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Abstract

Current data-dependent acquisition (DDA) approaches select precursor ions for MS/MS 

characterization based on their abundance, known as a TopN approach. Low abundant species may 

not be identified as biomarkers in a TopN approach. Herein, a new DDA approach is proposed, 

DiffN, which uses the differential abundance of ions between two samples to selectively target 

species undergoing the largest fold-changes for MS/MS. Using a dual nano-electrospray (nESI) 

ionization source which allows samples contained in separate capillaries to be analyzed in parallel, 

the DiffN approach was developed and validated with well-defined lipid extracts. The dual nESI 

source and DiffN DDA approach was applied to quantify the differences in lipid abundance 

between two colorectal cancer cell lines. The SW480 and SW620 lines represent a matched pair 

from the same patient: the SW480 cells from a primary tumor and the SW620 cells from a 

metastatic lesion. A comparison of the TopN and DiffN DDA approaches on these cancer cell 

samples highlights the ability of DiffN to increase the likelihood of biomarker discovery and the 

decreased probability of TopN to efficiently select lipid species that undergo large fold changes. 

The ability of the DiffN approach to efficiently select precursor ions of interest makes it a strong 

candidate for lipidomic analyses. This DiffN DDA approach may also apply to other molecule 

classes (e.g., other metabolites or proteins) that are amenable to shotgun analyses.
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Introduction

In biomarker discovery, prognostic molecular signatures distinguish a phenotype of interest 

from a control, typically a disease-related state vs. a healthy state. Qualitative assessments 

rely on the presence or absence of a unique set of biomolecules, such as unique 

oligonucleotide sequences, antigens, or host-generated antibodies that result from a bacterial 

or viral infection. Many disease-related states, however, are identified by subtle changes 

in metabolite pools.1–4 Detecting these changes requires accurate quantitative measures 

capable of identifying and measuring multiple species simultaneously. Coupling a separation 

technique such as liquid chromatography (LC) to mass spectrometry (MS) is a powerful 

tool for biomarker discovery,5,6 providing molecular identification and quantification. 

However, due to instrumental limitations, not every species eluting under an LC peak 

can be targeted and identified with tandem mass spectrometry (MS/MS). Data-dependent 

acquisitions (DDAs) prioritize which m/z values are selected for MS/MS, allowing the 

mass spectrometer to focus on a subset of species. In a TopN approach, an N number 

of the most abundant ions in the mass spectrum are selected for MS/MS identification 

or quantification.7,8 Typical TopN approaches target the most abundant 10 – 15 ions to 

be selected as precursor ions, which can limit extensive sample coverage. Two TopN 

DDA approaches are typically used, dynamic exclusion and iterative exclusion. In dynamic 

exclusion, precursor ions selected in the first MS survey scan are placed on a “dynamic” list 

for a certain amount of time. The next set of topmost abundant precursors are selected in the 

next survey scan and this process can be repeated. Dynamic exclusion can typically target 

a few hundred species efficiently, but often misses low abundance peaks. Alternatively, 

an iterative exclusion approach can be used. In iterative exclusion, a single sample is 

repeatedly analyzed, and precursor ions selected in the previous analysis (i.e., the most 

abundant precursors) are placed on an exclusion list for the next analysis. This process can 

be repeated for N number of analyses. Iterative exclusion allows for identification of much 

lower abundance species compared to dynamic exclusion, but the need for repeat analyses 

significantly reduces the throughput and efficiency of the discovery process and can require 

large sample volumes.9–11
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Direct infusion, or so-called “shotgun” analyses, introduce the sample to the MS without 

prior separation.12,13 Shotgun analyses offer a simpler setup and reduced analysis times, and 

can require less sample than chromatographic DDA methods where repeat injections are 

performed. A disadvantage of shotgun approaches is lower overall sample coverage due to 

matrix effects and/or ionization suppression from highly abundant species. TopN approaches 

are also used in shotgun analyses and dynamic and iterative exclusion DDA approaches can 

increase sample coverage.14–16

The coverage obtained in chromatographic and shotgun analyses of complex mixtures 

using a TopN approach is limited, less likely to identify species that are low abundance 

but undergo large fold-changes between the phenotype of interest and control samples. 

