cells and possesses high oncogenic potential [19]. MDM2
serves as a negative regulator of the transcription fac-
tor p53 [20] and reduces intracellular p53 via inhibition
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of its transcription and increase of its degradation [21].
Recently, Ho et al. investigated the role of MDM2 in
AML after allo-HCT and reported that MDM2 inhibi-
tion was able to restore p53 activity, leading to increased
MHC class II expression and higher frequencies of non-
exhausted T-cells. As a consequence, immune evasion
of AML cells was counteracted and their sensitivity to
allogeneic T-cell mediated cytotoxicity was restored [22].
According to preclinical date, about 2/3 AML cell lines
and patient-derived samples were sensitive to MDM?2
inhibition [23-25].

Whereas the studies published so far mainly com-
prise HLA class II molecules, recent work reported HLA
aberrations also including HLA class I, which were fre-
quently detected in relapsing AML patients [26]. Hence,
both types of HLA (I and II) can be affected by somatic
mutations and thus damp the anti-leukemic immune
responses with the consequence of tumor immune
evasion.

Genomic loss of HLA

During the last decade, allo-HCT from haploidenti-
cal family donors (haplo-HCT) has become a frequently
used transplant strategy for allo-HCT in patients lacking
a HLA matched donor [27]. In this setting, incompat-
ible HLA molecules on leukemic blasts are the immuno-
dominant GvL targets of alloreactive T-cells [28], bearing
the risk of new immune escape strategies to develop.
Genomic loss of one HLA haplotype was first described
in 2009 in patients relapsing after haplo-HCT for AML
and myelodysplastic syndrome (MDS) (either non-T-
cell depleted or using purified CD34* cells with subse-
quent DLI) [14]. Lack of patient-specific HLA alleles was
observed on the leukemic blasts in about 30% of relapses.
The underlying mechanism was an irreversible loss of
genomic material on the short arm of chromosome 6,
encompassing the HLA region, without numerical chro-
mosomal alterations. In other words, all incompatible
class I and II HLA molecules on the leukemic cells were
permanently lost, whereby this loss was compensated
by duplication of the remaining compatible haplotype,
resulting in homozygosity for the shared HLA haplotype
(uniparental disomy: daughter cell carrying two HLA
haplotypes derived from only one parent after mitotic
recombination) [29, 30]. As a direct consequence, leu-
kemic cells became undetectable by alloreactive donor
T-cells, and thus escaped from the GvL effect, conferring
a selective advantage that resulted in uncontrolled prolif-
eration and clinical relapse [14, 31]. It remained unclear
why relapses were not avoided by alloreactive NK-cells.
Nevertheless, this failure to control leukemia after HLA
loss supports the “missing self” hypothesis [11] as a
mechanism for the activation of NK alloreactivity, since
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in cases of uniparental dysomy, the overall expression of
HLA class I molecules on leukemic cells remains unal-
tered, and thus the retention of the “self” HLA haplotype
seems to prevent NK-cell activation [31]. Further stud-
ies investigating the incidence and outcome of patients
with HLA loss after haplo-HCT reported rates of HLA
loss between 25-51% [32-34], with incidences being
independent from the in vivo T-cell depletion strategies
(anti-thymocyte globulin [ATG] or post-transplant cyclo-
phosphamide [pt-CY]) [35, 36]. Interestingly, HLA loss
was also detected in six patients that did not experience
overt hematological relapse [33].

The temporal and biological origin of HLA loss has not
yet been completely elucidated. Although rare alterations
involving HLA at the time of diagnosis in patients with
hematological cancers were reported [12, 30], the more
frequent detection of this phenomenon after allo-HCT
suggests a key role of a selective immune pressure medi-
ated by allogeneic T-cells [37]. This hypothesis is fur-
ther supported by the results of Crucitti et al., who have
observed a correlation between the numbers of T-cells
transferred with the graft and the incidence of HLA loss
[38]. Another important finding was the significant delay
of relapse with HLA loss which occurred at a median
time of 307 days from haplo-HCT.

Apparently, HLA loss is not exclusive of haplo-HCT
and AML, but was documented in AML relapses after
matched unrelated (MUD) and mismatch unrelated
donor (MMUD) allo-HCT [39], and also after haplo-
HCT for other haematological malignancies, including
Hodgkin’s lymphoma [32] and acute lymphoblastic leu-
kemia [34]. However, the frequencies of HLA loss vary
depending on donor source, with an inverse relation to
the grade of donor-recipient mismatch: In a large series,
HLA loss was detected in 23%, 12%, 4% and 0% after allo-
HCT from haploidentical, MMUD, MUD and unrelated
cord blood (UCB) stem cell sources, respectively [15].

Aberrant immune checkpoint expression

The understanding of immune checkpoints (ICP) has
revolutionized the role of immunotherapy in cancer
treatment. In healthy individuals ICP on immune effector
cells represent physiological control mechanisms essen-
tial for maintaining immune tolerance and preventing
autoimmunity [40].

PD1/PD-L1

Programmed cell death protein 1 (PD-1) and its ligand
PD-L1 constitute a major inhibitory axis. Upon engage-
ment of these two proteins, T-cells exhibit a hyporespon-
sive T-cell differentiation state defined by poor effector
function, sustained expression of inhibitory receptors,
lack of response to stimuli and a transcriptional state
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distinct from that of functional effector or memory
T-cells [41]. The PD-1 pathway and several other inhibi-
tory checkpoints co-regulate T-cell exhaustion, limiting
the effectiveness of T-cells against infection and cancer
[40]. An aberrant expression of PD-1/PD-L1 molecules
has been reported in various malignancies including
AML, so far representing one of the most important
immune evasion strategies exploited by cancer cells [42,
43]. PD-1 is expressed on various immune cells includ-
ing different T-cell subtypes, and can bind to its ligand
PD-L1 on AML blasts. Significant upregulation of
PD-1 expression on BM T cells was confirmed in 42%
of relapsed AML patients [44] and similar results could
be obtained for levels of PD-L1 on AML blasts [17, 45].
Via the PD-1/PD-L1 axis, leukemic cells have shown to
induce T-cell exhaustion and recruitment of regulatory
T-cells (T,,,). The resulting T-cell suppression was asso-
ciated with AML relapse after allo-HCT [17, 46—48].

