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Abstract

Background—AI/ML CAD tools can potentially improve outcomes in the high-stakes, 

high-volume model of trauma radiology. No prior scoping review has been undertaken to 

comprehensively assess tools in this subspecialty.

Purpose—To map the evolution and current state of trauma radiology CAD tools along key 

dimensions of technology readiness.
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Methods—Following a search of databases, abstract screening, and full-text document review, 

CAD tool maturity was charted using elements of data curation, performance validation, outcomes 

research, explainability, user acceptance, and funding patterns. Descriptive statistics were used to 

illustrate key trends.

Results—A total of 4052 records were screened, and 233 full-text articles were selected for 

content analysis. Twenty-one papers described FDA-approved commercial tools, and 212 reported 

algorithm prototypes. Works ranged from foundational research to multi-reader multi-case trials 

with heterogeneous external data. Scalable convolutional neural network–based implementations 

increased steeply after 2016 and were used in all commercial products; however, options for 

explainability were narrow. Of FDA-approved tools, 9/10 performed detection tasks. Dataset 

sizes ranged from < 100 to > 500,000 patients, and commercialization coincided with public 

dataset availability. Cross-sectional torso datasets were uniformly small. Data curation methods 

with ground truth labeling by independent readers were uncommon. No papers assessed user 

acceptance, and no method included human–computer interaction. The USA and China had the 

highest research output and frequency of research funding.

Conclusions—Trauma imaging CAD tools are likely to improve patient care but are currently 

in an early stage of maturity, with few FDA-approved products for a limited number of uses. The 

scarcity of high-quality annotated data remains a major barrier.
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Introduction

Artificial intelligence and machine learning (AI/ML)–based automated computer-aided 

detection and diagnosis (CAD) tools that detect, classify, grade, quantify, risk-stratify, or 

prognosticate injury can potentially improve patient outcomes in the high-stakes, safety–

critical, high-volume model of trauma care. Dedicated round-the-clock ER/trauma staff are 

rarely available outside of busy level I referral centers, and such tools may stand to have the 

greatest impact on patient outcomes in locations with fewer resources and human expertise 

[1]. In addition, CAD tools could improve turnaround times, decrease the rate of significant 

errors, and reduce the often substantial inter- and intra-observer variabilities of classification 

systems such as AO fracture and American Association for the Surgery of Trauma (AAST) 

organ grading systems [2–13].

CAD tools: concepts and trends

CAD development emerged in the 1980s using artificial intelligence solutions relying 

on painstaking pre-defined task-specific hand-crafted feature engineering and often did 

not generalize or scale well to new data, with few examples of commercialization and 

widespread adoption beyond mammography [14]. The year 2012 marked a watershed year 

for supervised feature representation machine learning (i.e., deep learning). Advances in 

inexpensive graphics processing units (GPUs) with rapid parallel computing architectures 

and the superior classification performance of the AlexNet convolutional neural network 
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(CNN) on the large-scale ImageNet dataset in 2012 [15] were followed by the development 

and open-sourcing of progressively deeper networks [16], encoder-decoder networks (U-

Net) for medical imaging segmentation tasks [17], and the introduction of “transfer 

learning” (pre-training on non-medical images and fine-tuning to medical tasks) in 2015–

2016 [18]. The resulting “second boom” in radiology CAD tool development [19] 

corresponded with an exponential global growth trend in AI/ML publications [19, 20]. 

Radiology is a data-driven field that was quick to adopt digitized RIS/PACS systems [20, 

21] and has been especially well-positioned to catch the tailwinds of new information 

technologies, with disproportionate growth in FDA-approved AI/ML tools in recent years 

[22]. Approximately 58% of FDA-approved AI/ML tools are in the radiology domain [22].

The FDA Center for Devices and Radiological Health currently classifies tools that stage, 

diagnose, or triage pathology as CADt (triage), CADe (detection), CADx (diagnosis), 

or CADe/x (both detection and diagnosis). IPQ (image processing and quantification) is 

another common designation for software that is not disease-specific [22]. As many as 

99% of AI/ML CAD tools are regulated through the 510 k or de novo software as medical 

device (SaMD) pathway, and evaluated based on equivalence to existing devices, or whether 

devices work as intended without major risks [23]. While experts are optimistic regarding 

mainstream adoption of deep learning algorithms into future clinical practice [24, 25], 

implementation into practice is currently not widespread [26].

