Skip to main content
. 2023 Oct 18;14(10):741–754. doi: 10.5312/wjo.v14.i10.741

Table 2.

Evaluation of machine learning models in the original data

Model name
Accuracy
Precision
Recall
F1 score
AUC
LR 0.680 0.680 0.676 0.678 0.747
DT 0.924 0.994 0.853 0.918 0.988
RF 0.924 0.940 0.905 0.922 0.985
SVM 0.651 0.636 0.703 0.667 0.739
NB 0.657 0.676 0.598 0.634 0.709
KNN 0.747 0.748 0.742 0.745 0.828
XGB 0.912 0.941 0.879 0.901 0.976
ANN 0.886 0.899 0.868 0.883 0.963

AUC: Area under curve; LR: Logistic regression; DT: Decision tree; RF: Random forest; SVM: Support vector machine; NB: Naïve bayes; KNN: K-nearest Neighbour; XGB: eXtreme Gradient Boosting; ANN: Artificial neural network.