CTLA-4

The inhibitory receptor cytotoxic T-lymphocyte-associ-
ated protein 4 (CTLA-4) is an ICP molecule that binds
to the ligands CD80 and CD86 in a competitive manner
with CD28. Normally, CD80 and CD86 interact with
CD28 to provide a co-stimulatory signal to T-cell recep-
tor (TCR) mediated activation. In contrast, interactions
of these ligands with CTLA-4 antagonize CD28-medi-
ated co-stimulation and inhibit T-cell responses [49]. The
biology of CTLA-4 is particular in a way that it is pre-
dominantly found in intracellular vesicles (90%) of T,
cells or activated conventional T-cells due to active endo-
cytosis from the plasma membrane, from where it can be
recycled to the surface or degraded in lysosomal com-
partments [49]. CD80 and CD86 has been found upreg-
ulated in AML patients after relapse [17, 47], further
supporting a contribution of the CD80/CD86-CTLA-4
axis to immune evasion in AML. However, results of
CTLA-4 expression remain conflicting as Noviello et al.
found significant increased CLTA-4 on T cells of relapsed
AML patients [47] whereas another study could not
confirm any CLTA-4 changes between different clinical
stages [17].

TIM-3

Apart from PD-1/PD-L1 and CTLA-4, T-cell immuno-
globulin and mucin domain 3 (TIM-3), which physi-
ologically binds galectin-9 (Gal-9), is highly expressed
on AML blasts, and plays a major role in immune escape
of AML and relapse post allo-HCT [50]. Interestingly,
TIM-3 is also expressed on leukemic stem (LSCs) and
progenitor cells of other myeloid malignancies, but not
on normal hematopoietic stem cells [51]. Gal-9 is not
only involved in impaired T-and NK-cell function but
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is also essential in maintaining LSCs via an autocrine
signaling loop involving TIM-3 on LSCs, promoting
their self-renewal [52, 53]. Kong et al. showed in immu-
nophenotypic analyses of AML patients that high PD-1/
TIM-3 expression on CD8" T-cells was strongly associ-
ated with T-cell exhaustion and relapse post allo-HCT,
whereby PD-1/TIM-3 positive T-cells of PB were already
detected 2 months before clinical relapse, suggesting a
predictive value of this observation [54]. Additionally,
increased levels of BM CD8* T-cells from relapsing AML
patients expressing TIM-3, PD-1 and CTLA-4, have been
reported, while their corresponding ligands Gal-9, PDL-
1, CD80, and CD86 were expressed on leukemic blasts
[55].

TIGIT

T-cell immunoreceptor with Ig and ITIM domains
(TIGIT) is another inhibitory receptor present on NK
and T-cells. Ligands for TIGIT are the poliovirus recep-
tors (PVR; also known as CD155 and nectin-like protein
5) and PVRL2 (CD112; nectin-2). TIGIT binds to these
ligands in competition with the activating costimulatory
receptor DNAM-1, thereby suppressing the activity of
NK and T-cells [56, 57]. Various studies demonstrated a
significantly higher expression of TIGIT on infiltrating
T-cells in the BM of relapsed AML patients after allo-
HCT compared to non-relapsed patients. This expression
was associated with poor clinical outcome, suggesting
TIGIT as a biomarker for immune escape in AML and
potential therapeutic target [48, 58, 59]. This goes in line
with a recently conducted work by Gournay et al., who
reported that high levels of TIGIT on CD4" T-cells early
after allo-HCT are associated with AML relapse [60].
TIGIT, TIM-3, and LAG-3 were also highly expressed
on immunosuppressive tumor-associated macrophages
(TAMs) of AML patients in active disease [61]. Moreo-
ver, both ligands of TIGIT, PVRL2 (CD112) and PVR
(CD155) were also reported to be upregulated on AML
blasts at relapse after allo-HCT compared to the level at
diagnosis, which was significantly associated with poorer
clinical outcome [17, 58, 62].

KLRG-1

Another checkpoint, KLRG-1 was reported to be
involved in AML relapses post allo-HCT by Hutten
et al; importantly this study highlighted the simultane-
ous expression of multiple inhibitory checkpoints (PD-1/
TIGIT/KLRG-1) on antigen specific CD8 T-cells of the
PB as a key feature of T-cell dysfunction [48].

CD47
CD47 represents a macrophage immune checkpoint
highly expressed on leukemic stem cells (LSCs) and AML



Sauerer et al. Molecular Cancer (2023) 22:180

cells, leading to immune evasion through the inhibition
of phagocytosis [63]. In this process, CD47 functions as
a “don’t eat me”-signal, preventing the recognition of the
malignant T-cells by activated macrophages, neutrophils
or dendritic cells (DCs) [64], whereat this mechanism
could be involved in relapse of AML patients. Treatment
with CD47-antibodies, such as Magrolimab (Hu5F9-G4)
or Evorpacept (ALX148) showed promising effects on
high risk MDS and AML in phase I/II clinical trials [65,
66], whereas a third antibody is currently under preclini-
cal investigation [67].

