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ABSTRACT: Mirror-image proteins (D-proteins) are promising scaffolds for
drug discovery because of their high proteolytic stability and low immunogenic
properties. Facile and reproducible processes for the preparation of functional D-
proteins are required for their application in therapeutic biologics. In this study,
we designed and synthesized a novel monobody variant with two cysteine
substitutions that facilitate the synthetic process via sequential native chemical
ligations and improve protein stability by disulfide bond formation. The
synthetic anti-GFP monobody in this model study exhibited good binding
affinity to the target enhanced green fluorescent protein. In vivo administration
of the synthetic anti-GFP monobody (L-monobody) to mice induced antidrug
antibody (ADA) production, whereas no ADA production was observed following immunization with the mirror-image anti-GFP
monobody (D-monobody). These results suggest that the synthetic D-monobody is a non-antibody protein scaffold with low
immunogenic properties.
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A monobody is a non-immunoglobulin protein scaffold
derived from the tenth type III domain of human

fibronectin (FN3).1 The immunoglobulin domain-like β-
sandwich structure of FN3 can hold several complementar-
ity-determining region (CDR)-like variable regions in the
sequence. This rigid scaffold facilitates target binding with high
affinity and selectivity by restricting the conformational
flexibility. Two types of monobodies were designed for
screening variable regions (Figure 1): three loops (BC, DE,
and FG loops) between β-strands contain variable regions in a
loop-only library, and two β-strands (C and D) and two loops
(CD and FG) were employed for the diversified positions in a
side-and-loop library.1−3 Using this unique protein scaffold for
the screening campaign by display technology, monobodies
have been used in life science research, including molecular
biology and crystallography.3 Additionally, several FN3-based
therapeutic candidates have been identified for various target
molecules, such as vascular endothelial growth factor receptor
2 (VEGFR2)4 and proprotein convertase subtilisin/kexin type
9.5 For medicinal applications, a monobody would be
advantageous over other protein scaffolds because the
sequence designed from endogenous fibronectin is less likely
to induce an immune response after in vivo administration.6

However, using human-derived sequences for protein ther-
apeutics does not necessarily eliminate the generation of anti-
drug antibodies (ADAs), which may impair the therapeutic
effects and/or sometimes cause adverse effects.7 Actually, it
was reported that the administration of CT-322,8 a pegylated

FN3-based protein engineered to bind VEGFR2, caused ADA
generation in more than half of the patients.9

We have focused on developing mirror-image monobodies
for novel protein therapeutics to overcome this immunoge-
nicity shortcoming. Mirror-image peptides (D-peptides) and
proteins (D-proteins) are expected to have favorable
pharmacokinetic and safety profiles10 because the sequences
consisting entirely of D-amino acids are less susceptible to
proteolytic degradation by endogenous peptidases.11 The less
efficient processing of D-peptide- or D-protein-based biologics
in antigen-presenting cells (APCs) may avoid antigen
presentation on major histocompatibility complex (MHC)
molecules for T cell recognition, leading to less ADA
generation via T cell activation.12

Several studies have explored mirror-image peptide and
protein therapeutics that bind several target molecules by
mirror-image screening technologies.10,13−16 In this technol-
ogy, the synthetic mirror-image protein of a target molecule
(D-target) is used to screen a phage-display library (mirror-
image phage display). When the hit sequences that bind with
the D-target are identified, the D-peptide therapeutics are
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prepared by chemical synthesis, which should exhibit binding
with the native target molecule. Recent success in developing a
13 kDa bivalent D-protein antagonist for vascular endothelial
growth factor A17−19 suggests that mirror-image monobodies
(∼10 kDa) are also promising protein scaffolds with less
immunogenicity for drug discovery. We envisioned that
establishing the preparation protocols of mirror-image mono-
bodies would extend the scope of mirror-image screening using
the synthetic target D-proteins20−22 into an unexplored
modality.23 In this study, we investigated the potential of the
mirror-image monobody as a suitable less immunogenic non-
antibody scaffold in drug discovery.24 Comparative structural
and biological analyses were conducted between native and
mirror-image monobodies, which were obtained by establish-
ing a facile synthetic process.