Traumatic injury represents a leading cause of death and disability in patients under the 

age of 45 with disproportionate effects on quality of life, years of lost productivity, and 

economic consequences [27, 28]. Although trauma imaging has some overlap with the body 

region-specific subspecialties, it remains a subfield within the understudied and underfunded 

field of emergency radiology, and the evolution of AI/ML in this domain has not been well 

explored.

The American Society of Emergency Radiology convened the ASER AI/ML Expert Panel 

in 2020 to develop a better understanding of research and development (R&D) in our field 

and align future clinical and research priorities with the needs of our community. There 

are still numerous bottlenecks to adopting these tools, and it is important to ascertain the 

degree of growth in the subspecialty and the extent to which such growth has led to clinical 

progress [29]. The R&D pipeline of AI/ML tools spans the process of dataset selection, 

demonstration of proof of concept, productization and deployment, validation of diagnostic 

performance, and outcomes research [30].

The objective of this systematic scoping review was to synthesize the existing literature and 

map the evolution and current state of maturity of trauma radiology AI/ML CAD tools along 

key dimensions of AI/ML technology readiness.

Methods

The scoping review was conducted using a systematic approach according to the Preferred 

Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) standards and 

guidelines and the Arksey and O’Malley framework [31]. A scoping review is a structured 
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evidence synthesis method appropriate for mapping the extent, range, and characteristics 

of research in an area with a broad, complex, and heterogenous nature [32]. The Arksey 

and O’Malley methodology involves five steps: (1) formulating the research question, (2) 

identifying relevant studies, (3) study selection, (4) charting the data, and (5) collating, 

summarizing, and reporting results.

Formulating the research question

To our knowledge, no prior scoping or other structured review has been undertaken to map 

the level of maturity of automated CAD tools in trauma imaging. The American Society 

of Emergency Radiology AI/ML Expert Panel created a working group to map the current 

state and evolution of this field—from foundational or clinical-translational research through 

post-market validation and outcome studies.

The research question was initially formulated through working group meetings and a 

cursory exploration of the published literature. Dimensions of AI/ML maturity, reflecting 

the current state of evolution, adoption, and readiness were explored. Key elements of each 

theme are described in detail below.

Key dimensions of AI/ML tool maturity

In 2018, the NIH, RSNA, ACR, and the Academy for Radiology and Biomedical Imaging 

Research held a multidisciplinary workshop to identify major priorities for accelerating 

foundational and clinical translational AI/ML radiology research [33, 34]. Key themes 

emphasized in this workshop and a variety of subsequent influential position papers, 

commentaries, and editorials include the obstacle of data scarcity and the need for 

high-throughput and high-quality data curation; development of novel architectures to 

address complex imaging problems; ensuring trustworthiness and fairness of AI/ML 

methods through interpretability and explainability; performance validation study design 

that emphasizes robustness and generalizability; a greater focus on user experience and 

acceptance; and research that emphasizes the value of AI/ML tools with respect to patient 

care and outcomes. We also consider funding priorities as an important driver of AI/ML 

research. A detailed discussion of dimensions of AI/ML maturity is provided in Appendix 1.

Identifying relevant studies

In collaboration with a medical research librarian, we conducted a systematic literature 

search of PubMed, Embase, and Scopus for abstracts using the following: (1) different 

combinations of keywords pertaining to traumatic injury, radiology, and AI/ML and (2) 

commercial tool and vendor names extracted from the FDA directory of AI/ML Enabled 

Medical Devices and list of RSNA 2021 annual meeting exhibitors. Vendor screening was 

conducted by two independent researchers and arbitrated by a third after contacting vendors 

for clarification as needed. Keywords tailored to the specific constraints and requirements of 

each database are listed in Appendix 2. We used a 10-year collection period informed by the 

expert panel’s baseline familiarity with literature using hand-crafted techniques for trauma-

related tasks and the first successful implementation of convolutional neural networks on 

ImageNet in 2012 [15]. Our last search was performed on June 6, 2022.
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Study selection

Two levels of review were conducted- a title and abstract screening and a full-text 

eligibility review. All abstract and full-text reviewers were radiologist members of the ASER 

AI/ML Expert Panel. Abstract records were screened by two reviewers with disagreements 

arbitrated by a third. Four members contributed to full-text eligibility screening. All full-text 

exclusions were determined after review by at least two of the four investigators with 

arbitration by another.

