Table 2.
Evaluation of machine learning models in the original data
Model name
|
Accuracy
|
Precision
|
Recall
|
F1 score
|
AUC
|
LR | 0.680 | 0.680 | 0.676 | 0.678 | 0.747 |
DT | 0.924 | 0.994 | 0.853 | 0.918 | 0.988 |
RF | 0.924 | 0.940 | 0.905 | 0.922 | 0.985 |
SVM | 0.651 | 0.636 | 0.703 | 0.667 | 0.739 |
NB | 0.657 | 0.676 | 0.598 | 0.634 | 0.709 |
KNN | 0.747 | 0.748 | 0.742 | 0.745 | 0.828 |
XGB | 0.912 | 0.941 | 0.879 | 0.901 | 0.976 |
ANN | 0.886 | 0.899 | 0.868 | 0.883 | 0.963 |
AUC: Area under curve; LR: Logistic regression; DT: Decision tree; RF: Random forest; SVM: Support vector machine; NB: Naïve bayes; KNN: K-nearest Neighbour; XGB: eXtreme Gradient Boosting; ANN: Artificial neural network.