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Background. Although fecal microbiota transplant has 
been used to prevent recurrent Clostridioides difficile 
infection (rCDI), documented pathogen transmissions 
highlight inherent safety risks of minimally processed stool. 
We describe manufacturing processes for fecal microbiota 
spores, live (VOWST; VOS, formerly SER-109), a microbiota- 
based oral therapeutic of Firmicutes spores.

Methods. Bacterial inactivation kill curves were obtained 
after ethanol exposure for 4 model organisms spiked into 
process intermediates.

Results. Bacterial log reduction factors ranged from 6.5 
log10 to 7.4 log10 and lysis of spiked organisms occurred 
rapidly within 30 seconds.

Conclusions. These experiments demonstrate substantial 
and rapid inactivation of representative organisms, 
supporting the potential benefit of VOS manufacturing 
processes to mitigate risk.
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The pathogenesis of Clostridioides difficile infection (CDI) re-
quires a “2-hit” process: exposure to spores and antibiotic- 
mediated disruption of the gastrointestinal microbiome, which 
plays a key role in preventing spore germination into toxin- 
producing vegetative bacteria. Toxin production can cause 
symptoms ranging from mild diarrhea to life-threatening coli-
tis. C. difficile-targeted antibiotics resolve symptoms through 
rapid killing of vegetative bacteria but have no effect on spores, 

which germinate within a low-diversity microbiome, facilitat-
ing recurrent CDI (rCDI) [1]. Fecal microbiota transplantation 
(FMT) is used to prevent rCDI, as microbiome repair is an es-
sential therapeutic goal when antibiotics fail. Efficacy rates 
range from 67% in controlled trials to 82% in observational 
case series, leading to guideline recommendations for FMT in 
rCDI, based on moderate-quality evidence [2, 3].

Recent reports have concluded that FMT has a favorable 
safety profile without transmission of infectious agents [4–6]. 
However, the safety follow-up in 1 report from a stool bank 
[4] ended in 2018 prior to transmission events in early 2019, 
which prompted Food and Drug Administration safety alerts 
[7]. One alert highlighted transmissions of Shiga-toxin produc-
ing Escherichia coli to 5 recipients, leading to hospitalizations 
and 1 cardiorenal death in a patient with preexisting cardiac 
disease; whether this pathogen played a role in the patient’s de-
mise was unclear [8]. In addition, transmission of extended- 
spectrum, β-lactamase–producing Escherichia coli from a 
hospital-based FMT program was identified with prospective 
adverse event (AE) monitoring within 2 FMT trials [9]. One 
immunocompromised patient died, another was hospitalized 
with bacteremia, and 5 became colonized. These transmission 
events highlight inherent safety risks of FMT [10].

Potential risk mitigation includes continuous review for new 
pathogens with fecal shedding, screening every donation, quar-
antining donations with bookend screening, and comprehensive, 
standardized donor testing. These methodologies may increase 
costs and safety concerns remain. Most assays that assess for 
pathogens are validated in patients with active infection rather 
than in asymptomatic carriers who may have lower levels of fecal 
shedding. Furthermore, donor screening algorithms are focused 
on known organisms while emerging pathogens require de novo 
assay development with inherent delays. Finally, retrospective 
AE reporting can preclude timely recognition of a donor as a 
transmission source [1, 11]. A strategic therapeutic approach 
that provides efficacy while mitigating risk is needed.

Fecal microbiota spores, live VOWST (formerly SER-109 
and hereafter referred to as VOS for VOWST oral spores), a 
microbiota-based oral therapeutic comprised of Firmicutes 
bacterial spores, was superior to placebo in reducing risk of 
rCDI in a randomized controlled phase 3 trial in patients 
with history of recurrence [12]. The manufacturing process 
was designed to achieve a purified Firmicutes bacterial spore 
product through exposure to high ethanol concentrations to se-
lectively inactivate nonproduct, vegetative bacteria, including 
potential undetected pathogenic bacteria. We evaluated the ef-
fect of ethanol-based inactivation operations on representative 
vegetative bacteria.
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METHODS

The inactivation step was validated using spiking studies 
whereby specific model organisms were incorporated into 

manufacturing process intermediates and bacterial kill curves 
were measured after ethanol exposure. Four species were 
used to model the range of pathogenic or drug-resistant 

Table 1. Characteristics of Model Organisms

Bacterial species Shape Cell Wall Model Organism

Salmonella enterica Rod Gram-negative Rod-shaped gram-negative pathogenic bacteria such as enteropathogenic Escherichia coli and 
carbapenem-resistant Enterobacteriaceae

Listeria innocua Rod Gram-positive Rod-shaped gram-positive pathogenic bacteria such as Listeria or Corynebacterium

Enterococcus 
faecalis

Cocci in 
chains

Gram-positive Gram-positive diplococcus, representative of Enterococcus and Streptococcus, including 
vancomycin-resistant enterococci