Our scope was limited to automated computer vision–based CAD tools or prototypes for 

traumatic injury detection, diagnosis, characterization, triage, risk stratification, or outcome 

prediction. Works that did not specifically address automated image interpretation that could 

be expected to fall into one of the FDA CAD categories were not eligible. Excluded papers 

described the following: image reconstruction or enhancement tasks such as super-resolution 

imaging; semi-automated or manual quantitative techniques; clinical predictors such as 

trauma mechanism, baseline demographics, ICD-9 codes, or imaging report keywords 

with no medical image analysis; segmentation of anatomic structures using a trauma 

cohort without traumatic injury detection or diagnosis-related tasks (as detailed above); 

and methods relevant exclusively to the elective and not emergency setting. Abstract-only 

records and foreign language texts were also excluded, the latter due to the prohibitive cost 

and time of translation.

Charting the data

After organizing papers by modality and body region/system, full-text papers were charted 

according to key issues, themes, and characteristics of interest in Microsoft Excel. Key 

themes included dataset size and curation, algorithm novelty, methods of explainability, 

validation study methodology, outcomes research, and funding sources. The scoping review 

method is described by Arksey and O’Malley as an iterative process requiring researchers 

to adapt their approach to ensure that literature is covered in a comprehensive way [31]. 

Developing a detailed understanding of the key dimensions of AI/ML maturity required an 

unstructured but thorough review exploring and re-exploring key position papers during the 

formulation and gathering of data elements. Thus, if a salient topic became apparent during 

data gathering, relevant guiding documents were reviewed (see Appendix 1 for detailed 

discussion), with subsequent fallback and re-review of all included papers for the given 

element. A description of included data elements is provided in Tables 1 and 2.

Collating, summarizing, and reporting results

We performed simple descriptive statistics using the data elements described above and 

produced charts and tables to illustrate and map key observations and trends.

Results

We identified 4386 records through a search by AI/ML-related keywords and 231 records 

through search by vendor and proprietary tool keywords, resulting in a total of 4617 records. 

After 565 records were excluded as duplicates, 4052 unique records were screened for 

inclusion. Of those, 3756 records were excluded during screening, and 66 records were 
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excluded during full-text eligibility review. Three records were added following a review of 

citations. In total, 233 full-text articles were included for content analysis and charting. Our 

PRISMA flowchart is depicted in Fig. 1.

Characteristics of included studies are summarized in Table 1. Modalities employed 

included radiography (n = 104), computed tomography (CT) (n = 94), magnetic resonance 

imaging (MRI) (n = 29), ultrasound (US) (n = 4), and DEXA scan (n = 2).

Data curation

Nineteen of studies (44/233) reported dataset sizes of less than 100 patients, 42% (99/233) 

reported using between 100 and 1000 patients, 19% (45/233) in 1000–5000 patients, 14% 

(32/233) in 5000–50,000 patients, 1% (3/233) in 50,000–500,000 patients, and < 1% 

(2/233) in more than 500,000 patients. Dataset size was related to the imaging modality 

and anatomical region/system, with the largest datasets of more than 500,000 patients for 

chest radiography [35, 36], followed by musculoskeletal radiography with 314,866 patients 

[37], and a head CT dataset with 313,318 exams [38]. Abdominopelvic trauma imaging 

papers included the smallest range of dataset sizes with fewer than 100 to 253 patients 

[39] followed by chest/cardiovascular cross-sectional imaging with fewer than 100 to 778 

patients [40]. Most studies used siloed (i.e., non-public) single center data; however, there 

was a trend toward increased use of both siloed multicenter data and public data over time 

(Fig. 2).

Types of CAD tools

In total, 148 of the 233 included papers (64%) reported CAD tools or prototypes for 

detection tasks, 14 (6%) for classification tasks, 27 (12%) for combined detection and 

classification, 31 (13%) with segmentation/3D quantitative visualization, 8 (3%) employing 

automated caliper measurements, and 5 papers described computer vision AI/ML for risk 

stratification and prognostication. As of last search, 212 papers reported CAD algorithm 

prototypes, and 21 of the 233 included papers (9%) evaluated 10 commercial CAD 

tools with FDA approval (Fig. 3). In total, 156 papers (67%) report on musculoskeletal 

(MSK)-related tools, 49 papers on neuroimaging tools (21%), 15 papers (6%) chest and 

cardiovascular tools, and 13 papers (6%) abdominopelvic imaging tools (Suppl Table 1). 