The detection and quantification of fold changes across multiple species are particularly 

useful in biomarker discovery17–19 and is information that can be lost when focusing on 

high abundant, housekeeping species. Here, a new method of precursor ion selection for 

MS/MS analysis is demonstrated to identify and characterize species that undergo the 

largest changes between multiple samples, DiffN. In a DiffN approach (Fig. 1), fold-changes 

for every precursor ion contained in two (or more) separate samples are determined in 

real-time. Species that meet a differential abundance threshold are then targeted for MS/MS 

acquisition. Unlike TopN approaches, DiffN focuses on fold changes rather than intensity. 

It offers the potential to improve biomarker discovery by focusing on less abundant species 

that undergo large fold changes and reducing the amount of sample needed by limiting the 

extent of reanalysis. Additionally, two (or more) samples are analyzed in parallel, rather than 

sequentially, which minimizes the effect of instrumental fluctuations.

The DiffN approach to selecting precursor ions for MS/MS analysis does not alter current 

sample preparation, separation, or characterization workflows and thus should apply broadly 

to metabolomic and proteomic-based biomarker discovery. To demonstrate its utility, the 

DiffN DDA approach was applied to determine differences in lipid abundance between a 

matched pair of colorectal cancer cell lines obtained from a primary tumor (SW480 cells) 

and a metastasis (SW620 cells). Lipids were chosen because they are known biomarkers 

for distinguishing cancerous and healthy tissue.20–24 Altered lipid signatures also can 

distinguish drug responsive and resistant cancer cells.25–27

Materials and Methods

Reagents.

Unless otherwise stated, all reagents were used as received. Optima™ grade methyl tert-

butyl ether (MTBE), dichloromethane (DCM), formic acid, methanol (MeOH), and water 

were purchased from Fisher Scientific. Ammonium acetate was purchased from Sigma 

Aldrich. Bovine liver extract (BLE) and the Differential Ion Mobility System Suitability 

Synthetic Standard Mix were purchased from Avanti Polar Lipids. Pyrex glass capillaries 

(1.5–1.8 × 90 mm) used for nESI were purchased from Fisher Scientific. All 3D- printed 

components used in this work were printed on a Form2 printer with Clear V4 resin 

(Formlabs).
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Dual nESI Design.

The dual nano-electrospray ionization (dual nESI) source was based on a previous 

design.28,29 The two nESI emitters were controlled electrokinetically using a simple custom-

built power supply and switching circuit, which allowed for the simultaneous collection 

and DiffN analysis of two samples. The circuit used to control the dual nESI source in 

this work used an EMCO C25N power module to apply −1.5 kV to each emitter, which 

initiated or stopped electrospray via two high voltage reed relay switches. The switching rate 

and duration of the applied voltage on a single emitter were controlled with a LabVIEW 

program. The constant voltage supplied by the EMCO module resulted in a switching time 

of 500 μs between emitters (Fig. S1B). This setup overcame the limitations of a previously 

described design,28,29 which required a 250 ms delay between emitter switching (Fig. S1A). 

This new level of control between emitters reduced crosstalk and allowed full utilization of 

the MS duty cycle. Figure S2 is a detailed diagram of the power supply used to control the 

dual nESI setup.

Dual nESI Parameters and Validation.

The electrospray solvent was 50/50 (v/v) dichloromethane/methanol containing 0.1% formic 

acid (by volume) and 5 mM ammonium acetate. The solvent also contained either 0.1 or 1.0 

μg/mL of a synthetic lipid mixture (Table S1), which served as an internal standard. Each 

nESI emitter was loaded with approximately 30μL of the sample before analysis and placed 

15 mm from the MS inlet. The spacing between emitter tips was set at 3.5 mm (Figure 

S3). The reproducibility and accuracy of the dual nESI setup were evaluated by measuring 

the fold change between two emitters, one containing 1.0 μg/mL and the other 2.0 μg/mL 

of a bovine liver extract (BLE) lipid standard. For each experiment, the two emitters were 

alternated (pulsed) on and off five times. Each emitter was on for 12 seconds per pulse 

during which time 10–12 mass spectra were acquired. As each emitter was on five times 

during the experiment, a total of 50–60 mass spectra were acquired per emitter. These mass 

spectra were then averaged to give an intensity value for each emitter. This same process 

was repeated for a total of three pairs of emitters, after which the average fold change, 

standard deviation, and %RSD were calculated for lipid species in BLE using the intensity 

values determined for the three emitter pairs.