CD200

Another surface molecule in this context is CD200,
which is a new putative checkpoint on LSCs in AML and
was significantly overexpressed on these cells [68]. Posi-
tivity for CD200 has been correlated with high relapse
risk in AML [69]. A recent study reported the contribu-
tion of CD200 to immune escape in AML using BM and
PB samples of humans and humanized mice models [70].
CD200 exerted an immunosuppressive function affect-
ing the cytokine secretion and elimination capacity of
T-cells. The CD200-mediated suppression was reversible
when blocking the interaction with the CD200-recep-
tor (CD200R) and a further study showed the benefit
of a fully human CD200 antibody (TTI-CD200), that
improved immune responses to AML [71] indicating a
therapeutic implication for relapsed AML patients.

Further receptors/ligands

Further inhibitory immune checkpoint receptors/ligands
such as LAG-3, VISTA, 2B4, B7-H3, B7-H4, and LILRB4
[55, 72], and activating ones (ICOS, OX40, 41BB, CD70,
CD28) [17] may be involved in the immune evasion pro-
cess of AML after allogeneic transplantation, but their
exact role remains still unclear.

In summary, the overexpression or upregulation of
checkpoints on T-cells or the corresponding ligands
on AML blasts has been reported in up to 40% of AML
patients [17] who therefore might be the best candidates
for therapy with ICB. An overview of checkpoints and
ligands (potentially) involved in immune escape of AML
and their role regarding relapse after allo-HCT is given in
Table 1.

Remodelling of the tumor microenvironment

The tumor microenvironment (TME) comprises a com-
plex network of immune cells and non-cellular com-
ponents. Malignant cells are able to change various
physiological processes within the TME to their advan-
tage. Hence, both immune effector cell dysfunction
and alterations of the non-cellular components may
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contribute to tumor immune escape by remodelling of
the TME towards an immunosuppressive phenotype.

T-cells dysfunction beyond HLA- and immune checkpoints
Beyond T-cell dysfunction associated with HLA loss/
downregulation and ICP, other mechanisms leading to
impaired T-cell reactivity in AML have been described.
The formation of an immunological synapse among
T-cells and myeloid blasts is formed in a multistep pro-
cess leading to adhesion between T-cell and antigen-
presenting cell (APC) as well as T-cell and blasts. For
this complex formation, the actin cytoskeleton and the
polymerization of actin is critical [98]. Le Dieu et al. dem-
onstrated impaired ability of T-cells from AML patients
to arrange immune synapses with blasts, and restricted
expression of genes important for the actin cytoskeleton
[99]. Hence, AML blasts seem to alter the formation of
immune synapses and thus prohibit correct communica-
tion between T-cells and blasts, although the responsible
molecular processes have still to be investigated in detail.
Noviello et al. analysed the T-cell compartment of
AML patients relapsing after allo-HCT and reported the
presence of exhausted BM T-cells with restricted TCR
repertoire and impaired T-cell effector functions, includ-
ing reduced IL-2, y-IFN and TNFa secretion and lower
degranulation rates. Beyond, a small fraction of severely
exhausted T (characterized by PD-1, but in particular
by the expression of the transcription factors T-bet and
Eomesodermin, both regulators of T-cell exhaustion),
was identified early after transplantation. This finding
suggests limited and exhausted T-cell immunity early
post HCT to be a strong risk factor for AML relapse
and therefore part of the immune evasion process [47].
Remarkably, exhausted T-cells can be rescued, if they dis-
play an early, but not a late exhausted phenotype, with
the therapeutic window being quite narrow [100].
Regulatory T-cells (T ) control the immune homeo-
stasis via induction of immunosuppression [101]. Num-
bers of T, are highly enriched in the blood and/or BM
of myeloid leukemias after allo-HCT [102] and correlate
with inferior outcome and post-transplant relapse [45,
103, 104]. Studies evaluating the immune landscape after-
HCT showed similar frequencies of total T, in patients
and healthy controls. However, T ., from AML patients
showed an activated phenotype (CD45RA™HLA-DRY)
indicating a potential role of these cells in relapse [60].
Interestingly, results from another study indicate that
host T, are not able to suppress the GvL effect in AML,
and suggest that the predominance of these T, could
even be a favourable prognostic marker [105]. These data
identify T, as a kind of a double-edged sword, as they
can have opposite effects promoting relapse and at the
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same time preventing the development of graft-versus-
host disease (GvHD).

Impaired NK-cell activity

NK-cell mediated toxicity against malignant cells belongs
to the major defence strategies of the immune system and
is based on receptor-ligand interaction between NK-cell
and tumor cell as well as lysis of tumor cells via antibody-
dependant cell-mediated cytotoxicity (ADCC) [106, 107].
NK-cells exert anti-leukemic effects in the allo-HCT set-
ting as they are the first lymphocytes to reconstitute after
transplantation, and this successful recovery is related to
reduced risk of relapse [108]. However, NK-cell escape by
AML blasts can be caused by imbalanced receptor/ligand
expression, which can occur in different ways. Epigenetic
alterations in form of incorrect hypermethylation of the
genes MICA, ULBP1, ULBP2, and ULBP3, which repre-
sent ligands for the activating NK-cell receptor NKG2D
result in impaired function of these ligands and prevent
NK-cell activation [109]. Further, the total absence of
NKG2D ligands on AML leukemic stem cells [110], the
release of a soluble NKG2D ligand resulting in downreg-
ulation of the corresponding receptor on NK-cells [111],
reduced expression of activating receptors on NK-cells
such as DNAM-1 (CD226) [112] and the induction of co-
inhibitory receptors on NK-cells such as TIGIT [59], lead
to impaired NK-cell activity. Even if these mechanisms
have not been studied in the allo-HCT setting, it seems
reasonable that they might be involved in immune escape
of relapsing AML patients. Further investigation is
strongly needed as NK-cell-based immunotherapy plays
a major role in the context of HCT [113] including adop-
tive NK-cell transfer, CAR-NK-cell therapy (reviewed in
[114]). Moreover, there is evidence that NK-cell function
in relapsing AML undergoing allo-HCT can be restored
[115] suggesting another potential therapeutic interven-
tion for these patients.

