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Abstract
Summary: The interpretation of pathway enrichment analysis results is frequently complicated by an overwhelming and redundant list of
significantly affected pathways. Here, we present an R package aPEAR (Advanced Pathway Enrichment Analysis Representation) which
leverages similarities between the pathway gene sets and represents them as a network of interconnected clusters. Each cluster is assigned a
meaningful name that highlights the main biological themes in the experiment. Our approach enables an automated and objective overview of
the data without manual and time-consuming parameter tweaking.

Availability and implementation: The package aPEAR is implemented in R, published under the MIT open-source licence. The source code,
documentation, and usage instructions are available on https://gitlab.com/vugene/aPEAR as well as on CRAN (https://CRAN.R-project.org/pack
age=aPEAR).

1 Introduction

Pathway enrichment analysis (PEA) is indispensable when
interpreting high-throughput omics data and identifying the
underlying biological processes that are dysregulated in a par-
ticular condition or disease (Khatri et al. 2012). Despite the
comprehensive insights provided by the vast number of avail-
able pathway gene set annotations in various databases, ana-
lysing large amounts of pathways introduces the redundancy
problem: a single gene can be involved in multiple biological
processes, resulting in pathways being highly correlated and
containing overlapping sets of genes (Merico et al. 2010,
Reimand et al. 2019). This causes a profusion of significantly
affected pathways and impedes the interpretation of the PEA
results. Ultimately, there is a need to aggregate similar path-
ways and analyse their interactions.

Here, we present an R package aPEAR (Advanced
Pathway Enrichment Analysis Representation), which aids in
the interpretation of the PEA results. The aPEAR package
implements multiple metrics to calculate similarities between
pathway gene sets, detects pathway clusters, and assigns bio-
logically relevant names to them. Finally, aPEAR builds a vi-
sual representation of an enrichment network that can be
explored interactively to elucidate the biological processes af-
fected by the experimental conditions.

2 Methods and implementation

The R package aPEAR exports a single main function
enrichmentNetwork() which visualizes the PEA results as a
network where nodes and edges represent the pathways and
similarity between them, respectively. While it was created

with the clusterProfiler (Wu et al. 2021) and gprofiler2
(Kolberg et al. 2020) output in mind, any enrichment result is
accepted as long as it is formatted correctly (Supplementary
Text S1). The network is constructed in several steps:

1) The pairwise similarity between all pathway gene sets is
evaluated using the Jaccard index (default), cosine simi-
larity, or correlation similarity metrics.

2) The similarity matrix is then used to detect clusters of re-
dundant pathways using Markov (default) (Van Dongen
2008), hierarchical, or spectral (John et al. 2020) cluster-
ing algorithms.

3) Each cluster is assigned a biologically meaningful name.
Network analysis is used to determine the pathway with
the most connections, using either PageRank (Page,
1998) (default) or HITS (Kleinberg 1999) algorithm.
Alternatively, the highest absolute NES value or the low-
est P-value can be used to select the most important
pathway in the cluster. The description of this pathway
is used as the cluster label.

4) A ggplot2 (Wickham 2016) graph is constructed using
the similarity matrix and the annotated clusters. An in-
teractive graph is visualized using plotly (Sievert 2020).
Pathways and their assigned clusters are returned as out-
put as well (Supplementary Text 2).

3 Results and discussion

Currently, the most frequently used tools for gene set visuali-
zation include the emapplot function from the R package
enrichplot (Yu, 2022) and the Cytoscape plugin Enrichment
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Map (Merico et al. 2010). These methods use a word cloud-
like algorithm to assign a cluster name which results in labels
that are not semantically meaningful. The emapplot has some
limitations when handling large datasets and produces numer-
ous small clusters with nonintuitive labels (Supplementary
Methods, Supplementary Fig. S1). Cytoscape, while a power-
ful software tool that is able to work with large amounts
of data, requires many time-consuming manual adjustments
that can introduce bias into the network (Supplementary
Methods, Supplementary Figs S2–S4). In contrast, aPEAR
makes it easy to work with numerous pathways, highlights
the biological context of the clusters and does not require ad-
ditional manipulation of the graph, making it ideal for auto-
mated data visualization as well as interactive investigations
(Fig. 1).

To determine which similarity metric and clustering algo-
rithm is best suitable for pathway cluster analysis, 180 tests
were performed using PEA results from 10 real-world datasets
(Supplementary Methods, Supplementary Tables S1 and S2).
Based on cluster quality evaluation using the Dunn index
(Dunn 1974), the Silhouette index (Rousseeuw 1987) and the
Davies-Bouldin index (Davies and Bouldin 1979), the Jaccard
similarity metric and the Markov clustering algorithm were
found to be best suited for such analysis and, thus, were set as
the default parameters in the aPEAR package (Supplementary
Text S3, Supplementary Fig. S5). Note that the Jaccard coeffi-
cient can be affected by the pathway size and may under-
connect the smaller pathways contained within the larger
ones (Salvatore et al. 2020).

4 Conclusion

We developed an R package, aPEAR, that visualizes
clusters of similar pathways as an enrichment network
and, consequently, enables better interpretation of the PEA
results.
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Figure 1. Example enrichment network generated by aPEAR. The nodes represent the significant pathways, and the edges represent similarity between

them. Coloured by normalized enrichment score (NES).
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