For this model study, we selected a monobody, GS2, that
binds with green fluorescent protein (GFP).2 This anti-GFP
monobody, GS2, was identified by phage-display selection
from a side-and-loop library. Our initial attempt to establish
the synthetic protocol of the monobody scaffold was
conducted for the native sequence of GS2 (Scheme S1).
Because the monobody sequence does not contain conserved
Cys residues, native chemical ligations (NCLs)25 and a
desulfurization strategy were employed for ligations at the
Xaa-Ala sites.26 The sequence of GS2 was successfully
constructed from four peptide segments; however, temporary

modification with a solubilizing auxiliary was also required to
improve the low solubility of the intermediate and purification
by HPLC after NCLs. We postulated that these steps would
hamper the efficient construction of monobody sequences,
which would be identified by mirror-image screening for target
proteins.27

To overcome the drawbacks of considerable synthetic
efforts, we designed a novel monobody variant in which two
cysteine substitutions were introduced into the sequence to
facilitate the synthetic process by stepwise NCLs. We chose
Glu38 in the CD-loop and Val66 in the EF-loop of GS2 for
substitution with cysteines, which are located in close
proximity to potentially form a disulfide bond (Figure 1).
These two residues are also located outside of the variable
regions in a side-and-loop library of monobodies and on the
opposite side of the variable regions (BC-, DE-, and FG-loops)
in a loop-only library of monobodies. A previous study on
Centyrin, an FN3-based protein scaffold, revealed that single
cysteine mutations at the corresponding residues had relatively
small effects on the target binding.28 Therefore, the overall
synthetic process can be designed without dependence on the
hit bioactive sequences in the variable regions. Additionally,
because the upstream residues of Glu38 and Val66 are glycines
(Gly37 and Gly65) in the sequence of GS2, substitutions with
cysteines enable efficient NCLs at the Gly−Cys junction.29

Thus, this modified monobody is a non-antibody scaffold that
combines sufficient target binding and less synthetic effort,
which is suitable for a mirror-image screening strategy.

We investigated two synthetic routes for modified GS2
(mGS2) with cysteine substitutions. Our initial attempt to
synthesize mGS2 via an N-to-C NCL strategy is depicted in
Scheme 1. The N-terminal peptide segment L-1 and middle
segment L-2a were constructed by Fmoc-based solid-phase
peptide synthesis on N-acyl-N′-methyl-benzimidazolinone
(MeNbz)30 and diaminobenzoic acid (Dbz)31 linkers,

Figure 1. Sequences of monobodies and design of a monobody
variant with two cysteine substitutions. (A) Comparison of the
variable regions in the side-and-loop and loop-only libraries. The
substituted cysteines are underlined. The sequence is based on the
anti-GFP monobody GS2.24 (B) Variable regions in the side-and-loop
library in the structure of the monobody. Variable regions are colored
with cyan, and the arrows indicate the substituted cysteines. (C)
Variable regions in the loop-only library in the structure of the
monobody.

Scheme 1. Synthesis of anti-GFP Monobody via N-to-C
Native Chemical Ligationsa

aReagents and conditions: (a) 1,2,4-triazole, TCEP, 6 M guanidine (pH
7.0); (b) NaNO2, 6 M guanidine, phosphate buffer (pH 3.0); (c)
MPAA, TCEP, 6 M guanidine, phosphate buffer (pH 6.2); (d)
MPAA, TCEP 6 M guanidine, phosphate buffer (pH 6.5).
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respectively. To improve the solubility of the segments during
NCL and purification, a solubilizing auxiliary sequence of four
arginines was appended to the C-terminus of peptides L-1 and
L-2a. The C-terminal segment L-3 was also synthesized, which
contained a histidine tag at the C-terminus for detection and
immobilization. 1,2,4-Triazole-mediated NCL32 between pep-
tides L-1 and L-2a provided the intermediate L-4. NaNO2-
mediated activation of the Dbz moiety33 in L-4 followed by
NCL in the presence of 4-mercaptophenylacetic acid (MPAA)
with the C-terminal segment L-3 afforded the expected full
sequence of mGS2 (L-6). However, the chromatographic
separation of the product from a trace hydrolysate impurity
from L-4 was difficult.