Suppressive effects of leukemia-associated macrophages

Further cell types potentially contributing to immune
escape are tumor-associated-macrophages (TAMs).
TAMs are characterized by anti-inflammatory activity
[116] and have been shown to be elevated in the BM of
AML patients (referred to as leukemia-associated mac-
rophages, LAMs) [117, 118]. As described in the previous
section, it was shown that the checkpoints TIGIT, TIM-3
and LAG-3 were increased on LAMs of AML patients
and this finding was associated with an intermediate or
adverse genetic risk according to the European Leukemia
Network (ELN) criteria [61]. AML blasts can produce
Arginase II, which promotes the switch of macrophages
from the M1 phenotype into a suppressive M2-like phe-
notype supporting immune evasion [119]. From the
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therapeutic point of view, apart from macrophage-tar-
geted therapy via CD47 blockade (see section 2), more
recent studies have reported the potential of chimeric
antigen receptor macrophages (CARMs), which were
able to create effective anti-tumor responses in haemato-
logical malignancies [120].

Alterations of the cytokine milieu

Hematologic tumors may alter the TME by switching
cytokine production from pro-inflammatory to anti-
inflammatory and by increasing the release of immuno-
suppressive molecules. As an example, the physiological
function of IL-15 comprises the expansion and activa-
tion of effector T-cells and NK-cells and the promotion
of memory T-cell generation. In the post-transplanta-
tion setting of different haematological malignancies
low plasma levels of IL-15 have been associated with
a higher risk of relapse [121]. In AML, this might be
caused in part by an internal tandem duplication of the
FLT3 tyrosine kinase in leukemic cells leading to reduced
production of IL-15 mRNA. Remarkably, this phenom-
enon was reversible by application of the FLT3 tyros-
ine kinase inhibitor sorafenib, leading to an increase in
CD8+CD107 4+ IFNy+ T-cells with antileukemic activity
[122].

Apart from IL-15, further members of the cytokine
network in the TME play a prominent role in the post-
transplant setting, including the chemokine receptor
CXCR4 and its ligand CXCL12. CXCR4 belongs to the
group of transmembrane G-coupled protein receptors
and is expressed on normal stem cells as well as AML
blasts controlling the migration of LSCs to the BM [123].
Increased expression of this receptor on AML blasts has
been correlated with increased risk of relapse and poor
outcome, suggesting that the CXCR4/CXCL12 axis might
be involved in immune escape of AML [124—-127]. This is
underlined by the ability of CXCR4/CXCL12 to activate
pathways that target survival, growth and chemotherapy
resistance of AML blasts [128].

Studies about chemokine profiles prior and post
BM transplantation as recently performed for CXCLI,
CXCL10 and CXCL12 [129], might identify further fun-
damental players of immune escape. Of special interest in
this context is Interferon-y (IFNy), which is a key player
of cellular immunity. In contrast to patients in remission,
IFNy secretion was strongly reduced in CD8* T-cells
from relapsing AML patients after allo-HCT, indicat-
ing an important role for this cytokine in immune eva-
sion of AML [130]. Moreover, IFNy can induce PD-L1
expression on AML blasts reflecting the dual nature
of this cytokine as it can exert pro- and anti-tumoral
immune responses [131]. A recent study demonstrated
in the ex-vivo setting the impact of transforming growth
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factor beta 1 (TGF-B1), which induced NK-cell dysfunc-
tion in AML patients with early relapse after allo-HCT.
This effect was reversible by pharmacologic inhibition of
TGF-pB1 signalling in leukemia xenograft mouse models
[115], indicating a potential therapeutic role of TGF-$1
blockade as already shown in other cancer entities [132,
133].

Modulation of the TME by immunosuppressive enzymes
Closely linked to the cytokine milieu in the TME are
metabolic active molecules that have been reported to
modulate the TME in leukemia. One example is Argi-
nase II, of which high plasma levels in AML patients,
contributing to an immunosuppressive environment by
blocking T-cell functions and inducing the suppressive
M2-like phenotype of macrophages [119]. Hence, Argin-
ase II might play a role in immune escape and relapse [8,
62]. Another potential player in this context is indoleam-
ine 2,3-dioxygenase 1 (IDOL1), which is expressed on
AML blasts and is involved in the tryptophan degrada-
tion, finally leading to inhibition of T-cell proliferation,
increased T-cell apoptosis and induction of T, [134].
IDO1 expression in leukemic cells has not been analysed
in the post-transplant setting, but is convincingly associ-
ated with shortened relapse-free survival and overall sur-
vival in AML [135-138]. Two other enzymes currently
discussed in the context of AML are CD39 and CD73
which belong to the family of ectonucleotidases involved
in the degradation of adenosine triphosphate (ATP)
[139]. In CD73-deficient mice after allo-HCT, low activ-
ity of CD73 improved the recognition and destruction of
leukemic cells [140], indicating that CD73 is involved in
tumor immune escape after transplantation.

Regarding other metabolic processes, glycolysis has
been shown to play a critical role regarding immune
evasion in AML: In patients relapsing after allo-HCT it
was shown that in response to leukemia-derived lactic
acid, the T-cells exhibited reduced glycolysis, function-
ally leading to decrease in proliferation and anti-leuke-
mic activity. Sodium bicarbonate restored the metabolic
fitness of donor T-cells both in vitro and in vivo after
application to patients with AML relapse post-transplant
receiving treatment with DLI [130].