MS and DIMS Parameters.

The dual nESI emitters were coupled to a Bruker HCT Ultra quadrupole ion trap mass 

spectrometer with a custom-built differential ion mobility spectrometer (DIMS) positioned 

on the front of the MS inlet capillary.30 The DIMS was operated at a compensation field 

(CF) of 67 V/cm and a dispersion field (DF) of 22 kV/cm. MS parameters used for all 

experiments were as follows: capillary voltage, 2.0 kV; skimmer voltage, 40.0 V; capillary 

exit voltage, 149.5 V; octopole 1 voltage, 8.00 V; octopole 2 voltage, 2.20 V; trap drive, 

80.5; octupole RF, 200 Vpp; lens 1 voltage, −5.0 V; lens 2 voltage, −60.0 V; dry gas 

temperature setting, 200 °C; dry gas flow rate, 1 L/min; smart target, 100,000; maximum 

accumulation time, 200 ms; scan range, 400–1000 Da; spectral averages, 15.

The glass capillaries (Pyrex) used for nESI were pulled to an inner diameter of 

approximately 12.5 μm using a two-stage PC-10 heated capillary puller (Narishige) with 
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the following temperature settings (arbitrary units): initial, 24.8; stage one, 60.0; stage two, 

48.0. A 36-gauge stainless steel wire was positioned in the barrel of each capillary before 

they were mounted in a 3D printed holder.

Cell Culture and Lipid Extraction.

All cell culture medium and supplements were purchased from Gibco, except for fetal 

bovine serum (FBS, VWR). The SW480 and SW620 cell lines were purchased from the 

American Type Culture Collection and validated by short tandem repeating sequencing. 

Both cell lines were maintained as monolayers at 37 °C and 5% CO2 in phenol-free RPMI 

1640 medium supplemented with 10% FBS, HEPES (12.5 mM), and penicillin-streptomycin 

(1%, v/v). The culture medium was exchanged every 2–3 days, and cells passed at 80–90% 

confluency with phenol-free TrypLE, following standard culture procedures.

The lipid extraction procedure was modified from a previously published protocol.31 Here, 

cells were detached from the plate and counted using the trypan blue exclusion method. 

Aliquots of 1.0×106 cells were pelleted by centrifugation (1000 xg, 5 min), washed with 

1 mL of a 1X phosphate buffered saline solution, and re-pelleted to remove any residual 

culture medium. The cells were resuspended in 300 μL of ice-cold methanol (−20 °C) and 

vortexed for 30 s. Next, lipids were extracted into 1200 μL of MTBE. After 30 min of 

agitation on a reciprocating shaker, 300 μL of water was added, each sample was centrifuged 

(21,000 xg, 5 min), and 1000 μL of supernatant was collected. The supernatant was dried 

under vacuum and reconstituted in 1 mL of electrospray solvent containing 1 μg/mL of the 

internal standard lipid mixture.

Data Analysis.

Unless otherwise stated, values are the average and standard deviation of at least four 

samples prepared from separate plates of cells, loaded into separate pairs of capillaries, and 

placed in the dual nESI setup. To limit the biological variation associated with different cell 

passages, samples of the SW480 and SW620 cell lines were processed from a single cell 

pass. All plots and statistical analyses were made in GraphPad Prism version 9.3.1.

Results and Discussion

Validation of the DiffN Approach with Lipid Mixture Standards.