Next, we investigated the synthesis of mGS2 via a C-to-N
NCL strategy (Scheme 2). Because the N-terminal and C-

terminal peptide segments (L-1 and L-3) can be used for the C-
to-N NCL strategy, only the middle segment (L-2b) was newly
designed, which contains 1,3-thiazolidine-4-carboxylic acid
(Thz) for N-terminal temporary protection and a MeNbz
linker for C-terminal activation. The resulting peptide
segments were assembled in the C-to-N direction. 1,2,4-
Triazole-mediated NCL between peptides L-2b and L-3
followed by methoxyamine-mediated deprotection of thiazoli-
dine provided the intermediate L-7. Subsequently, peptide L-7
was conjugated with the N-terminal segment L-1 in the
presence of 1,2,4-triazole again to give L-mGS2 (L-6) in 35%
overall yield (two steps from the peptide segment L-3). The C-
to-N NCL strategy was more straightforward than the N-to-C
process because the enhanced solubility of L-7 with a C-
terminal histidine tag facilitated the purification processes after
NCLs. This simple synthetic process was also used to
synthesize the mirror-image D-mGS2 (D-6) using D-amino
acids and glycine (37% overall yield from D-3). Our success in
the efficient preparation of full-length mGS2 supports the

validity of our design and the synthetic process for monobody
variants.

With the full length of L-mGS2 (L-6) in hand, we
investigated the folding conditions to obtain bioactive L-
mGS2. There is a reported procedure for purification of an
FN3-derived binding protein from E. coli inclusion bodies via
refolding by dialysis in acetate buffer (pH 4.5).8 According to
the reported protocol8 with some modifications, L-mGS2 was
subjected to dialysis procedures under slightly acidic
conditions (50 mM acetate buffer, pH 4.5, 5 mM TCEP) to
provide the folded protein with substituted cysteines in a
reduced form. Of note, when we initially investigated various
folding conditions and procedures under neutral pH, L-mGS2
was highly prone to aggregation, and obtaining bioactive L-
mGS2 failed. It was reported that FN3 modules and FN3-
derived proteins are thermodynamically more stable under
acidic conditions compared with neutral conditions.1,34−36 In
the current case, the slightly acidic conditions (pH 4.5) would
contribute to the formation of stable structure and thus the
rapid folding kinetics,34 which presumably prevented the
unfavorable self-association. The CD spectrum of folded L-
mGS2 suggested the existence of a β-sheet structure, which is a
common feature among FN3-derived binding proteins (Figure
2). D-mGS2, which was subjected to identical folding

conditions, showed an inverted CD spectrum compared to
that of L-mGS2. These results suggested that synthetic D-mGS2
folded correctly to form the mirror-image structure of L-mGS2.

The bioactivity of synthetic mGS2 proteins was evaluated by
surface plasmon resonance (SPR) analysis. Biotin-labeled
mGS2 (L-mGS2biotin and D-mGS2biotin) were designed and
synthesized for immobilization on the sensor chip (Scheme
S2). Enhanced green fluorescent protein (EGFP) at various
concentrations was flowed over the sensor chip. Synthetic L-
mGS2biotin showed slightly less potent binding toward EGFP
(KD = 9.8 ± 4.1 nM) compared with that of biotin-labeled
native GS2 (L-GS2biotin; KD = 1.8 ± 1.3 nM) (Figure S1 and
Table 1). The binding affinity of these synthetic proteins was
comparable to that of recombinant GS2, which was reported

Scheme 2. Synthesis of anti-GFP Monobody via C-to-N
Native Chemical Ligationsa

aReagents and conditions: (a) 1,2,4-triazole, TCEP, 6 M guanidine (pH
7.0); (b) methoxyamine; (c) 2-PDS, 6 M guanidine (pH 8.0).

Figure 2. CD spectra of L-mGS2 and D-mGS2.

Table 1. SPR Analysis of Synthetic Monobodies Binding
with EGFP

Ligand KD (nM)a

L-GS2biotin b 1.8 ± 1.3
L-mGS2biotin 9.8 ± 4.1
L-mGS2SS/biotin 3.7 ± 0.3
D-mGS2biotin no binding

aKD values were determined from triplicate assays. bKD value of
recombinant GS2 was reported to be 3.4 ± 0.2 nM.2
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previously.2 In contrast, D-mGS2biotin did not bind to EGFP,
suggesting that the molecular recognition of synthetic L-mGS2
with EGFP was accomplished stereoselectively.

Next, we comparatively investigated the immunogenic
properties of folded L-mGS2 and D-mGS2 (Figure 3).