The most common MSK use cases reported included detection of extremity, spine, rib, hip, 

and pelvic fractures (111/156, 71%), combined fracture detection and classification (26/156, 

17%), and fracture classification alone (12/156, 8%). Only six papers (4%) described 

quantitative tools using segmentation masks or electronic caliper measurements.

Detection tools accounted for 49% of neuroimaging papers (24/49), with use cases including 

ICH detection on CT in 15 of these studies (63%). The remainder were concerned with 

detection of midline shift, cerebral micro-bleeds, white matter injury, spinal cord injury, and 

calvarial or facial fracture. Of the tools, 19/49 (39%) involved quantitative imaging, and 4 

tools (8%) provided prognostic information only.

Seven cardiovascular/chest papers (47%) described detection tools for pneumothorax, 

effusions, and opacities, and one described detection of aortic dissection on CT. Seven 

papers described quantitative visualization tools (47%) for pathology including contusions 
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and pneumothorax on CT and pneumothorax on radiographs. Eight of 13 abdominopelvic 

papers (62%) reported CT quantitative imaging tools for bleeding and solid organ injury, and 

the remaining five described detection tools for solid organ injury and active bleeding on CT, 

pneumoperitoneum on plain radiographs, and free fluid on FAST.

Commercial FDA-approved tools

All 21 studies using commercial tools with FDA approval at last search were published 

between 2018 and 2022. FDA-approved products included Aidoc ICH [41–47], QureAI qER 

[38], and RAPID [48] for CT intracranial hemorrhage detection, triage, and notification; 

Annalise Enterprise CXR [36, 49], which detects rib, scapular, and humeral fractures, 

pneumothorax, and pneumomediastinum among numerous other findings unrelated to 

trauma on chest radiographs; Aidoc C-Spine CSF [50, 51] and Aidoc RibFx [52] for 

CT cervical spine and rib fracture detection, triage, and notification; Gleamer BoneView 

[53–55], AZMed Rayvolve [56], and Imagen FractureDetect FX [37] for plain radiograph 

detection of appendicular and some axial fractures (e.g., pelvis); and Siemens AI Rad 

Companion, which includes a module for vertebral fracture detection and classification 

[57]. All tools employed CNN architectures. Reported methods of explainability included 

activation maps for Aidoc ICH and CSF tools; arrow annotations for Aidoc RibFx; 

bounding boxes for Gleamer BoneView, AZMed Rayvolve, and Imagen FractureDetect 

FX; segmentation contours or masks for RAPID and Annalise.ai; and segmentations 

with vertebral height mid-sagittal electronic caliper measurements for Siemens AI Rad 

Companion. Qure.ai was noted to provide slice-level confidence scores for ICH detections.

Only the Siemens tool, a quantitative visualization method that outputs midsagittal vertebral 

height measurements, can be considered to provide intrinsic interpretability for a multistage 

task, as caliper measurements are used in practice to determine the Genant vertebral fracture 

grade [58]. The other methods, all of which perform a single-stage task (namely, detection), 

use forms of post hoc explainability.

Although user interfaces may provide the option of reporting false positives or negatives, 

none of the tools was reported to have interactive capability. An example of such 

functionality might include the ability to adjust caliper measurements to modulate Genant 

grade. Furthermore, no paper assessed subjective dimensions of user acceptance such as 

satisfaction with the user interface, trust, or effects related to workload, effort, or frustration. 

No paper described novel algorithm development, nor advanced methods for data labeling 

quality, throughput, or augmentation; however, this is wholly expected for productized 

proprietary tools far along the technology readiness pipeline. Ground truth was determined 

by independent readers with arbitration of discrepancies in six papers [37, 38, 45, 54, 56, 57] 

and using an IoU cutoff > 25% for box proposals in 2 studies [53, 55]. In another [36], 7 

radiologists labeled the test dataset, and Dawid-Skene voter aggregation modeling was used 

to determine ground truth. A single study provided metrics for level of agreement between 

independent experts [45]. Consensus reads were used in 3 studies [38, 48, 50]. In 5 studies 

[41, 43, 44, 46, 51], two of which indicate failure mode analysis as the primary purpose 

[46, 51], only cases flagged by the tool were reviewed further by expert readers without a 
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uniform ground truth process to confirm validity of true positive and negative assignments 

(i.e., concordant results were assumed to be correctly classified).