The DiffN approach selects precursor ions for MS/MS identification based on their 

differential abundance between two samples. In Figure 2 is the workflow for DiffN 

precursor ion selection, which depends on accurate relative quantification of each lipid 

species (fold change). In this experimental setup, equal concentrations of an internal 

standard were added to each sample and loaded into capillaries. The internal standards 

accounted for variations arising from differences in capillary tip geometry, spray instability, 

and ionization suppression. The sample-containing capillaries were aligned in front of the 

MS inlet, and a mass spectrum of each sample obtained (Fig. 2, steps 1 and 2). A Ratio 

spectrum was generated by dividing the internal standard-normalized intensities of each m/z 
value (Fig. 2, step 3). A DiffN spectrum was generated by plotting the reciprocal of ratios 

with a value of < 1.0 (Fig. 2, step 4). Finally, species with a DiffN value greater than a preset 
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threshold (e.g., 1.5-fold, Fig. 2 dotted blue line) were selected for MS/MS identification 

(peaks 1 and 2).

The accuracy of the dual nESI source and the DiffN workflow was validated by comparing 

emitters loaded with 1.0 and 2.0 μg/mL BLE. This extract was chosen because it contains a 

high percentage of glycerophospholipids (GPs, Table S2), which are abundant in colorectal 

cancer cell lines.32,33 The DIMS parameters used for all experiments were determined 

empirically. A DF of 22 kV/cm and a CF of 67 V/cm were used because they allowed co-

transmission of all lipid species into the MS while excluding background contaminant ions. 

To determine the optimal CF for lipid transmission, CF scans were performed. A CF of 67 

V/cm was chosen because it was closest to the center of all lipid peaks transmitting through 

the DIMS. To ensure the DIMS CF chosen did not affect the fold change measurement 

accuracy, three CF values were tested: the optimal CF, 67, as well as 60, and 73 V/cm. 

The fold-changes for all lipid species were not statistically different for the three CFs 

(Fig. S5 A and B), as determined by a student’s t-test. Of the CFs tested, 67 V/cm gave 

the lowest average %error for all lipid species with a value of 10.5% (Fig. S5C) while 

maintaining good reproducibility (%RSD 11.4% across all lipids, Fig. S5D). Lipid classes 

could potentially be separated using a higher resolution DIMS34 or carrier gas modifiers,28 

which could significantly enhance the capability of DiffN by separating isobars/isomers.

Figure 3 is a Ratio Spectrum of 25 species in the BLE sample that were confidently 

identified with MS/MS. (The Ratio and DiffN spectra are the same in this case as 

the samples are identical, the fold-change of each lipid species is due to a different 

concentration of the same BLE sample.) These values were determined by normalizing 

the raw signal intensities to either, 1) the sum of the signal of the internal standards, 2) the 

signal of the lipid class specific internal standard, or 3) the sum of the internal standard 

signal where the class specific species was excluded (e.g., when normalizing PC lipids, 

the PC class specific internal standard was excluded from the sum). All approaches were 

tested because the sum of the internal standards is most appropriate for unknown samples, 

as the identities of lipid species have yet to be determined. Additionally, the sum of all 

internal standards, class specific excluded, is relevant for when a class specific internal 

standard is not available. All normalization methods resulted in statistically indistinguishable 

ratios, as determined by Student’s t-tests for each lipid species, confirming the validity of 

each method of normalization. If a solvent modifier28 or high resolution DIMS34 is used to 

separate lipid classes, then the class specific internal standard would be the only one used.

Each data point is the average of fold changes determined from three replicates, where a 

new pair of nESI emitters were used for each replicate. The bias between the measured and 

expected fold-changes for all 25 of the identified lipid species was less than 20%. For 23 of 

the identified lipid species, the bias was less than 10% (Fig. S4).

The reproducibility of the fold changes between the three sets of nESI emitters was also 

acceptable with 22 of the lipid species having relative standard deviations (RSD) of less than 

20%. Three species had RSD values greater than 20%, each a triglyceride (TG): 25.2% for 

TG 50:0, 43.2% for TG 48:0, and 21.6% for TG 48:1. The imprecision in the fold change 
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measurements is likely due to a combination of low abundance and ion suppression by 

higher abundance phosphatidylcholines (PCs).

Applying the DiffN Workflow to Compare the SW480 and SW620 Cell Lines.

