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ABSTRACT: We discuss a new theoretical framework for modeling
molecular electron densities. Our approach decomposes the total
density into contributions from basis function products and then
approximates each product using constrained least−squares
approximation in a tailored local basis of functions with adjustable
non−linear parameters. We show how to solve directly for the
expansion coefficients and Lagrange multipliers and present an
iterative method to optimize the non−linear parameters. Example
products from the Dunning cc-pVTZ basis set are discussed.

1. INTRODUCTION
1.1. Background. The central tenet of density functional

theory (DFT) is that, notwithstanding its conceptual
simplicity, the electron density D(r) in a system is a molecular
property from which all others can be derived.1 Consequently,
its computation, representation, and visualization are among
the most fundamental features of all modern electronic
structure software packages. Our goal in this work is to
develop a systematic scheme for efficiently constructing
accurate approximations to D(r).
In terms of a set of orthonormal orbitals ψi(r), we can write

the electron density as2,3

D r r r( ) ( ) ( )
i

n

i i= *
(1)

and, if each of these orbitals is expanded in a one-electron basis
set ϕμ(r), we obtain

D Pr r r( ) ( ) ( )
N

=
(2)

where Pμν is a density matrix. If each basis function is a
contracted Gaussian
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where Yμ(r) is the angular factor, Cμ
k is a contraction

coefficient, αμ
k is an exponent, and Aμ is the Gaussian center,

then the function products in (2) are

Y Yr r r r r( ) ( ) ( ) ( ) ( )= (4)

where we have introduced the Gaussian density
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and its primitive prefactors, exponents and centers are,
respectively,
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The electrostatic energy between two products is given by
the two-electron integral
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and these integrals yield the Coulomb, exchange, and
correlation energies.4 The evaluation of the (μν|λσ) is one of
the key bottlenecks of quantum chemistry, and research over
many decades has led to an impressive array of algorithms for
their computation, including the methods of Boys,5 Dupuis et
al.,6 McMurchie and Davidson,7 Obara and Saika,8 Head-
Gordon and Pople,9 Hamilton and Schaefer,10 Lindh et al.,11

Gill and Pople,12,13 Adams et al.,14 Ishida,15 Makowski,16 and
Komornicki and King.17 Nonetheless, although some of these
are very computationally efficient, all become expensive when
the degrees of contraction KμKν and KλKσ are large. For this
reason, it was recognized long ago that it is desirable to
construct approximations for products.
In the 20th century, a variety of methods for fitting function

products in an auxiliary basis were introduced and we note the
seminal contributions by Reeves and Fletcher,18 O-ohata et
al.,19 Newton et al.,20 Hehre et al.,21 Stewart,22 Billingsley and
Bloor,23 Baerends et al.,24 Whitten,25 Beebe and Linderberg,26

Dunlap et al.,27 Fortunelli and Salvetti,28 Feyereisen et al.,29

and Eichkorn et al.30 Helpful discussions of the underlying
theory were published subsequently by a number of work-
ers.31−37

In the present paper, however, we eschew a global auxiliary
basis in favor of approximating each product on its own locally
generated basis. More specifically, we seek an approximation to
the Gaussian density (5) that uses a few Gaussians whose
coefficients, exponents and centers are explicitly optimized.
Throughout this paper, we will use italic symbols to denote

scalars and bold (or double-struck) symbols to denote vectors
or matrices.
1.2. Least-Squares Functional.We seek to approximate a

given density ρ(r) by a model χ(r) where

r d a( ) T= (10)

r c b( ) T= (11)

where d = (d1, ..., dn) is a list of positive coefficients, c = (c1, ...,
cm) is a list of expansion coefficients, a = [a1(r), ..., an(r)] and b
= [b1(r), ..., bm(r)] are lists of normalized Gaussians
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α = (α1, ...,αn) and β = (β1, ...,βm) are lists of inverted
exponents, and A = (A1, ..., An) and B = (B1, ..., Bm) are lists of
Gaussian centers on the z axis. The assumption that all di > 0
sometimes requires that the basis set be reconstructed and this
is discussed in Section 2.1. We assume that m < n, and we
regard all of the cj, βj, and Bj as optimizable parameters.
For simplicity, we recast the problem in Fourier space and

model ρ̂(k) by χ̂(k) where

k d a( ) T= (14)

k c b( ) T= (15)

and the elements of a ̂ and b̂ are the Fourier transforms

a k A kk( ) exp( ) exp( )j j j z
2= (16)

b k B kk( ) exp( ) exp( )j j j z
2= (17)

Our models seek to minimize by least-squares the residual

R k k k( ) ( ) ( )= (18)

over all of space and, to achieve this, we introduce a Fourier
weight function

k k( ) /(2 )p
p2 3= (19)

In general, our models must also satisfy l linear constraints on
the expansion coefficients ci. These are conveniently captured
by the matrix equation

cT = (20)

where is an m × l matrix and is a vector of length l. For
example, if we seek a model that conserves charge in an ss
density, must contain a column of ones and the
corresponding element of must hold ρ̂(0), i.e. the charge
of ρ(r). We therefore introduce a vector of Lagrange
multipliers and seek a stationary point of the functional

Z R R c2 ( )p
T T= | | + (21)

1.3. Weight Function. The parameter p in (19)
determines the type of model that we form and we will write
Lp(m) to denote an m-Gaussian least-squares model with
parameter p and charge conservation