Further immunosuppressive aspects of the tumor
microenvironment

Related to cytokines and enzymes are the secreting cellu-
lar components, which increase the immunosuppressive
phenotype of AML. Among these, T, and Myeloid-
derived suppressor cells (MDSCs) play a role, which both
exert an immunosuppressive function by damping anti-
tumor T-cell responses [141]. A recent study analyzed
the dynamics between MDSCs and T, of AML patients

regs
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relapsing after allo-HCT [60] and showed that in contrast
to constantly elevated T, levels, MDSCs subsets were
increased early post-transplantation, but decreased over
time. Nevertheless, no association between MDSCs and
T,egs With subsequent relapse could be found [142].

Tumor infiltrating lymphocytes (TILs) comprise a het-
erogenous cluster of cells closely located to the tumor
to create an anti-tumor response [143]. TILs have been
shown to be associated with prognostic outcome and
therapy response in several tumor entities and where
found in 33-50% of the tested AML cohort [144, 145],
although their presence alone was not sufficient for
tumor elimination. However, their contribution to the
prevention of immune escape remains unclear, as not a
single report about TILs in relapsed AML patients after
allo-transplantation exists.

Mesenchymal stroma cells (MSCs) have been shown
to inhibit NK-cell-mediated killing of AML blasts and in
general exhibit a more immunosuppressive phenotype
than MSCs from healthy donors [146—148]. Post HCT
MSCs showed differential mRNA expression, which
normalized with disease remission [149], however, their
role in immune escape of relapsed AML remains to be
elucidated.

Finally, the vascular endothelium plays a major role for
AML progression, as remodelling of the vascular com-
partment has been shown including high vascular perme-
ability and reduced blood flow impairing the distribution
of drugs and immune cells [150]. M2-macrophages are
reported to be part of this process via promotion of blood
vessel formation secreting pro-angiogenic cytokines such
as the vascular endothelial growth factor (VEGFA) [151].
Vascular remodelling can be counteracted via genetic
or chemical preservation of the endothelium, thereby
improving clinical outcome of murine AML models
[152].

A summary of immune escape mechanisms described
after allo-HCT for AML is depicted in Fig. 1.

Therapeutic strategies targeting immune escape

in relapsing AML

Current therapy

So far, no uniform standard treatment for AML relapse
after allo-HCT has been defined, nor have approaches
specifically addressing immune escape mechanisms
become clinical routine. In principle, initial disease con-
trol is approached by either conventional chemotherapy,
hypomethylation agents (HMA) £ venetoclax, or specific
therapies targeting mutations (tyrosine kinases or IDH).
However, subsequent cellular therapies relying on an
allogeneic immune reaction — i.e. DLI or a second allo-
geneic HCT (allo-HCT2)—are regarded mandatory. [6,
153]. Allo-HCT?2 has achieved long-term remission in
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Immune Escape in AML after Allogeneic Stem Cell Transplantation
Overview of Cancer-Associated Changes driving Immune Evasion
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Fig. 1 Overview of immune escape mechanisms in AML after allogeneic stem cell transplantation. The various immune evasion strategies include
genomic loss or downregulation of HLA (1), upregulation of inhibitory or downregulation of activating receptors and the corresponding ligands (2),
exhausted and dysfunctional immune effector cells (3a), an altered metabolic environment (3b) as well as an increase of immunosuppressive cell
types (MDSCs, M2 macrophages and TAMs, T regs) and vascular remodelling of the AML niche cells (3¢). This figure was created using Biorender. !
Recent studies indicate that epigenetic downregulation could also affect HLA class | [26]. AML blast: acute myeloid leukemia blast, LSC: Leukemic
stem cell, DC: dendritic cell, NK cell: Natural killer cell, MSC: mesenchymal stem cell, MDSC: myeloid derived suppressor cell, TAM: tumor associated
macrophage. T indicates upregulation, whereas ¥ marks downregulation

about 30% of patients [154—158], and showed a trend for ~ with other strategies, produced 2-year OS rates between
improvement over time [159]. However, its feasibility is ~ 13-25% [6, 160, 161]. The role of DLI in high-risk malig-
strongly dependent on patient’s performance status and  nancies has been recently reviewed [162]. Treatment
donor availability. DLI, either alone or in combination  options for patients not eligible for allo-HCT2 or DLI are
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limited and usually without curative potential [163]. Fur-
ther details on the treatment of post-transplant relapse
have recently been summarized [164].

Increasing knowledge on mechanisms of relapse have
also allowed deeper insights into the interplay between
the leukemia and the allogeneic immune system under
currently used treatments. As an example, HMA have
been shown to augment the GvL-effect by inducing cyto-
toxic CD8+ T-cell responses against tumor-associated
antigens [165, 166], although upregulation of inhibitory
immune checkpoints under HMA treatment has been
associated with inferior outcome both in the transplant
[167] and non-transplant setting [82]. With respect to
DLI, reversion of T-cell exhaustion by downregulation
of checkpoints has been proposed as a mechanism of the
therapeutic efficacy [168—170]. Beyond, re-enforcement
of the GvL effect in DLI recipients may be related to DLI-
induced GvHD and the associated release of IFNy, which
has been shown to restore HLA-II expression on blasts
(17, 171].

Experience from treatments addressing distinctimmune
escape mechanisms

So far, outside of clinical trials, the immune escape mech-
anisms described in this review are not yet routinely con-
sidered neither for treatment choice nor incorporation of
specific elements into the management of post-transplant
relapse. In this section we summarize published clinical
experience from therapeutic approaches considering par-
ticular immune escape mechanisms.