Radiology reports alone were used for ground truth in 3 papers [49, 52, 59], and limited 

information on ground truth methodology was provided in one [42]. The largest validation 

set included 30,124 head CTs in a non-interpretative paper assessing turn-around times [59]. 

Test sets used in studies of reader performance ranged in size from 300 to 2568 patients [36, 

45, 53]. Two papers compared algorithm and unassisted reader diagnostic accuracy [45, 53]. 

One paper assessed agreement between manual and automated volumetric measurements 

[48], and 3 papers compared performance in assisted versus unassisted readers with fully 

crossed multi-reader multi-case (MRMC) design and heterogeneous multicenter test data 

[36, 54, 55]. One of these was registered as a clinical trial on clinicaltrials.gov [54]. There 

was one prospective randomized controlled trial, which employed random notification drop 

out to assess effects on reporting turnaround time [47]. Twenty papers used retrospective 

design.

Five papers (24%) compared performance in subgroups for hidden bias/stratification [46, 51, 

54–56]. Two papers assessed algorithm performance exclusively in a pediatric cohort [53, 

56].

Effects on turnaround time were assessed in 3 papers [42, 47, 59], and one of these [59] 

evaluated length of stay as an outcome using cohorts before and after product deployment.

Nine of 21 studies (43%) reported industry funding, one reported indirect funding through 

an NIH T32 mechanism, and one reported funding through a non-profit foundation. Twelve 

works were conducted in the USA, 1 in India, 2 in Australia, 1 in Switzerland, and 5 were 

conducted in EU member countries.

CAD prototypes

In total, 174 of 212 (82%) of papers reporting development or implementation of CAD 

prototype tools employed convolutional neural networks (CNNs). There were no works 

using more recent deep learning implementations such as vision transformers at time of 

last search. All papers employing CNNs were published between 2016 and 2022, with the 

first use case of CNNs for detection of posterior element fractures in the spine published 

by Roth et al. [60]. This is the only trauma-related CNN-based approach published in 2016 

using our search criteria. The work combined feature-engineering using statistical atlases for 

segmentation with a 2.5D CNN-based approach for classification of segmented regions. This 

was followed by five deep learning (DL)–based prototype CAD publications in 2017, nine in 

2018, 19 in 2019, 44 in 2020, and 69 in 2021.

Unsupervised hand-crafted feature engineering approaches were employed in 33 papers, 

within a steady range of 2–7 papers per year. Of these papers, 25/33 (76%) described 

development of novel or pseudo-novel approaches, compared with only 76/174 (44%) of 

papers using DL-based methods. The other 56% of DL papers employed out-of-the-box 

implementations with no modification. Novelty was largely employed to optimize detection 

tasks.

Dreizin et al. Page 8

Emerg Radiol. Author manuscript; available in PMC 2023 November 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://clinicaltrials.gov


Regarding advanced methods for augmenting dataset size, throughput, or labeling, stressed 

in the NIH/RSNA/ACR/Academy foundational roadmap [33], only one such paper described 

a distributed privacy preserving method akin to federated learning [61]; two papers 

addressed data scarcity using synthetic data augmentation with generative models [62, 63], 

and two papers used semi-supervised approaches to generate pseudo-labels in unlabeled 

data [63, 64]. Three papers described human-in-the-loop (HITL) active learning strategies 

to accelerate labeling and improve accuracy [65–67]. Three foundational papers proposed 

novel active learning approaches that simulate HITL interaction using committee models 

in place of multi-reader arbitration [68], easy-to-hard curriculum learning incorporating 

expert knowledge-based confidence scores [69], and a structural causal model that mimics 

human counterfactual input by mining object detection results for potential cooccurring 

fractures that could influence AO fracture grade assignment [70]. No paper employed 

recently developed out-of-the-box HITL active learning methods for segmentation tasks 

such as MONAI Label or DeepEdit [71, 72].

All but 4 (11%) of hand-crafted feature engineering papers were noted to have explainable 

methods, whereas 52 of 174 (30%) of papers with CNN-based methods were entirely 

black box. Feature engineering papers often involved intrinsic interpretability with 

techniques that simulated human reasoning for a given task. Examples included fracture-

dislocation complexity grading based on number, shape, and size of fracture fragments, 

and measurements of angulation or displacement in fracture-dislocation [73–75]. While 

supervised machine learning is much more robust to unseen cases, learned features are less 

transparent. The three most common methods of post hoc explainability for CNN-based 

methods included activation maps in 49 papers (40%), segmentations in 27 (22%), and 

box detections in 21 (17%). Several papers described automatic caliper measurements for 

vertebral compression [76, 77], one paper described cerebral midline shift measurement 

[78], and one paper combined CNNs and feature engineering for calcaneal fracture landmark 

localization and Bohler and Gissane angle measurements [79].