0 0( ) ( )= (22)

constrained. If p > 0, the fit emphasizes high-frequency
components of the density; if p < 0, it emphasizes low-
frequency components. Historically, p = 3/2, 1/2, or −1/2
have been advocated, but these are just three points on a
continuum of possibilities.
L3/2(m) models minimize the square of the residual density

R(r) itself. Such models were used by Reeves and Fletcher18 to
perform approximate Slater orbital calculations, O-ohata et
al.19 to construct expansions of Slater functions, Newton et
al.20 in the PDDO approximation, Hehre et al.21,22 to construct
the STO-nG basis sets, Billingsley and Bloor23 in the LEDO
approximation and Baerends et al.24 in their Hartree−Fock−

Figure 1. Optimal β for modeling a Slater function as the weight
function ωp(k) varies.
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Slater algorithm. Most of these authors used unconstrained fits,
but Baerends et al. constrained charge conservation.
L1/2(m) models minimize the squared norm of the electric

f ield of R(r). Such models were advocated by Whitten25 for
modeling densities without charge conservation, used by
Dunlap et al.27 in his Coulomb fitting approach, developed
further by Feyereisen et al.29 and Eichkorn et al.30 and
analyzed in detail by Hall and Martin.31

L−1/2(m) models minimize the square of the potential value
of R(r). They were introduced by Fortunelli and Salvetti28 and
defined rigorously by Gill et al.32

The constraint (22) ensures that the integral in (21) exists
when weight functions with −2 < p ≤ 0 are used but, for p ≤
−2, additional constraints must be applied. For certain isolated
p values, for example p = 0, the weight function (19) is not
positive definite and the functional (21) does not have a well-
defined stationary point. However, if they are needed, such
models can be obtained by taking limits in the neighborhood
of p.
To illustrate this, we modeled a single Slater function by a

single Gaussian function. In Fourier space, this corresponds to
modeling ρ̂(k) = (1 + k2)−2 by χ̂(k) = exp(−βk2). By
minimizing (21), one finds that the optimal β satisfies

p p(2 ) U( 1, , ) 1p 1 + =+ (23)

where U is the Tricomi hypergeometric function.38 Analysis of
(23) reveals that

p O p2 (4 ln 2 3)( 2) ( 2)opt
2= + + + + (24)

and Figure 1 shows that the optimal β varies smoothly and
almost linearly over a wide domain.
1.4. Cost-Benefit Analysis. In a spatially extended system,

most pairs of basis functions ϕμ and ϕν are well separated, and
the product ϕμ(r)ϕν(r) can therefore be neglected. It is easy to
show that the number of signif icant ϕμ(r)ϕν(r) products grows
only linearly with N and, thus, because the shell pair
economizations are independent, the cost of economizing all
significant shell pairs is O(N). However, it is reasonable to ask
whether this effort is worthwhile. There are two types of
calculations where the cost is easy to justify.
First, calculations in which the electron density D(r) will be

evaluated at a large number K of points r as, for example, on a
van der Waals surface. The cost of evaluating (2) at a point r is
O(N) and the total cost for all points is therefore O(KN). In
such situations, the economization cost will be more than
compensated by the subsequent savings in density evaluations.
Second, calculations in which the shell pairs will be used to

calculate two-electron integrals (9) as, for example, in a hybrid
density functional calculation. The number of signif icant shell
quartets, and therefore the number of significant ERIs, is
O(N2). Thus, whereas the cost of economization scales linearly
with N, the savings that accrue from the use of economized
shell pairs to form ERIs scale quadratically with N and will
more than compensate for the economization cost if N is
sufficiently large.

2. METHODS
2.1. Basis Set Reconstruction. To facilitate the modeling

process, we required all contraction coefficients to be positive.
This is true of some basis functions (for example, the 5-fold
contracted function on H atoms in the Dunning cc-pVTZ
basis,39 see Table 1) but it is not true of many basis functions

(for example, the 10-fold contracted functions on C atoms in
the same basis, see Table 2). However, it is often possible (at
least, in shared-exponent basis sets such as those of Dunning39

and Jensen40) to reconstruct the basis on each atom, creating
all-positive basis functions by linearly combining the originals.
Because the reconstructed basis set necessarily has the same
span as the original, it is equivalent for quantum chemical
purposes.
We formulate our problem as follows. Given a set V of

linearly independent vectors v v, ..., n1{ } , we seek a set U
of all-positive vectors {u1, ..., un} with span(U) = span(V).
We define vimin as the minimum (i.e., most negative)

component of vi and we then reorder the vi so that v1min > v2min
>··· > vnmin. We then try to construct a single all-positive vector
u1 from V by writing

u v v
i

n

i i1 1
2

= +
= (25)

and seeking the γi that maximize u1min. This maps onto the
linear programming problem

t v v t

j

maximize subject to

( 1, 2 , , )

j
i

n

i ij1
2

+

= ···
=

(26)

with the auxiliary variable t, and solved, for example, by
converting to canonical form and applying the Simplex
Method.42 The optimized t is maximized u1min.
If the resulting u1min value is positive, the original vectors are

reconstructible. We then form

i nu v u ( 2, ..., )i i i i 1= + = (27)

where δi is the smallest value that yields uimin = 0, and
normalize the resulting basis functions. This has the additional
benefit of reducing the order of contraction by one even before
modeling. We add the prefix “rec-” to the name of a
reconstructed basis set.
It is important to note that the reconstructed basis functions

are not orthogonal and, in some cases, can be almost parallel.
As a consequence, we hope that, in the future, (a) improved
reconstruction algorithms will be devised and (b) basis set
developers will produce basis sets with all-positive coefficients,
so that reconstruction is unnecessary.
If this method is applied to the 10-fold contracted functions

on C in the cc-pVTZ basis set (Table 2), we find that u1min is a
concave piecewise linear function of γ2 given by

l
m
oooooo

n
oooooo

u

0.008983 0.598684 0.0158885

0.000531 0.000113 0.0158885 2.03008

0.346129 0.170352 2.03008
1
min

2 2

2 2

2 2

=

+ <
+ <

+
(28)