Reversion of epigenetic HLA downregulation When
HLA class II downregulation was described as a mecha-
nism of immune escape of AML after allo-HCT, it was
evident, that this phenomenon was of epigenetic nature
and therefore potentially reversible. As discussed in
the previous paragraph, induction of IFNy release e.g.
as a consequence of DLI-induced GvHD might restore
the expression of HLA II on blasts. In that sense, DLI
addresses immune escape by reversion of HLA down-
regulation, a finding that is thought to explain in part
the correlation of GVvHD with GvL effects. Similarly, sig-
nificant increase in the expression of MHC-II molecules
and killing of leukemia cells was found to be mediated
by IENy secretion from CD4 T-cells in a series of in-
vitro experiments testing the activity of CD123-directed
immunotherapies (flotetuzumab, a CD123xCD3 dual
affinity retargeting protein [DART], as well as CAR
T-cells directed against CD123) both in cell lines and
xenograft models from patients with relapsed AML
after allo-HCT with low baseline MHC-II expression
[172]. Hence, beyond the direct antileukemic effects of
the DART, respectively the CAR T cells, reversion of the
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HLA downregulation might contribute to the clinical
effects of these compounds [173].

Therapeutic consequences drawn of HLA loss In cases
of HLA loss, the allogeneic effect mediated by T-cells
is practically abrogated, as demonstrated by Vago et al.
[14]. DLI or allo-HCT?2 from a same donor is therefore
expected to be ineffective, arguing for a change to a new
donor with a different mismatched haplotype for allo-
HCT?2. This was supported by a small series of patients
with AML relapse after haplo-HCT, in which a donor
change for haplo-HCT2 improved clinical outcome
[174], whereas this could not be shown in a recent retro-
spective analysis from the EBMT Acute Leukemia Work-
ing Party [158]. However, in both studies, HLA loss was
not routinely tested. In contrast, Crucitti et al. [38] per-
formed allo-HCT?2 based on HLA loss analyses in a small
group of patients, whereby donor change was associated
with longer survival in patients with relapse involving
HLA loss. Another finding supporting treatment guid-
ance by HLA loss was reported by Muniz et al.: Three
patients who had received DLI plus chemotherapy upon
relapse post haplo-HCT were retrospectively identified
to have HLA loss. All developed GvHD, but neverthe-
less did not show any response of their malignancy and
died of disease progression [32]. Similarly, Wu et al. [34]
also observed that in patients with minimal residual dis-
ease (MRD), the administration of pre-emptive DLI did
not influence the median time to relapse in patients with
HLA loss.

Treatment  strategies addressing immune  check-
points Immune checkpoint blockade (ICB) has shown
activity in some hematologic disorders, especially lym-
phoid malignancies [43]. After allo-HCT, ICB is expected
to reinvigorate the GvL effect; however simultaneously
the activation of previously exhausted T-cells bears the
risk of unleashing an uncontrollable alloreactivity causing
life-threatening GvHD [175].

Davids et al. were among the first to explore the safety
and efficacy of ICB after allo-HCT. In two prospective
phase I trials they used ipilimumab [73] and nivolumab
[176] to treat post-transplant relapse in various haemato-
logical malignancies including AML. In both trials, about
1/3 of patients responded. While patients with lymphoid
malignancies seemed to benefit more, myeloid malignan-
cies showed only modest response, except four patients
with extramedullary disease, who achieved complete
remission upon ipilimumab. Beyond, responses to ipili-
mumab were only observed after a higher dose (10 mg/
kg). However, in both trials immune-related adverse
events (IrAE) were considerable, including dose limiting
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toxicities and deaths due to GvHD of gut and liver as
well as other IrAE (pneumonitis, colitis, and hepatitis).
In a similar study, Godfrey et al. [74] evaluated the use
of pembrolizumab in 12 patients with relapsed haemato-
logical malignancies, whereby only two achieved stable
disease (SD). Various IrAE, but no GvHD, were observed.
Finally, the combination of DLI and ICB has been used.
As reported by Holderried et al, patients seemed to
respond better than to nivolumab or ipilimumab alone,
however at the cost of severe GVHD, which was observed
in all patients receiving DLI plus nivolumab. Although
response rate was higher with GvHD, this was counter-
balanced by an increase in treatment-related mortality
[177]. See Table 2 for details on efficacy and toxicities of
studies evaluating ICB.

According to these findings, the risk/benefit ratio does
not support the implementation of ICB for the general
population with myeloid malignancies relapsing after
allo-HCT. Hence, the identification of subgroups with
a higher chance for response seems reasonable. Pen-
ter et al. [184] identified an increased T-cell infiltration
within the TME, and significant differences in gene sig-
natures involving T-cell activation and antigen receptor
signalling in patients responding to ipilimumab vs. those
who did not. Furthermore, they observed an upregula-
tion of interferon-response genes and checkpoint mol-
ecules in patients responding only transiently, which
may be associated with developing resistance to ICB. In
the Nivolumab trial, a higher baseline PD-1 expression
on circulating T, and CD4 cells was associated with
response [176]. Penter et al. [183] analysed the cellular
mechanism of response to PD-1 blockade using mul-
tidimensional single-cell technology in a patient with
AML and augmented PD-L1 expression, which tran-
siently responded to nivolumab. At baseline, CD8 T-cells
showed features of exhaustion and senescence with high
expressions of TIGIT, LAG-3, KLGR1, CD57 and down-
regulation of IL7RA and CD28. At response, an increase
in the proportion of non-exhausted memory CD4*
T-cells and a decrease in exhausted CD8% T-cells was
observed.