The procedure for determining ground truth was not mentioned in 35 of 212 CAD prototype 

papers (17%); independent reads with arbitration were used in 25 studies (12%); consensus 

reads were used in 29 studies (14%); and a single reader determined ground truth in 86 

studies (41%). Reports or the EMR were employed in 35 studies (17%). Measurements of 

reader agreement, interobserver variability, or repeatability were provided in only 13 studies 

(6%).

Only 15 of 212 studies used public datasets (7%). Siloed datasets from more than one 

institution were employed in another 42 studies (20%). In total, 155 studies (73%) employed 

single-center data. Sources of public data included the MICCAI RibFrac CT rib fracture 

challenge (660 CT studies) [65], the Manitoba bone mineral density registry (~ 12,000 

DEXA studies) [80], the MURA musculoskeletal radiograph dataset (~ 14,000 plain 

radiograph studies) [81], the SIIM-ACR pneumothorax dataset (~ 12,000 plain radiography 

studies) [82], the RSNA intracranial hemorrhage dataset (~ 25,000 CT studies) [83], and the 

NIH ChestX-Ray14 dataset (~ 30,000 unique patients with over 100,000 studies) [84].
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Thirty-four studies (17%) benchmarked AI performance to unassisted radiologist 

performance, and 20 studies (9%) compared reader performance with and without AI 

assistance, with 10 of these studies employing a fully crossed MRMC study design. Of 

these 34 papers, only 2 evaluated for hidden bias/stratification [85, 86]. No CAD prototype 

diagnostic performance study used prospective methodology. Fifteen of the 212 CAD 

prototype studies (7%) involved pediatric populations. There were no user acceptance 

studies, and no study included an interactive HITL component that affected algorithm 

output, although one study allowed manual clicks to identify true positive bounding boxes 

and suggested future incorporation of interactive case–based reasoning [87].

Seventeen studies (8%) evaluated a variety of short- and long-term patient outcomes. 

These included future risk of non-vertebral fractures from DEXA scan [88]; association 

of pneumothorax CT volumes and decision to perform chest tube drainage [89]; risk of 

hemorrhage related complications from traumatic pelvic hematoma [39], hemoperitoneum 

[90], pelvic fractures [91], and liver laceration [92]; prediction of spinal cord injury 

clinical severity and motor impairment [93, 94]; association between TBI and discharge 

Glasgow Coma Scale score [95], concussion severity [96], cognitive impairment [97], 

Glasgow Outcome Scale score [78, 98, 99], and 6-month mortality [100]; and correlation 

of pulmonary contusion with risk of mechanical ventilation, increased hospital length of 

stay [101], and ARDS [102]. Eleven of these 17 papers (64%) involved segmentation and 

quantitative imaging.

The top five global sources for foundational or clinical translational research productivity 

were the USA (63 papers), China (36 papers), the EU (23 papers), South Korea (19 

papers), and Japan (15 papers). A total of 102 CAD prototype papers (48%) reported 

research grant funding from a government agency; 20 papers (9%) reported institution, 

society, or foundation grants; and 11 papers (5%) disclosed industry support. Seventy-four 

percent of papers from South Korea (14/19), 64% from China (23/36), 54% from the US 

(34/63), 43% from the EU (10/23), and 7% from Japan (1/15) reported government agency 

research support. Twenty-six papers reported NIH funding; of these, 11 were in MSK, 

6 in neuroimaging, 7 in abdomen/pelvis, and 2 in cardiovascular/chest domains. Overall 

research output by modality, body region, and year mirrored the growth in studies using 

FDA-approved tools (Fig. 2).

Discussion

In this work, we aimed to summarize the current state of evolution and maturity of trauma 

AI/ML CAD tools, clarify key gaps in their technological development, and identify 

understudied areas that may help anticipate clinical trends and guide future research 

priorities in the trauma imaging subfield of emergency radiology. To the best of our 

knowledge, this is the first structured review paper in this domain. Included papers spanned 

the literature from early proof of concept to validation of commercialized tools.