The DiffN DDA method was applied to select the precursor ions of lipid species extracted 

from the SW480 and SW620 colorectal cell lines. These two cell lines are a matched pair, 

obtained from the same patient. The SW480 cells were derived from the primary tumor and 

the SW620 cells from a lymph node metastasis. The lipid profiles of these cell lines were 

previously compared using a shotgun approach and a TopN DDA method, providing a good 

starting point to benchmark the DiffN workflow.

Lipids were extracted and analyzed from four samples, each containing 1×106 cells. The 

SW480 and SW620 cell lines were analyzed simultaneously in the dual nESI setup at a 

DIMS DV of 22 kV/cm and a static CV of 67 V/cm. The intensity of each precursor ion 

was normalized to the sum of the internal standard intensities. The fold-change between the 

SW620 and the SW480 peaks was determined from the analyte-to-internal standard ratios. 

Any fold changes with %RSD values > 30.0% were attributed to noise (e.g., signals near 

the instrument’s detection limit) and excluded. Additionally, fold changes between 0.7–1.3 

were excluded to truncate the dataset and focus on lipids with larger differential abundances. 

The m/z list that met these criteria contained 118 peaks which were then characterized with 

MS/MS. Included in this list were peaks containing one or more 13C isotopes. Therefore, of 

the 118 peaks characterized by MS/MS, 40 of them were identified as a monoisotopic lipid 

peak.

In Figure 4A the lipid fold changes between the SW620 and SW480 cells are depicted 

as a Ratio spectrum. Figure 4B is the corresponding DiffN spectrum, in which the 

reciprocal values for fold changes < 1.0 observed in the Ratio spectrum are plotted. For 

example, PC 36:4 has a fold change of 0.26 in the Ratio spectrum but an overall 3.84-fold 

difference in the DiffN spectrum. In Figures S6 and S7 the analyte-to-internal standard ratios 

and statistically significant differences in lipid abundance between the two cell lines are 

depicted.

Of the 15 upregulated lipid species in the SW620 cells, eight were TGs and seven GPs. 

Two of the GPs were confidently identified as phosphatidylcholines (PCs). The MS/MS 

spectra of the remaining four GPs contained product ions that corresponded to a PC 

phosphate headgroup (m/z = 184.1) and the neutral loss of a phosphatidyl ethanolamine 

(PE) phosphate headgroup (mass 141.1), indicating a pair of isobars at the same m/z value. 

Of the 25 downregulated lipids in the SW620 cells, 21 were confidently identified as PCs. 

The remaining four GPs also contained both PC and PE signatures. The species that gave 

product ion signatures of both a PC and PE originated from a pair of isobaric precursor ions. 

MS/MS was performed in an attempt to determine the fold-change of each of these isobaric 

species using the relative abundances of the m/z = 184.1 and ions with mass 141.1 losses. 

However, these values did not match the fold changes determined from the full scan mass 

spectra. The product ion signals were low for m/z 184.1 and the m/z resulting from neutral 

loss of 141.1 Da. The signal may have been suitable for qualitative identification but not 

for quantification. Given the discrepancies between the ratios from the full scan and MS/MS 
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spectra, the fold change of the PC and PE isobars were reported as PC/PE in Figure 4. In the 

future, DIMS carrier gas modifiers could be used to potentially separate isobaric species to 

determine individual fold change contributions.28

With DiffN, fold changes are determined on an MS1 level. An added benefit of determining 

fold changes on an MS1 level is obtaining fold change values for the monoisotopic 

peak and each 13C-containing isotope detected. The isotopic distributions provide multiple 

measurements of the same molecule and allow for confirmation of the fold change 

measurement for the monoisotopic species. Two examples of using 13C-containing isotopes 

to confirm the fold change are depicted in Fig. S8. Depicted in Fig. S8A is a highly 

abundant peak, PC 34:1, which is 54% of the base peak, while depicted in Fig. S8B is a 

lower abundance peak, PC 38:4, which is only 5% of the base peak. For PC 34:1, three 13C-

containing isotopes were detected, while only one was detected for PC 38:4. Nevertheless, 

the fold changes for the 13C-containing peaks were the same as the monoisotopic peak, 

confirming the correct fold change value was determined.

The lipids identified using the DiffN method were compared to those reported in literature. 