Table 1. cc-pVTZ Exponents and Coefficients39,41 of an s
Function on H

Primitive Exponent Coefficient

1 33.87 +0.006068
2 5.095 +0.045308
3 1.159 +0.202822
4 0.3258 +0.503903
5 0.1027 +0.383421
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which reaches its maximum value (+0.000529) at γ2 =
0.0158885. We then form

u v u0.4960422 2 1= + (29)

and renormalize both u1 and u2. The rec-cc-pVTZ basis
functions are shown in Table 2 and we note that their overlap
integral is S12 = 0.456.
2.2. Modeling Theory. 2.2.1. Linear Parameters. The

basic units of the optimization are the scalar

Z p0 = | | (30)

the vector

bi p00 = | | (31)

and the matrix

b bi p j00 = | | (32)

From these, we can assemble the augmented vector

i
k
jjjjj

y
{
zzzzzf00

00=
(33)

and the augmented matrix

i
k
jjjjj

y
{
zzzzzF

0
00

00

T
=

(34)

and then write (21) as

Z Z f x x F x20 00
T T

00= + (35)

where the coefficients and Lagrange multipliers have been
conflated into the vector

i
k
jjj y

{
zzzx

c
=

(36)

Requiring that the gradient of (35) with respect to x vanish
yields the optimal coefficients and Lagrange multipliers

x F f00
1

00= (37)

and the resulting minimal value

Z Z f x0 00
T= (38)

For greatest numerical stability, (37) should be computed by
solving a linear system.

Having thus solved for the linear parameters ci and i, we
now have a functional (38) that depends only on the nonlinear
parameters βi and Bi. We now discuss the minimization of (38)
with respect to those parameters.

2.2.2. Initial Guesses: Spherical Density. If ρ(r) has
spherical (Kh) symmetry, we choose all Bi = 0 and eschew
further optimization. The exponents β are more challenging,
and to construct an initial guess for these, we convert the
modeling problem into a quadrature problem. First, we form
the integral representation

k u w u u( ) ( ) dk

0

1
0

2
=

(39)

where β0 > 0 is a scale factor and an Inverse Mellin
Transform38 provides the weight function

w u u s u( ) ( / ) ( )1 1
0= { } (40)

We then approximate (39) by the m-point Gauss−Christoffel
quadrature formula43

k c u( )
i

m

i i
k

1

0
2

= (41)

where the weights ci > 0 and roots 0 < ui < 1 are related to
polynomials that are orthogonal on [0, 1] with respect to w(u).
In the Golub-Welsch method44 (see Supporting Information),
the ci and ui are found from the moments

u u w u u j

j m

( ) d ( / )

( 0, 1, ..., 2 )

j j

0

1

0= =

= (42)

and, in order to sample ρ̂(k) well, we choose the arbitrary scale
factor to be
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2
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Finally, by substituting ui = exp(−βi/β0) into (41), we obtain
an approximation that we call the Q(m) model

k c k( ) exp( )
i

m

i i
1

2

= (44)

Although this model is less accurate than least-squares fitting, it
may sometimes be useful in its own right. However, its low
cost and reasonable accuracy make it a useful initial guess.

Table 2. cc-pVTZ Exponents and Coefficients39,41 of Two s Functions on C

Coefficient

cc-pVTZ rec-cc-pVTZ

Primitive Exponent v1 v2 u1 u2
1 8236. +0.000531 −0.000113 +0.000529 +0.000133
2 1235. +0.004108 −0.000878 +0.004094 +0.001026
3 280.8 +0.021087 −0.004540 +0.021012 +0.005238
4 79.27 +0.081853 −0.018133 +0.081555 +0.019875
5 25.59 +0.234817 −0.055760 +0.233901 +0.053661
6 8.997 +0.434401 −0.126895 +0.432330 +0.077970
7 3.319 +0.346129 −0.170352 +0.343379 0
8 0.9059 +0.039378 +0.140382 +0.041603 +0.143342
9 0.3643 −0.008983 +0.598684 +0.000529 +0.533186
10 0.1285 +0.002385 +0.395389 +0.008666 +0.355805

The Journal of Physical Chemistry A pubs.acs.org/JPCA Article

https://doi.org/10.1021/acs.jpca.3c04363
J. Phys. Chem. A 2023, 127, 9346−9356

9349

https://pubs.acs.org/doi/suppl/10.1021/acs.jpca.3c04363/suppl_file/jp3c04363_si_001.pdf
pubs.acs.org/JPCA?ref=pdf
https://doi.org/10.1021/acs.jpca.3c04363?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


There is an important caveat to the use of a quadrature
scheme to generate an initial guess. There is no guarantee45

that the Gauss−Christoffel roots ui and weights ci will exist or
be satisfactory unless the weight function w(u) in (39) is a
non-negative function on [0, 1]. It was to ensure this that we
assumed that all of the coefficients di in (10) are positive.