BALB/c mice were immunized intraperitoneally with synthetic
L- or D-mGS2 three times in combination with a Freund’s
adjuvant at days 0, 14, and 28. Plasma samples were collected
from mice at days 0, 14, 28, 35 and 44, and the generation of
an anti-L-mGS2 antibody or anti-D-mGS2 antibody (ADA
against mGS2) was measured by ELISA. Repeated injections
caused a gradual increase in the ADA level for L-mGS2-
immunized mice, whereas no increase in ADA was observed
for D-mGS2-immunized mice. The production of ADA was
observed in all L-mGS2-immunized mice on day 44 after the
initial administration of the monobody, with some variation in
the production levels (Figure S2). In contrast, no ADA
generation was observed in all D-mGS2-immunized mice.
These results suggest that the mirror-image monobodies are
promising protein scaffolds with less immunogenic properties
and support previous reports showing that mirror-image
peptides and proteins have lower immunogenic proper-
ties.12,18,19

Disulfide bonds play an important role in the folding of
peptide-based and protein-based therapeutics and possibly
contribute to improving pharmacological properties.37 Gilbreth
et al. previously introduced a new disulfide bond between two
mutated cysteines of the third fibronectin type III domain of
human tenascin-C to improve the thermodynamic stability and
resistance to thermolysin-mediated proteolysis.38 In our newly
designed monobody scaffold, because the substituted cysteines,
Cys38 and Cys66, are adjacent to each other in the folded
state, we expected that an intramolecular disulfide bond
between these vicinal cysteines would similarly improve the
protein stability. Thus, we investigated the formation of an
intramolecular disulfide bond in mGS2 and subsequent
refolding for preparing the bioactive monobody. L-mGS2 (L-
6) was treated with 2,2′-dithiodipyridine (2-PDS)39 under
denaturing conditions (pH 8.0) in guanidine buffer to give L-
mGS2SS (L-8) with an intramolecular disulfide bond in 44%
yield (Scheme 2). The formation of a disulfide bond in L-8 was
confirmed by MS measurement after treatment with
iodoacetamide (Figure S3). Peptide L-8 was subjected to
folding conditions in a mildly acidic buffer (50 mM acetate

buffer, pH 4.5) to provide folded L-mGS2SS. The β-sheet
structure was verified by CD spectroscopy, with its spectrum
identical to that of L-mGS2 (Figure S4). Additionally, the
thermal stability of L-mGS2 and L-mGS2SS was evaluated by
monitoring changes to the CD signal at 203 nm (Figure S5). L-
mGS2SS showed slightly higher thermal stability than L-mGS2.
In the SPR analysis, biotin-labeled L-mGS2SS (L-mGS2SS/biotin)
exhibited improved binding affinity with EGFP (KD = 3.7 ±
0.3 nM) compared with L-mGS2biotin and comparable to L-
GS2biotin (Figure S1 and Table 1). This observation suggests
that the formation of the disulfide bond stabilized the bioactive
form of the anti-GFP monobody and/or restored the
unfavorable effect(s) of two sulfhydryl groups in L-mGS2 on
binding with EGFP.

In conclusion, we have established a facile synthetic process
for a newly designed monobody variant with two cysteine
substitutions via two-step NCLs from three peptide segments.
In the synthetic process, the bioactive sequence in the side-
and-loop library and loop-only library, which would be
identified by phage-display screening, can be included in
each peptide segment, providing a general synthetic approach
for various monobody proteins. The resulting synthetic L-
mGS2 retained the reported structure of the recombinant
protein and sufficient binding to EGFP. The immunogenicity
assessment suggested that synthetic D-mGS2 showed signifi-
cantly less ADA generation compared with L-mGS2. Forming
an intramolecular disulfide bond in the designed monobody
variant (L-mGS2SS) improved the binding affinity and thermal
stability. The mirror-image monobody with lower immunoge-
nicity should be an attractive non-antibody scaffold for
developing novel therapeutic biologics. The application to
mirror-image screening using particular display technologies is
ongoing in our laboratory.

■ ASSOCIATED CONTENT

*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acsmedchemlett.3c00342.