Previously, other groups have characterized the lipid profiles of the SW480 and SW620 cell 

lines using a modified Folch extraction, introducing the samples to the MS with a single 

nESI emitter and a PC 28:0 internal standard. PC, PE, and TG species were differentially 

abundant between the two cell lines in both datasets. Of the 40 lipids identified using DiffN, 

29 (72.5%) were identified by others who used a TopN DDA approach. Of the 29 lipids 

identified in both studies, the fold-change direction (increase or decrease) was the same for 

21 lipids. Of the eight lipids remaining, others found no statistical difference in abundance 

for four of them (all PCs) while the other four showed opposite fold changes (two TGs, 

one PC, and one PE). The discrepancies for those eight lipids are likely due to biological 

variation where different cell culture conditions and different passage numbers, leading to 

genetic variation, could affect lipid uptake, synthesis, and storage, and thereby change the 

observed abundance for certain lipid species.

To further illustrate the benefits of focusing on fold-changes between samples rather than 

abundances when selecting precursor ions for MS/MS, the m/z values selected using a TopN 

or DiffN approach for the same lipid extract samples from the SW480 and SW620 cell 

lines were compared. Table 1 lists the ten most abundant lipid species and the ten most 

differentially abundant species, the Top10 and Diff10 precursor ions across the two cell 

lines. The Top10 approach exhibited several limitations compared to Diff10. First, each 

lipid species selected by the DiffN approach underwent a fold change (> 2.0) while the 

seven lipid species unique to the Top10 list did not. Figures S6, S7, and S9 depict the 

analyte-to-internal standard ratios and statistical significance of each fold change for lipids 

in the Diff10 and Top10 lists. Nine out of ten species in the Top10 list had statistically 

significant fold changes based on a Student’s t-test (p-value <0.05) while all species in the 

Diff10 list showed statistically significant fold changes. PC 38:4 (fold change 1.11) in the 

Top10 list was not significant. Second, of all the lipids identified (43 lipids total including 

the 40 identified by DiffN and three unique lipids selected by Top10 and not by DiffN- PC 

36:2, PC 36:1, and PE 38:4), the most abundant precursor ion, PC 34:1, ranked 31st in terms 

of fold change, indicating that intensity does not necessarily correlate with fold change.

Larson et al. Page 8

Anal Chem. Author manuscript; available in PMC 2024 June 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5 is a mass spectrum of the SW620 lipid extract (a mass spectrum of the SW480 

lipid extract is shown in Fig. S10), with m/z values selected with the TopN and DiffN 

DDA approaches noted. These m/z values correspond to the lipid species in Table 1. This 

visualization of the data and the m/z selection process highlight the ability of the DiffN 

approach to target species that undergo large fold changes but are of low abundance. These 

species are targeted immediately and do not require many rounds of iterative exclusion 

needed in a TopN approach. This data also highlights the narrower mass range occupied by 

Top10 species, where the highly abundant ions are present, and shows the DiffN approach 

can target species across a wider mass range that are low abundance. A wider mass range 

could potentially lead to targeting a wider variety of lipid classes. With DiffN, the discovery 

of unique biomarker signatures is enabled with greater efficiency in terms of instrument duty 

cycle and experiment time.

Conclusion

A new method is described for selecting precursor ions for MS/MS characterization, the 

DiffN DDA approach. To demonstrate its utility, two samples were characterized with a 

dual nESI source coupled to DIMS-MS. Unlike the commonly used TopN approach, DiffN 

is not biased by absolute abundance but instead uses the differential abundance of species 

in the two samples to select MS/MS precursor ions undergoing the largest fold changes. A 

comparison of lipid species selected with the TopN and DiffN DDA approaches highlights 

that high abundance does not always correspond to a large fold change. Diff10 selected 

seven unique peaks with relatively low abundances, and all 10 peaks had fold changes > 

2.0, while Top10 only selected three peaks with fold changes > 2.0. Differential abundance 

is important in biomarker discovery, where a change in one or more species indicates a 

cellular phenotype or disease state. While lipids were the biomolecule of choice for this 

work, the DiffN approach could be promising for many types of -omics analyses to identify 

biomarkers more efficiently.
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Figure 1. 
Graphical representation of precursor ion selection for MS/MS analysis using (top) a 

TopN DDA approach or (bottom) the DiffN DDA approach. In TopN, Samples A and B 

are analyzed sequentially (e.g., separate chromatographic separations or separated direct 

infusions) and the most abundant species are selected for MS/MS (here, peaks 1, 4 and 6 in 

Sample A and 1, 2, and 4 in Sample B). TopN may miss low abundance species with higher 

fold changes (here, peaks 3 and 5). In DiffN, Samples A and B are analyzed in parallel. 