2.2.3. Initial Guesses: Cylindrical Density. Generating
guesses for the exponents βi and centers Bi when ρ(r) has
cylindrical (C∞v) symmetry is not difficult. In general, because
of the primitive prefactors (6), the coefficients di of the n
primitives in ρ(r) range over many orders of magnitude and
ρ(r) is therefore dominated by the primitives with the largest
absolute coefficients |di|. We exploit this by using the αi and Ai
of the m primitives with the largest |di| as our guesses.
We start by ordering the αi and Ai by |di| value and take the

first m primitives that are not already “covered” by a larger
primitive. A primitive i is considered “covered” if its Ai value is
within 0.25 au of the position Aj of a larger primitive j (|dj| >
|di|). This is because primitives that are close to each other
tend to be represented by a single Gaussian in models, even if
they both have large coefficients.
In the case of a tie for the mth largest “uncovered” primitive,

there are two options. If it would not break another tie, the
(m − 1)th largest primitive is excluded, and the αi and Ai of the
mth and (m + 1)th largest primitives are used. Otherwise, the
average of the mth and (m + 1)th largest primitives’ quantities
are taken.
Finally, if the guess formed this way has k < m primitives, the

m − k largest previously excluded “covered” primitives are
included as well.

2.2.4. Matrix Elements and Their Derivatives. For the basis
functions (17), one can show from eq (6.631.1) of Gradshteyn
and Ryzhik46 that both the matrix (32) and its derivatives with
respect to the nonlinear parameters (βi and Bi) can be
conveniently expressed in terms of the function
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M ,

3
2

,
4s t s,

2
= +

(45)

where Γ is the gamma function38 and M is the Kummer
hypergeometric function.38 The matrix itself is given by

B B( , )p i j i j00 ,0= + (46)

and, using properties of the hypergeometric function, one finds
the first derivatives

R R( , ) ( , )p p,0 1,0= + (47)

R
R

R
R( , )

3
( , )p p,0 1,1= + (48)

and the second derivatives

R R( , ) ( , )p p

2

2 ,0 2,0= +
(49)

R
R R R( , )

3
( , )p p

2

,0 2,1= + (50)

R
R

R
R R( , )

15
( , )

1
3

( , )p p p

2

2 ,0

2

2,2 1,1= + +

(51)

For half-integer values of p, all six of these can be expressed in
terms of Gaussians and the error function.38

To construct the gradient of Z, we require the first derivative
vectors and matrices

f f F F/ /i i10 00 10 00= = (52)

B Bf f F F/ /i i01 00 01 00= = (53)

and, to construct its Hessian, we need the second derivative
vectors and matrices

f f F F/ /i i20
2

00
2

20
2

00
2= = (54)

B Bf f F F/ /i i i i11
2

00 11
2

00= = (55)

B Bf f F F/ / (1 )i i ij02
2

00
2

02
2

00
2= = (56)

Differentiating (38) shows the gradient and Hessian of Z with
respect to β and B are

i
k
jjjjjj

y
{
zzzzzzg

E x

E x
2

10

01
=

[ ]
[ ] (57)

i

k
jjjjjjj

y

{
zzzzzzzH

H H

H H
2

20 11

11
T

02

=
[ ] [ ]

[ ] [ ] (58)

where

E F x f U XF Ediag( )10 10 10 10 10 10= = + (59)

E F x f U XF Ediag( )01 01 01 01 01 01= = + (60)

E F x f

H X E F X U F U

diag( )

( )
20 20 20

20 20 20 10 00
1

10
T

=

= + (61)

Table 3. Construction of an m-Gaussian Model for a
Gaussian Density

Step Description Equations Cost

1
Input m p, , , ,

O(1)

If ρ is spherical
2a Compute ⟨uj⟩ and β0 (42), (43) O(m)
3a Compute initial guess for β (44) O(m2)
4a Set B = 0 O(m)

else if ρ is cylindrical
2b Sort primitives by |di| value O(n)
3b Compute initial guess for β and B O(m)

end if
5 Compute f00, f10, f01, f20, f11, f02 (33), (52)−

(56)
O(m)

6 Compute F00, F10, F01, F20, F11, F02 (34), (52)−
(56)

O(m2)

7 Compute E10, E01, E20, E11, E02 (59) − (63) O(m)
8 Compute U10, U01, H20, H11, H02 (59) − (63) O(m3)
9 Compute x (37) O(m3)
10 Compute g (57) O(m2)
11 Compute H (58) O(m3)
12 Compute (β, B) ← (β, B) − Δ (69) O(m3)
13 If |Δ| > 10−4 or H is not positive definite,

go to Step 5
O(m3)
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E F x f

H X E F X U F U

diag( )

( )
11 11 11

11 11 11 10 00
1

01
T

=

= (62)

E F x f

H X E F X U F U

diag( )

( )
02 02 02

02 02 02 01 00
1

01
T

=

= (63)

and X = diag(x). The square brackets in (57) and (58) indicate
that only the first m elements of the enclosed vector, or the first
m-by-m block of the enclosed matrix, is retained.
It is well-known, however, that the optimal exponents of

Gaussian expansions of exponential densities form a roughly
geometrical sequence35,47 and that the exponents typically span
several orders of magnitude. We therefore choose to work with
the log-exponents

lni i= (64)

which are roughly evenly spaced and typically of the order of
unity. By the chain rule, the elements of the gradient and
Hessian of Z with respect to the λi are

g gdiag( )[ ] = [ ] (65)

H g Hdiag( ) diag( ) diag( )20 20= [ ] + [ ] (66)