Since upregulation of PD-L1 on leukemic cells might also
be responsible for resistance to HMA treatment [82], ICB
have been studied in combination with HMA to improve
their efficacy. [179, 180]. Among patients relapsing after
allo-HCT overall response was 20%. Immune profiling
showed higher baseline frequencies of CD3, CD4-effec-
tor and CD8" T-cells in BM of patients responding to
azacytidine/nivolumab, and high CTLA-4 expression on
CD4*' T-cells in non-responders, whereas the baseline
expression of PD-L1 on blasts/ PD-1 on CD3" T-cells
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was not predictive for response. Penter et al. performed
integrative transcriptome-based analyses after treat-
ment with decitabine/ipilimumab [185]. Among trans-
planted patients, an increased T-cells to blast ratio was
a major determinant for responses, reinforcing the role
of low disease burden for long-term remission to immu-
notherapy. In extramedullary AML, a high infiltration of
regulatory T,.-cells and the CTLA-4 or PD-1 expres-
sion on tissue resident T-cells predicted the response to
ipilimumab.

Cytokine-based approaches Based on the role of IL-15
for the activation of immune effector cells and the obser-
vation of reduced plasma levels in patients relapsing
after allo-HCT, recombinant IL-15 has been clinically
studied in combination with NK-cell infusion. However,
data were conflicting, since remission rates of 35% were
observed in relapsed/refractory AML upon haploidenti-
cal NK-cell infusions plus IL-15 [186], whereas a more
recent study reported that systemic IL-15 resulted in
reduced clinical responses to allogeneic adoptive cellu-
lar treatment [187]. Although supported by pre-clinical
evidence [122], no combined therapy comprising IL-15
and DLI have been reported so far. Similarly, the appli-
cation of IFNy has not yet been studied systematically in
humans.

A summary of preclinical and clinical studies on treat-
ment options addressing distinct immune escape mecha-
nism are listed in Table 2.

New tools for relapse target identification: sequencing
strategies and new modelling

Despite the increasing number of studies about relaps-
ing AML after allo-HCT, further investigation is needed
to achieve a deeper, more comprehensive understand-
ing of the immune mechanisms behind post-transplant
relapse, allowing for rapid analysis and individualized
treatment. Rapidly evolving techniques, including mul-
tiomics factor analysis [16, 18, 188], whole-genome and
whole-exome sequencing [189, 190] or targeted next-
generation sequencing (tNGS) [191] have already iden-
tified new immune escape targets and specific gene
signature in relapsed AML. Other sequencing platforms
such as spatial transcriptomics and single cell sequenc-
ing revealed immune dysfunction signatures in AML
patients, predicting unresponsiveness to checkpoint
blockade treatment [192]. For remodelling the complex-
ity and heterogeneity of relapsing AML in the post-trans-
plant setting, especially for a realistic depiction of the
TME including cytokines and surrounding cells, in vitro
cell culture and murine in-vivo models became more and
more popular. Advanced cell culture systems comprising
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3D biomimetic scaffolds or organ-on-chip technologies
may overcome the limitations of traditional cell culture
models lacking TME cells or other external factors by
mimicking the bone marrow environment. Hence, these
assays provide optimized conditions for studying AML in
the context of relapse and drug resistance [193, 194].

Conclusion and outlook

AML relapse after allo-HCT remains a challenging prob-
lem. It is hoped that the rapidly increasing knowledge
of immune escape mechanisms might allow to exactly
define the particular mechanism(s) responsible for AML
relapse in an individual patient and hence develop a spe-
cific, pathophysiology-based and individualized treat-
ment strategy. This is of particular relevance since at least
some immune escape mechanisms, such as downregula-
tion of HLA and increase of immune checkpoints, seem
to appear in a mutually exclusive way [28], which is why a
one-size-fits-all strategy might not be possible.

For the time being, the clinical application of specific
treatment options is still at the very beginning and has
not made its way into clinical practice outside clinical tri-
als. However, a broad variety of identified mechanisms
seem to offer attractive opportunities for specific inter-
ventions. Among approaches to revert HLA downregula-
tion, the application of IFNYy is investigated in a clinical
trial (NCT04628338). Beyond, EZH2 inhibition appears
particularly promising in this context. In contrast to the
IFNy-dependent strategies, re-establishing HLA expres-
sion via EZH2-inhibition was not associated with PDL-1
upregulation [18]. Comparable effects were achieved in-
vitro by eight different EZH2-inhibitors, which are in part
already available for compassionate use. However, clinical
studies are still to be awaited, as it is the case for the use
of the MDM2 inhibitors, which could be another effec-
tive strategy to increase (p53-dependant) HLA II expres-
sion. In the setting of HLA loss, change to an alternative
donor for allo-HCT?2 seems reasonable and has become
clinical routine in many centers, although evidence from
controlled studies is missing.

As discussed above, currently available ICB had only
moderate effects against myeloid malignancies, which
is why their use at least as monotherapy is unlikely
to become a therapeutic option in the post-HCT set-
ting. The combined role of several checkpoint ligands
simultaneously expressed on blasts from the same
patient [47], as well as the multi-functionality of their
interactions might complicate their use as therapeutic
targets. However, studies investigating factors associ-
ated with better response support the idea that ICB is
in principle able to reinstate the T-cell mediated GvL
effect by reverting T-cell exhaustion, and encour-
ages baseline analyses of PD-1 status and other T-cell
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characteristics for potential selection of suitable can-
didates. The combination of ICB with HMA is a cur-
rently investigated option in several trials. Similar as
for the PD-1/PD-L1 and CTLA-4 axis, TIM-3 can be
targeted with specific monoclonal antibodies, and
even CAR T-cells [78, 79, 195]. For the TIM3-ligand
Gal-9, promising antibodies were developed and con-
firmed to promote T-cell cytotoxicity towards tumor
cells, although not yet in the AML setting [80]. The
pathway is also targeted in an ongoing phase III trial
investigating the role of the TIM-3 directed antibody
sabatolimab (MBG453) in MDS [196], and the combi-
nations of a TIM-3 antibody with the MDM2-inhibitor
HDM201 (NCT03940352) or HMA (NCT04623216)
are also studied. Antibodies against the PVR/PVRL2/
TIGIT axis seem another promising therapeutic
option for AML [59, 62, 84, 85]. Last, a variety of stud-
ies is currently evaluating the role of the CD47 anti-
body Magrolimab in the post- transplant setting (e.g.:
NCT05823480), based on the promising data seen in
non-transplant patients [65, 66].