Staphylococcus 
aureus

Cocci in 
clusters

Gram-positive Gram-positive clustering cocci including methicillin-resistant Staphylococcus aureus

Figure 1. Inactivation kill curves (titer vs exposure time) obtained for 4 model organisms spiked into VOWST manufacturing process intermediates: (A) Salmonella enterica, 
(B) Listeria inoccua, (C ) Enterococcus faecalis, and (D) Staphylococcus aureus. Each graph contains 3 replicate studies for each organism. Horizontal dashed lines represent 
LOD (200 CFU/mL) for the plating assay. Error bars are presented for each sample with a titer above LOD and represent 1 standard deviation of the measured value based on 
triplicate measurements. Abbreviations: CFU, colony-forming unit; LOD, limit of detection.
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bacteria: Salmonella enterica for rod-shaped, gram-negative 
pathogens such as Escherichia coli and representative of 
carbapenem-resistant Enterobacteraceae; Listeria innocua for 
rod-shaped, gram-positive pathogens such as Listeria or 
Corynebacterium; Enterococcus faecalis for Enterococcus and 
Streptococcus including vancomycin-resistant enterococci; 
and Staphylococcus aureus for gram-positive, clustering cocci 
such as methicillin-resistant S. aureus (see Table 1 for charac-
teristics of each strain). Strain sources, study execution, and 
methods to assess relative impact to risk mitigation are de-
scribed in the Supplementary Materials.

RESULTS

Bacterial log reduction factors ranged from 6.5 log10 to 7.4 log10 

(Figure 1). The full range of estimates is limited by the maxi-
mum bacterial titers that could be achieved in culture and the 
lower limits of assay detection. In all cases, lysis of the spiked 
organisms in the process matrix was rapid with titers reaching 
the assay limit of detection within 30 seconds for every replicate 
(Figure 1). The minimum observed inactivation rate was 13.4 
log10/minute corresponding to an inactivation D value (time 
required to achieve 1 log10 reduction) of 4.5 seconds, consistent 
with rapid bacterial inactivation. For perspective, the reported 
D value for steam autoclaving is 20 times slower at 1.5 minutes. 
The VOS manufacturing process maintains an ethanol contact 
for a minimum of 5 minutes, which is capable of bacterial inac-
tivation well in excess of the total vegetative bacterial content of 
donor stool.

DISCUSSION

These experiments demonstrate substantial and rapid inactiva-
tion of representative model organisms, supporting the poten-
tial benefit of VOS manufacturing processes to mitigate risk to 
patients while providing beneficial Firmicutes needed for effi-
cacy in reducing risk of rCDI. Firmicutes spores possess several 
inherent attributes that enable selective purification and effi-
cient drug delivery. Resistance of spores to ethanol enables se-
lective inactivation of vegetative microbes, including 
drug-resistant bacteria. Spore dormancy, which includes resis-
tance to aerobic conditions, enables the full processing time re-
quired for spore purification from fibers and fecal solids, 
leading to removal of 99% of the total mass of donor materials. 
Spore resistance to gastric acid and oxygen enables oral deliv-
ery. Germination of spores into replicating vegetative bacteria 
also supports a low pill burden.

Although the reported risk is low, FMT-related transmis-
sions of pathogenic bacteria are arguably predictable outcomes 
and may be underreported due to few controlled trials with rig-
orous AE reporting [10]. Additionally, emerging bacterial path-
ogens are continually being recognized and cannot always be 
anticipated. Drug-resistant bacteria can lead to hard-to-treat 

infections with high rates of morbidity and mortality, high-
lighting the implications of undetected bacterial pathogens, 
which have been identified in healthy community residents 
without demographic risk factors [13]. Finally, there remains 
no safety net for FMT products when screening failures occur 
due to false-negative testing, asymptomatic carriage below the 
limit of assay detection, or unrecognized novel bacterial path-
ogens. As demonstrated here, validated processes for inactiva-
tion reduce bacterial pathogen transmission risk beyond donor 
screening alone. In addition, we reported that the VOS manu-
facturing steps inactivate fungi, parasites, and viruses, includ-
ing a model coronavirus [14, 15].

In conclusion, clinical development of microbiome thera-
peutics needs to consider efficacy in addition to risk mitigation. 
VOS manufacturing processes lead to a purified Firmicutes 
product providing efficacy, as observed in a randomized con-
trolled trial, while mitigating pathogen transmission risk, a 
highly desired outcome for vulnerable patients at risk for rCDI.

Supplementary Data

Supplementary materials are available at The Journal of 
Infectious Diseases online. Consisting of data provided by the 
authors to benefit the reader, the posted materials are not copy-
edited and are the sole responsibility of the authors, so ques-
tions or comments should be addressed to the corresponding 
author.
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