H Hdiag( )11 11= [ ] (67)

i

k
jjjjjj

y

{
zzzzzzH

H H

H H
2

20 11

11
T

02

=
[ ] (68)

2.2.5. Optimization Step. Given the gradient (g) and
Hessian (H) of (38), we are in a position to find the optimal β
and B via an iterative scheme. Although the Newton−Raphson
method could be used, it is effective only if current β and B are
near-optimal and can be disastrous otherwise. We prefer the
slower (but more robust) approach taken by the Levenberg−
Marquardt method,48,49 wherein a small fraction σ > 0 of the
identity matrix is added to the Hessian to form the shifted-
Newton step

H I g( ) 1= + (69)

The shift σ should decay as the optimization proceeds and we
have found that σ = 10|g| is effective for all the densities
discussed below and hundreds of others that we have explored.
When optimizing β and B, our goal is to reduce Z to within

1% of its minimum value. This is usually achieved when H is
positive definite and |Δ| < 10−4.

2.2.6. Algorithm. The inputs to our algorithm are the
density ρ(r), the number m of Gaussians in the desired model,
the weight function parameter p, the constraint matrix and
the constraint vector . The way in which we generate initial
guesses for the nonlinear (β and B) parameters depends on
whether the Gaussian density is spherical or cylindrical, but
after that, the algorithm becomes the same. The overall
algorithm, together with links to key equations, is shown in
Table 3.

3. RESULTS AND DISCUSSION
3.1. Spherical Densities. 3.1.1. Preamble. Armed with

the necessary theory, we now consider how it can be applied in
calculations using the Dunning cc-pVTZ basis set.39 If the basis

Table 4. Models for the H(1s2) cc-pVTZ Density

Q(m) L−1/2(m) L+1/2(m) L+3/2(m)

m λi ci λi ci λi ci λi ci
1 +1.032 1.000 +0.876 1.000 +1.011 1.000 +1.159 1.000

= 1.8 × 10−1 = 1.7 × 10−1 = 1.8 × 10−1 = 2.1 × 10−1

2 +0.421 0.610 +0.315 0.572 +0.497 0.700 +0.719 0.824
+1.827 0.390 +1.802 0.428 +2.083 0.300 +2.455 0.176
= 5.1 × 10−2 = 5.5 × 10−2 = 4.2 × 10−2 = 6.7 × 10−2

3 +0.004 0.262 +0.027 0.308 +0.219 0.456 +0.439 0.621
+0.935 0.533 +1.102 0.563 +1.396 0.476 +1.741 0.348
+2.250 0.204 +2.583 0.129 +2.974 0.068 +3.430 0.031
= 2.8 × 10−2 = 1.8 × 10−2 = 1.2 × 10−2 = 2.0 × 10−2

4 −0.174 0.161 −0.139 0.186 −0.036 0.249 +0.316 0.519
+0.660 0.465 +0.765 0.521 +0.908 0.521 +1.478 0.412
+1.564 0.295 +1.849 0.260 +2.027 0.208 +2.838 0.066
+2.776 0.080 +3.361 0.032 +3.581 0.022 +4.621 0.003
= 1.2 × 10−2 = 5.4 × 10−3 = 4.5 × 10−3 = 1.2 × 10−2

5 −0.196 0.147 −0.165 0.169 −0.130 0.189 −0.057 0.228
+0.550 0.325 +0.707 0.499 +0.758 0.506 +0.831 0.496
+1.008 0.254 +1.709 0.278 +1.787 0.261 +1.854 0.238
+1.833 0.233 +2.917 0.050 +3.074 0.042 +3.148 0.037
+3.183 0.041 +4.455 0.004 +4.810 0.002 +4.924 0.002
= 5.7 × 10−3 = 1.6 × 10−3 = 6.6 × 10−4 = 7.1 × 10−4

6 −0.196 0.147 −0.190 0.152 −0.176 0.161 −0.135 0.183
+0.539 0.305 +0.610 0.412 +0.660 0.459 +0.730 0.490
+0.961 0.255 +1.225 0.211 +1.436 0.214 +1.684 0.254
+1.738 0.219 +1.927 0.187 +2.043 0.132 +2.421 0.046
+2.411 0.049 +3.147 0.036 +3.192 0.033 +3.268 0.026
+3.456 0.024 +4.874 0.002 +4.936 0.002 +4.975 0.002
= 4.7 × 10−3 = 2.5 × 10−4 = 1.5 × 10−4 = 1.8 × 10−4
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functions are concentric, their density is spherical and has the
Fourier transform (14)

k d k( ) exp( )
i

n

i i
1

2=
= (70)

and the associated weight function (40) is

w u u d u( ) (ln / )
i

n

i i
1

1
0= +

= (71)

where δ is the Dirac delta. If all di > 0, then w(u) is non-
negative and, from (43), we have

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ
m d d2

i

n

i i
i

n

i i0
1

1/2

1
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= = (72)

To find the Q(m), we need the moments

j d j( / ) exp( / )
i

n

i i0
1

0=
= (73)

and, to find the Lp(m), we need the integrals

Z d d ( , 0)
i

n

j

n

i j p i j0
1 1

,0= +
= = (74)

d ( , 0)
j

n

j p j i00
1

,0= +
= (75)