With respect to systemic application of cytokine-
based therapies, clinical evidence is still extremely
limited. Co-administration of IL-15 and immune
effector cells clinical results have revealed conflicting
data. Hence, although promising, refinement of cur-
rent concepts is required for successful clinical use.
An approach that is closer to clinical evaluation is the
systemic application of sodium bicarbonate for meta-
bolic reprogramming of allogeneic T-cells, which has
been proven its feasibility in humans and may have the
potential of reinforce the GvL effect by counteracting
the AML-mediated metabolic and functional inhibition
of allogeneic T-cells [130].

Given the broad variety of therapeutic toeholds, there
is an enormous number of ongoing clinical trial in
the field. To provide an overview on the range of cur-
rent activities, ongoing clinical trials targeting immune
escape mechanisms in the post-transplant setting are
summarized in the online supplement (see Additional
file 1, information drawn from https://clinicaltrials.gov/,
upon August 8th, 2023.). Of note, about half of these tri-
als investigate immune modulating principles as main-
tenance for prevention of relapse in high-risk patients,
i.e. in a setting without highly proliferating leukemia, to
allow more time for immune effects to develop. Beyond,
also studies investigating different cellular therapy-based
strategies are listed, whose detailed description is out of
the scope of this review.

In conclusion, we are facing a fascinating era of
increasing understanding of immune escape mecha-
nisms that allow myeloid blasts to evade from the allo-
geneic control after allo-HCT. Whereas preclinical
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research will continue to elucidate further evasion
mechanisms as well as how these different mecha-
nisms may interact, ongoing and future clinical trials
will have to identify those mechanisms that can be
successfully addressed to provide rational and individ-
ualized treatment to patients with imminent or overt
relapse after allo-HCT.

Abbreviations
ADCC Antibody-dependant T-cell-mediated cytotoxicity
ALL Acute lymphobilastic leukemia

Allo-HCT Allogeneic hematopoietic stem cell transplantation
Allo-HCT2 Second allogeneic hematopoetic stem cell transplantation
AML Acute myeloid leukemia

APC Antigen-presenting cell

ATG Antithymocyte globulin

B7-H3 (CD276)  B7 homolog 3 protein

B7-H4 V-set domain-containing T-cell activation inhibitor 1
BCL-2 B-cell lymphoma 2

BM Bone marrow

CAR Chimeric antigen receptor

CARMs Chimeric antigen receptor macrophages

CD200R CD200-receptor

CD80 T-Lymphocyte Activation Antigen CD80

CIITA Class Il Major Histocompatibility Complex Transactivator
CIML Cytokine-induced memory-like

CR Complete response

CTLA-4 Cytotoxic T-lymphocyte-associated protein 4

DART Dual affinity retargeting protein

DC Dendritic cell

DLI Donor lymphocyte infusion

eAML Extramedullary AML

EZH2 Enhancer Of Zeste 2 Polycomb Repressive Complex 2
Subunit

FOXP3 Forkhead box protein P3

Gal-9 Galectin-9

GM-CSF Granulocyte-macrophage colony-stimulating factor

GvHD Graft-versus-host disease

GvL Graft-versus-leukemia

Haplo-HCT Haploidentical allo-HCT

HLA Human leukocyte antigen

HMA Hypomethylating agens

ICB Immune checkpoint blockade

IDO1 Indoleamine 2,3-dioxygenase 1

IFNy Interferon-gamma

irAE Immune-related adverse event

JAK-2 Janus kinase 2

KLRG-1 Killer Cell Lectin Like Receptor G1

LAG-3 Lymphocyte-activation gene 3

LAMs Leukemia associated macrophages

LILRB4 Leukocyte immunoglobulin-like receptor-B 4

LSC Leukemic stem cell

MDS Myeloid dysplastic syndrome

MDSCs Myeloid-derived suppressor cells

miHag Minor histocompatibility antigens

MMUD Mismatched unrelated donor

mMRNA Messenger RNA

MSCs Mesenchymal stroma cells

MSD Matched sibling donors

MUD Matched unrelated donor

Ng Nanogram

ORR Objective response rate

oS Overall survival

OX40 (CD134)  Tumor necrosis factor receptor superfamily, member 4

PB Peripheral blood

PCR Polymerase chain reaction

PD-1 Programmed cell death protein 1

Page 17 of 22

PD-L1 Programmed cell death 1 ligand 1
PR Partial response

PRC2 Polycomb repressive complex 2

Pt-CY Post-transplant cyclophosphamide

PVR Poliovirus receptor

r/r Relapsed/ refractory

SCF Stem cell factor

SD Stable disease

TAA Tumor-associated antigens

TAMs Tumor-associated-macrophages

Terms Memory stem cell

TCR T-cell receptor

TIGIT T-cell immunoreceptor with Ig and ITIM domains
TiLs Tumor infiltrating lymphocytes

TIM-3 T-cell immunoglobulin and mucin domain 3
TKls Tyrosine kinase inhibitor

TME Tumor microenvironment

TNFa Tumor necrosis factor alpha

TRAIL Tumor Necrosis Factor Related Apoptosis Inducing Ligand
Tregs Regulatory T-cells

UCB Unrelated cord blood units

VISTA V-domain Ig suppressor of T-cell activation
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