Traumatic injury is a long-tailed problem with many injury types of varying incidences 

for any given body region or system. Trends reflected in papers describing prototype 

tools presaged trends in commercialization. The first paper meeting inclusion criteria that 
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described DL-based methods was published in 2016 [60], and all commercial products, 

the first described in 2018 [38], employed CNNs. Most prototype and commercial tools 

focused on detection tasks in the MSK and neuroimaging domains and employed activation 

maps or box detections for explainability. Although public data were used in only 7% of 

prototype studies, 7 of the 10 commercial tools were in domains where large public datasets 

are available, suggesting that public data may be a major driver of late-stage R&D. These 

included datasets for ICH detection on CT, fracture detection on MSK radiographs, and 

fracture or pneumothorax detection on chest radiographs.

Approximately 84% of studies described siloed datasets with fewer than 5000 patients. 

Cross-sectional imaging datasets for abdominopelvic and chest trauma ranged from fewer 

than 100 to 778 patients, and no commercial products were described in these domains. 

Torso pathology including organ injury, contusion, and hemorrhage is highly variable in size 

and appearance with small target to volume ratios, and multiscale DL-based tools for torso 

pathology have been late-comers [103] and were not reported for trauma until 2020 [104].

There is a need for improved reporting of methodology for ground truth interpretations, 

higher quality validation data, and outcomes research using commercial CAD tools. Fully 

crossed MRMC study design with heterogeneous multi-center data was employed in 3 of 

21 papers evaluating commercial products, and one paper reported prospective randomized 

controlled study design for a turnaround time endpoint. Davis et al. evaluated length 

of hospital stay as an endpoint [59], and this was the only work using a commercial 

product to assess patient outcomes. Fewer than one quarter of commercial CAD papers 

performed subgroup analysis for potential sources of bias. High-quality ground truth based 

on independent reads and a method of arbitration was described in 9 of 21 papers, and only 

one paper reported the level of agreement between experts. One paper reported registration 

in clinicaltrials.gov [54].

There is an ongoing need for performance and outcomes studies following regulatory 

approval. As studies accumulate, data can be aggregated in meta-analyses to produce a 

higher level of evidence to justify institutional adoption by academic and private practice 

stakeholders involved in radiology AI governance.

Seventy-six of papers described hand-crafted feature engineering methods, but only 44% of 

papers using supervised DL-based approaches described some level of novelty. This may 

speak to the versatility and democratizing effect of supervised machine learning, where 

existing implementations can be effectively applied to a wide range of pathologies. Of note, 

82% of prototype CAD tools employed CNNs, with a steep rise since the first DL-based 

publication in 2016.

While all commercial tools had some level of explainability, 30% of prototype CAD studies 

employed black-box approaches. Unsupervised approaches using hand-crafted methods 

were more commonly inherently interpretable, using measurements or shape-based features 

that would be employed to arrive at a diagnosis in the course of clinical interpretation. 

However, these methods were not shown to scale to large data and none led to regulatory 

approval and commercialization.
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No human-in-the-loop CAD methods were described, and no studies assessed parameters of 

user acceptance. Taken together, with the emergence of scalable DL-based approaches, there 

is an unmet need for tools that incorporate human–computer interaction. User acceptance 

should be considered and evaluated early in the R&D process to maximize clinical utility 

[105]. Standardized methods are needed for subjective or semi-quantitative evaluation of 

usability.

Overall, there is a strong need for higher quality methodology and reporting to improve 

transparency and confidence in the data. Researchers should be encouraged to use available 

checklists such as CLAIM [106] and STARD AI [107, 108]. There were few CAD prototype 

studies that benchmarked algorithm performance to human performance (17%), and only 

6% of these evaluated for hidden bias. This is not surprising given the emphasis on novelty 

or at least initial proof of concept for any given use case; however, only 6% of all CAD 

prototype studies reported a high-quality ground truth procedure including reader agreement 

or repeatability, posing a major limitation with respect to transparency.

Eight percent of CAD prototype studies evaluated patient outcomes, and approximately 

two thirds of these described segmentation and quantitative visualization tools. However, 

our findings show that quantitative trauma imaging tools, despite emphasis on outcomes, 

have not reached the stage of regulatory approval and commercialization. These tools 

predominate for cross-sectional imaging modalities and typically require painstaking 

voxel-level ground truth annotation, making dataset curation very challenging. Because 

such tools provide granular, objective information, their value proposition resides with 

precision medicine. Therefore, proof of concept feasibility assessments focusing on outcome 

prediction and method validity in small patient populations is typically considered a 

prerequisite before scaling to large heterogeneous multicenter datasets.