The Q(m) and Lp(m) models are constructed to mimic the
original density ρ(r) as well as possible over all space. It is also

important, however, to assess the resulting models χ(r) by
measuring the largest pointwise difference between ρ(r) and
χ(r). For a spherical density, it is natural to measure this
through the maximum Jacobian-weighted error

r r rmax 4 ( ) ( )2= [ | |] (76)

and we report this for each of the models described below.
3.1.2. H(1s1s) Density. Our first example comes from the 5-

fold contracted basis function on an H atom in the cc-pVTZ
basis set (see Table 1). The product of this function with itself
yields a density with n = 15 distinct Gaussians and its Q(m)
and Lp(m) models are listed in Table 4.
The exponents of the Lp(m) change smoothly and

predictably as p and m are varied. The L−1/2(m) are the
most diffuse (i.e., their λi are most negative) and the L+3/2(m)
are the most compact (i.e., their λi are the most positive). This
is reasonable because, whereas the L−1/2(m) use a Fourier
weight 1/(2π k4) that emphasizes low-frequency components
of the density and therefore its tail, the L+3/2(m) use a weight
1/(2πk0) that places greater emphasis on the high-frequency
components and therefore the region near the nuclear cusp.
The L+1/2(m) exponents are remarkably close to the average of
the analogous L−1/2(m) and L+3/2(m) exponents, thus
generalizing the near-linear behavior seen in Figure 1.
The exponents of Q(m) also change smoothly with m. Their

most diffuse exponents are similar to those in L+1/2(m) when m
is small and similar to those in L−1/2(m) when m is larger but
the range λm − λ1 of the Q(m) exponents is smaller than in any
of the least-squares models. For applications for which a quick
and reasonably accurate approximation is required, the Q(m)
models appear useful.

Table 5. Models for the rec-cc-pVTZ C(1s2s) Density (S = 0.456)

Q(m) L−1/2(m) L+1/2(m) L+3/2(m)

m λi ci/S λi ci/S λi ci/S λi ci/S

1 4.031 1.000 3.386 1.000 3.685 1.000 3.976 1.000
= 6.3 × 10−1 = 4.3 × 10−1 = 4.9 × 10−1 = 6.0 × 10−1

2 3.273 0.725 2.349 0.441 2.835 0.642 3.284 0.796
5.098 0.275 4.445 0.559 4.954 0.358 5.454 0.204
= 1.5 × 10−1 = 1.6 × 10−1 = 1.4 × 10−1 = 2.1 × 10−1

3 2.855 0.524 1.423 0.117 2.334 0.382 2.872 0.615
4.150 0.332 3.159 0.572 3.958 0.484 4.657 0.342
5.561 0.144 5.036 0.312 5.699 0.134 6.423 0.043
= 6.1 × 10−2 = 1.1 × 10−1 = 5.1 × 10−2 = 8.7 × 10−2

4 2.625 0.416 0.854 0.046 1.708 0.155 2.574 0.467
3.703 0.298 2.622 0.396 3.165 0.485 4.104 0.396
4.715 0.216 4.027 0.419 4.646 0.307 5.504 0.127
6.015 0.070 5.646 0.139 6.272 0.053 7.218 0.010
= 3.1 × 10−2 = 4.8 × 10−2 = 1.9 × 10−2 = 4.0 × 10−2

5 2.544 0.370 0.494 0.023 1.195 0.071 2.273 0.321
3.369 0.167 2.117 0.187 2.750 0.403 3.596 0.412
3.941 0.220 3.216 0.416 4.018 0.352 4.874 0.221
4.877 0.190 4.554 0.306 5.279 0.156 6.180 0.044
6.191 0.053 6.098 0.068 6.871 0.018 7.879 0.003
= 2.6 × 10−2 = 2.5 × 10−2 = 9.8 × 10−3 = 2.1 × 10−2

6 2.182 0.143 0.217 0.013 0.957 0.049 1.958 0.201
2.768 0.281 1.602 0.081 2.534 0.318 3.208 0.416
3.682 0.266 2.775 0.369 3.609 0.341 4.437 0.276
4.457 0.156 3.924 0.331 4.732 0.225 5.576 0.093
5.177 0.119 5.109 0.179 5.920 0.062 6.875 0.013
6.424 0.035 6.624 0.028 7.503 0.006 8.583 0.001
= 1.7 × 10−2 = 1.1 × 10−2 = 3.7 × 10−3 = 1.2 × 10−2
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3.1.3. C(1s2s) Density. Our second example comes from the
product of the two 10-fold contracted rec-cc-pVTZ basis
functions on a C atom (see Table 2). Their product yields a
density with n = 55 distinct Gaussians and its Q(m) and Lp(m)
models are listed in Table 5.

3.1.4. Other Densities. We have applied our algorithm for
spherical densities to all of the concentric ss products arising in
the cc-pVDZ and cc-pVTZ basis sets of Dunning and the pc-1
and pc-2 basis set of Jensen, constructing L−1/2(m), L1/2(m)
and L3/2(m) models with m = 1,..., 6.
The maximum error does not show a strong dependence

on p but we find that the smallest is often obtained by
L3/2(m) if m is small, and by L1/2(m) if m is larger.
In many cases, the number m of Gaussians required to

accurately model a density with a large number n of Gaussians
is surprisingly small. The explanation for this encouraging
discovery appears to lie in the distribution of exponents αμν

kl in
a typical basis function product. We see from (7) that the αμν

kl

are simple sums of the αμ
k and αν

l of the parent basis functions
but, because the latter typically form a roughly geometrical
sequence, the distribution of αμν

kl is clustered. To illustrate this,
consider a hypothetical basis function with αμ

k = {1000, 100,
10, 1}. The product of this with itself generates a Gaussian
density with αμμ

kl = {2000, 1100, 1010, 1001, 200, 110, 101, 20,
11, 2}, and although these 10 exponents are strictly distinct,
the second, third and fourth Gaussians are similar (as are the
sixth and seventh Gaussians) and can be modeled quite well by
a single Gaussian.
3.2. Cylindrical Densities. 3.2.1. Preamble. If two basis

functions are on different centers, separated by a distance

R > 0, their product yields a Gaussian density ρ(r) with
cylindrical symmetry and, to find the Lp(m), we need