Experimental procedures for peptide synthesis and
biological evaluations, characterization of peptides, and
supporting figures (PDF)

■ AUTHOR INFORMATION

Corresponding Author
Shinya Oishi − Graduate School of Pharmaceutical Sciences,

Kyoto University, Kyoto 606-8501, Japan; Laboratory of
Medicinal Chemistry, Kyoto Pharmaceutical University,
Kyoto 607-8412, Japan; orcid.org/0000-0002-2833-
2539; Email: soishi@mb.kyoto-phu.ac.jp

Authors
Naoya Iwamoto − Graduate School of Pharmaceutical

Sciences, Kyoto University, Kyoto 606-8501, Japan
Yukino Sato − Laboratory of Medicinal Chemistry, Kyoto

Pharmaceutical University, Kyoto 607-8412, Japan
Asako Manabe − Graduate School of Medicine, Kyoto

University, Kyoto 606-8507, Japan
Shinsuke Inuki − Graduate School of Pharmaceutical Sciences,

Kyoto University, Kyoto 606-8501, Japan; orcid.org/
0000-0002-7525-1280

Figure 3. Evaluation of the immunogenicity of L-mGS2 and D-mGS2.
Generation of an antidrug antibody (ADA) in mouse sera at days 0,
14, 28, 35, and 44 after injection of L-mGS2 and D-mGS2 was
detected by ELISA (L-mGS2: n = 4; D-mGS2: n = 5). Absorbance of
3,3′,5,5′-tetramethylbenzidine (TMB) was measured at 450 nm.
Statistical analysis was performed by two-way ANOVA followed by
Sidak’s multiple comparisons test. *, p < 0.05, ***, p < 0.001.

ACS Medicinal Chemistry Letters pubs.acs.org/acsmedchemlett Technical Note

https://doi.org/10.1021/acsmedchemlett.3c00342
ACS Med. Chem. Lett. 2023, 14, 1596−1601

1599

https://pubs.acs.org/doi/suppl/10.1021/acsmedchemlett.3c00342/suppl_file/ml3c00342_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsmedchemlett.3c00342/suppl_file/ml3c00342_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsmedchemlett.3c00342/suppl_file/ml3c00342_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsmedchemlett.3c00342/suppl_file/ml3c00342_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsmedchemlett.3c00342/suppl_file/ml3c00342_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsmedchemlett.3c00342?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acsmedchemlett.3c00342/suppl_file/ml3c00342_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Shinya+Oishi"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-2833-2539
https://orcid.org/0000-0002-2833-2539
mailto:soishi@mb.kyoto-phu.ac.jp
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Naoya+Iwamoto"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yukino+Sato"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Asako+Manabe"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Shinsuke+Inuki"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-7525-1280
https://orcid.org/0000-0002-7525-1280
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Hiroaki+Ohno"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmedchemlett.3c00342?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmedchemlett.3c00342?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmedchemlett.3c00342?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmedchemlett.3c00342?fig=fig3&ref=pdf
pubs.acs.org/acsmedchemlett?ref=pdf
https://doi.org/10.1021/acsmedchemlett.3c00342?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Hiroaki Ohno − Graduate School of Pharmaceutical Sciences,
Kyoto University, Kyoto 606-8501, Japan; orcid.org/
0000-0002-3246-4809

Motohiro Nonaka − Graduate School of Medicine, Kyoto
University, Kyoto 606-8507, Japan

Complete contact information is available at:
https://pubs.acs.org/10.1021/acsmedchemlett.3c00342

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
This work was supported by JSPS KAKENHI, Japan
(JP18H02555, JP20K21252, JP22H02747, JP22K19376,
JP22KJ1842); Research on Development of New Drugs
(JP20ak0101144) from AMED, Japan; The Tokyo Biochem-
ical Research Foundation; Astellas Foundation for Research on
Metabolic Disorders; and Takeda Science Foundation.

■ ABBREVIATIONS
ADA, antidrug antibody; APC, antigen presenting cells; CDR,
complementarity determining region; Dbz, diaminobenzoic
acid; EGFP, enhanced green fluorescent protein; FN3, type III
domain of human fibronectin; GFP, green fluorescent protein;
MeNbz, N-acyl-N′-methyl-benzimidazolinone; MHC, major
histocompatibility complex; MPAA, 4-mercaptophenylacetic
acid; NCL, native chemical ligation; 2-PDS, 2,2′-bispyridyl
disulfide; SPR, surface plasmon resonance; TCEP, tris(2-
carboxyethyl)phosphine; Thz, 1,3-thiazolidine-4-carboxylic
acid; TMB, 3,3′,5,5′-tetramethylbenzidine; VEGFR2, vascular
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