Species with the largest differential abundances are targeted for MS/MS (here, peaks 2, 3, 

and 5).
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Figure 2. 
Workflow for DiffN MS/MS precursor ion selection. In steps 1 and 2, mass spectra for 

Samples A and B are acquired. Next, each peak in the two mass spectra is normalized to 

the internal standard intensity. In step 3 a Ratio Spectrum is generated where the normalized 

mass spectrum of Sample A is divided by the normalized mass spectrum of Sample B. Next, 

each value in the Ratio Spectrum with a fold change <1.0 is changed to its reciprocal value 

to generate a DiffN Spectrum (step 4). Finally, MS/MS spectra are acquired for each of the 

N selected peaks in the DiffN Spectrum.
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Figure 3. 
Comparison of the fold-changes of each lipid species between 2.0 μg/mL and 1.0 μg/mL 

BLE determined by normalizing to the sum of the internal standards (●), normalizing to 

each class-specific internal standard (), and normalizing to the sum of all internal standards 

(), excluding the class of the lipid being normalized (e.g., when normalizing PC lipids, 

the PC class specific IS was excluded from the sum). There is no statistical difference in 

fold changes for any method of normalization. Species are plotted in order of increasing 

abundance with the lowest abundance species on the left and the highest abundance species 

on the right.
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Figure 4. 
(A) Ratio spectrum displaying the fold-change of identified lipid species in the SW620 

extract divided by the corresponding lipid species in the SW480 extract. (B) The DiffN 

spectrum, which plots the reciprocal of all fold changes in the ratio spectrum that were less 

than 1.0. All lipids were normalized to the sum of the internal standard intensities before 

determining the fold changes. Blue squares (■) represent lipids in the Ratio spectrum with a 

fold change <1.0, and black circles (●) represent lipids with a fold change >1.0. Lipids are 

ordered in terms of relative abundance with the lowest abundance species on the far left of 

the plot and the highest abundance species on the right of the plot.
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Figure 5. 
Mass spectrum obtained from a lipid extract of the SW620 cell line. The m/z values 

selected by the TopN approach are annotated in blue, the DiffN approach in green, and both 

approaches in black. Only lipid species in the cells were used in the peak picking process, 

with m/z values of the internal standards omitted from the selection.
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Table 1.

Precursor ions detected in the SW480 and SW620 cell lysates selected using the Top10 or Diff10 approach. 

a,b,c

Top10 Diff10

Lipid ID m/z Fold Change Lipid ID m/z Fold Change

PC 34:1 760.8 1.53 PC 36:4 782.8 3.82

PC 34:2 758.8 2.45 PC 38:5 808.7 3.23

PC 36:2 786.7 1.25 PC 38:4 810.7 3.08

PC 32:1/PE O-36:1 732.8 1.64 PC 38:6 806.7 2.91

PC 36:4 782.8 3.82 PC 36:5/PE O-40:5 780.8 2.49

PC 36:1 788.8 1.18 PC 34:2 758.8 2.45

PC O-34:1/PE 36:1 746.8 1.37 PC 36:3 784.7 2.44

PC 32:0/PC O-33:0 734.8 1.70 PC O-30:0 692.8 2.20

PE 38:4 768.7 1.11 PC 34:3 756.7 2.20

PC 36:3 784.7 2.44 PC 40:6 834.7 2.14

a
Values highlighted in blue were picked by the Top10 DDA approach

b
Values highlighted in green were picked by the Diff10 DDA approach

b
Values highlighted in black were picked by both the Top10 and Diff10 DDA approach
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