Z d d A A( , )
i

n

j

n

i j p i j i j0
1 1

,0= +
= = (77)

d A B( , )
j

n

j p q j i j i00
1

,0= +
=

+
(78)

The overlap S = ∫ ρ(r) dr of the functions decays rapidly as R
increases and it is interesting to compare the accuracies of the
Lp(m) models as a function of R.
The Lp(m) models are constructed to mimic the original

density ρ(r) as well as possible over all space. It is also
important, however, to assess the resulting models χ(r) by
measuring the largest pointwise difference between ρ(r) and
χ(r). For a cylindrical density, it is natural to measure this
through the maximum axial error

x y r rmax 2 ( ) ( )2 2= [ + | |] (79)

and we report this for each of the models described below.
3.2.2. H(1s)H(1s) Density. Our first example is the product

of the 5-fold contracted cc-pVTZ basis functions (Table 1) on
two hydrogen atoms centered at (0, 0, ±R/2). The density
consists of 25 Gaussians, and L−1/2(m) models with m = 1 to 6
Gaussians are shown in Table 6.
We have considered three values of R, chosen so that the

resulting overlap S is close to 0.1, 0.01, or 0.001. These
correspond roughly to the most distant H atoms in the

Table 6. L−1/2(m) Models for cc-pVTZ H(1s)H(1s) Densities with Various R

R = 4.928, S = 0.100 R = 7.725, S = 0.010 R = 9.995, S = 0.001

m Bi λi ci/S Bi λi ci/S Bi λi ci/S

1 +0.000 +0.015 1.000 +0.000 −0.239 1.000 +0.000 −0.262 1.000
= 3.6 × 10−3 = 2.2 × 10−4 = 1.0 × 10−5

2 −1.142 +0.282 0.500 −1.287 +0.019 0.500 −0.990 −0.125 0.500
+1.142 +0.282 0.500 +1.287 +0.019 0.500 +0.990 −0.125 0.500
= 1.8 × 10−3 = 9.1 × 10−5 = 3.9 × 10−6

3 −1.382 +0.709 0.274 −2.320 +0.657 0.133 −2.743 +0.561 0.062
+0.000 −0.182 0.452 +0.000 −0.165 0.734 +0.000 −0.193 0.875
+1.382 +0.709 0.274 +2.320 +0.657 0.133 +2.743 +0.561 0.062
= 1.1 × 10−3 = 3.6 × 10−5 = 9.6 × 10−7

4 −1.763 +0.913 0.168 −2.323 +0.670 0.132 −2.744 +0.561 0.062
+0.000 −0.163 0.510 +0.000 −0.184 0.717 +0.000 +3.312 −0.0001
+0.000 +0.662 0.155 +0.000 +0.583 0.018 +0.000 −0.192 0.875
+1.763 +0.913 0.168 +2.323 +0.670 0.132 +2.744 +0.561 0.062
= 8.0 × 10−4 = 3.6 × 10−5 = 9.6 × 10−7

5 −2.229 +1.761 0.030 −3.276 +1.640 0.013 −4.252 +1.696 0.002
−1.137 +0.554 0.290 −1.982 +0.531 0.146 −2.607 +0.541 0.062
+0.000 −0.273 0.361 +0.000 −0.198 0.683 +0.000 −0.196 0.870
+1.137 +0.554 0.290 +1.982 +0.531 0.146 +2.607 +0.541 0.062
+2.229 +1.761 0.030 +3.276 +1.640 0.013 +4.252 +1.696 0.002
= 3.1 × 10−4 = 1.1 × 10−5 = 1.8 × 10−7

6 −2.138 +1.915 0.025 −3.327 +1.785 0.010
−1.368 +0.596 0.220 −2.037 +0.550 0.144
+0.000 −0.186 0.445 +0.000 −0.195 0.689
+0.000 +0.872 0.064 +0.000 +0.886 0.002
+1.368 +0.596 0.220 +2.037 +0.550 0.144
+2.138 +1.915 0.025 +3.327 +1.785 0.010
= 2.7 × 10−4 = 9.0 × 10−6
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equilibrium structures of ethane, propane and butane,
respectively.
In the least-squares approximation of smooth functions by

other smooth functions, pointwise convergence is expected to
be exponential50 and this seems to be observed here. As the
number m of Gaussians in the model grows, the maximum
error decays rapidly. In all cases, the optimal centers Bi are
symmetrically and more or less uniformly distributed on the z
axis, the central Gaussian is the most diffuse (its λi is the most
negative) and the Gaussians furthest from the origin are the
least diffuse and have the smallest coefficients ci.
It is particularly encouraging to note that, for R ≈ 10, the 25-

Gaussian density can be approximated very accurately
( 1 10 )6< × by a model with just three Gaussians, or
accurately ( 1 10 5= × ) by a model with just a single
Gaussian!
The reported m = 4 model for R ≈ 10 is a local minimum,

with a Z value 0.5% larger than the global minimum. The
values are the same. It seems clear that adding a fourth
Gaussian to the model provides negligible improvement, so its
precise λi and ci have little bearing on the overally accuracy.
The fifth Gaussian is needed to noticeably lower both Z and ,
but this is unimportant since this density can be modeled so
accurately with even a single Gaussian.