Few papers described advanced methods that address scarcity of high-quality labeled data. 

One article described a federated approach, and several used synthetic data augmentation, 

semi-supervised methods, and active learning strategies. Our search was limited to peer 

reviewed biomedical literature and technical papers employing these strategies may have 

been overlooked. However, our review indicates that foundational research efforts to date 

have not resulted in advanced techniques for augmenting and accelerating data curation that 

are ready for mainstream adoption.

Forty-eight percent of prototype CAD papers reported research support from government 

agencies, and 43% of commercial CAD papers reported industry funding. Countries with the 

highest proportion of funded studies (the USA, China, and South Korea) also had the highest 

levels of research productivity.

Even though trauma remains the leading cause of death and disability in patients under 

45 years of age, trauma imaging remains a relatively small and underfunded branch 

of radiology. In the field of radiology as a whole, AI/ML publications have increased 

exponentially, primarily in the fields of neuroradiology, abdominal imaging, and chest 

imaging, spurred by federal agency and industry-side funding [20]. Our findings suggest that 
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increased funding opportunities, researcher engagement, research training, and institutional 

buy-in will accelerate research productivity and translation of tools to the trauma setting.

Conclusions

In conclusion, AI CAD tools are likely to improve ER/trauma radiologist productivity 

and diagnostic performance, reduce turnaround times, decrease ER and hospital stays, and 

improve survival of severely injured patients. However, these tools are currently in a very 

early stage of maturity. There are few FDA-approved products for a limited number of 

use cases, and there has not been sufficient validation of commercial tools to generate 

meta-analyses. The scarcity of large heterogeneous datasets with high-quality annotation 

continues to pose a major barrier. There remains an unmet need for out-of-the-box tools that 

accelerate data labeling and for multicenter privacy-preserving distributed learning.

A greater emphasis should be placed on performance validation data that incorporates 

assessment of bias and robustness across relevant subgroups. The methodology used for 

ground truth annotation is highly variable across the body of literature in this area. 

Researchers should be encouraged to employ independent readers with arbitration and 

provide data on reader agreement and reproducibility of measurements.

Additionally, the range of techniques for explainability and interpretability using scalable 

DL-based approaches remains narrow, and methods that build trust through human–

computer interaction are lacking. More emphasis should be placed on evaluation of end-

user assessment of system benevolence and capability. Finally, an increase in funding 

opportunities would likely accelerate the R&D pipeline for trauma imaging CAD tools.

A potential future avenue for our expert panel to explore includes a follow-up scoping 

review in several years to map progress since this review and a position paper focusing 

on research priorities in ER/trauma imaging. A survey of ASER members’ perceptions and 

expectations with respect to AI/ML CAD tools is also forthcoming.
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Fig. 1. 
Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flowchart 

depicting study selection
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Fig. 2. 
Percent plot of publications using siloed (non-public) single center, siloed multicenter, and 

public data over time
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Fig. 3. 
Bubble plots depict the number of papers in each domain over time. A Papers by body 

region and imaging modality. B Papers by regulatory status. The final search date of June 6, 

2022 (midway through year) accounts for fewer publications in 2022
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Table 1

General characteristics of the papers included in this review

Characteristic Number (n = 233) Percentage (%)

Year of publication

 2012–2014 10 4

 2015–2016 11 5

 2017–2018 21 9

 2019–2020 74 32

 2021–2022 117 50

Modality

 Radiography 104 45

 Computed tomography 94 40

 MRI 29 12

 Ultrasound 4 2

 DEXA 2 1

Body region

 Musculoskeletal/spine 156 67

 Head/neck 49 21

 Chest/cardiovascular 15 6

 Abdomen/pelvis 13 6

Dataset size

 < 100 44 19

 100–1000 99 42

 1000–5000 45 19

 5000–50,000 32 14

 50,000–500,000 3 1

 > 500,000 2 1

CAD task

 Detection 148 64

 Classification 14 6

 Detection and classification 27 12

 Segmentation/quantitative visualization 31 13

 Automated caliper measurements 8 3

 Risk stratification/prognostication 5 2

CAD computed-aided detection and diagnosis, CT computed tomography, DEXA dual X-ray absorptiometry, MRI magnetic resonance imaging
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