3.2.3. C(2s)H(1s) Density. Our second example is the
product of the 10-fold contracted rec-cc-pVTZ 2s basis
function on a C atom at (0, 0, −R/2) with the 5-fold
contracted cc-pVTZ basis function on a H atom at
(0, 0, +R/2) (see Tables 1 and 2). The product consists of

50 Gaussians, and L−1/2(m) models with m = 1 to 6 Gaussians
are shown in Table 7.
As before, we have considered three values of R, chosen so

that the resulting overlap S is close to 0.1, 0.01, or 0.001. These
correspond roughly to the most separated C and H atoms in
the equilibrium structures of ethane, propane and butane,
respectively.
Although the maximum pointwise error of the models

almost always decreases as m grows, its decay is slower than for
the H(1s)H(1s) densities above. More detailed investigation
revealed that the pointwise error is usually largest (and
oscillating) in a small region close to the carbon nucleus, but
because of volume effects, this error contributes relatively little
to the integral in (21) and is therefore only slowly reduced as
more Gaussians are added to the model.
As was observed for the H(1s)H(1s) densities, the models in

Table 7 are usually dominated by a diffuse Gaussian near the
origin, flanked by tighter Gaussians with smaller coefficients,
and the central dominance is even more marked in the large-R
densities. It is clear from the values that the 50-Gaussian
densities arising from the overlap of well separated C(2s) and
H(1s) functions can be very accurately modeled by models
with very small numbers of Gaussians.

4. CONCLUSIONS
The electron density D(r) is a fundamental quantity in all
quantum chemical calculations and, in order that those
calculations be efficient, it is desirable that D(r) be represented
as compactly as possible. Most of the successful previous work
in this area projects D(r) into a global auxiliary basis set but, in
the present work, we have sought instead to approximate each

Table 7. L−1/2(m) Models for rec-cc-pVTZ C(2s)H(1s) Densities with Various R

R = 4.669, S = 0.100 R = 7.305, S = 0.010 R = 9.446, S = 0.001

m Bi λi ci/S Bi λi ci/S Bi λi ci/S

1 −0.285 +0.158 1.000 −0.593 −0.090 1.000 −0.712 −0.134 1.000
= 3.8 × 10−3 = 3.2 × 10−4 = 1.8 × 10−5

2 −1.179 +0.418 0.561 −1.779 +0.310 0.480 −2.135 +0.266 0.303
+0.889 +0.378 0.439 +0.567 +0.025 0.520 −0.072 −0.082 0.697
= 3.1 × 10−3 = 1.2 × 10−4 = 4.6 × 10−6

3 −1.320 +0.761 0.344 −2.306 +0.758 0.196 −2.797 +0.677 0.120
−0.289 −0.099 0.387 −0.437 −0.041 0.699 −0.537 −0.073 0.838
+1.079 +0.733 0.270 +1.869 +0.662 0.105 +2.171 +0.595 0.041
= 2.9 × 10−3 = 1.1 × 10−4 = 3.0 × 10−6

4 −1.691 +0.948 0.197 −3.396 +2.405 0.006 −4.158 +1.924 0.003
−0.274 −0.039 0.487 −2.197 +0.707 0.203 −2.710 +0.653 0.121
−0.170 +0.776 0.171 −0.434 −0.052 0.681 −0.533 −0.076 0.834
+1.529 +0.954 0.145 +1.813 +0.646 0.110 +2.136 +0.594 0.042
=2.7 × 10−3 =8.6 × 10−5 =2.4 × 10−6

5 −2.280 +3.202 0.008 −3.232 +1.878 0.012 −4.037 +1.686 0.005
−1.345 +0.719 0.329 −2.068 +0.649 0.222 −2.675 +0.641 0.122
−0.230 −0.152 0.345 −0.418 −0.080 0.640 −0.530 −0.078 0.831
+0.652 +0.625 0.274 +1.487 +0.568 0.115 +2.061 +0.595 0.041
+1.978 +1.429 0.044 +2.849 +1.438 0.011 +3.881 +1.783 0.001
= 1.6 × 10−3 = 9.4 × 10−5 = 2.5 × 10−6

6 −2.249 +3.354 0.007 −3.573 +3.933 0.002 −4.647 +3.942 0.0004
−1.460 +0.796 0.257 −2.812 +1.213 0.032 −3.766 +1.398 0.007
−0.318 −0.053 0.436 −1.959 +0.590 0.211 −2.646 +0.625 0.121
+0.013 +0.918 0.093 −0.406 −0.083 0.631 −0.527 −0.078 0.829
+1.131 +0.611 0.184 +1.523 +0.582 0.116 +2.052 +0.598 0.041
+1.915 +1.868 0.024 +2.929 +1.587 0.009 +3.830 +1.672 0.001
= 1.5 × 10−3 = 3.5 × 10−5 = 8.7 × 10−7
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basis function product that contributes to D(r) in a small, local
basis that is explicitly tailored to that product. This is achieved
by performing a nonlinear optimization with a few adjustable
parameters for each product, and we have presented
expressions for all of the first and second derivatives required
to use Newton’s method or a similar second-order scheme.
We have applied our algorithm to many of the products that

arise when Dunning’s cc-pVnZ or Jensen’s pc-n basis sets are
used, and we find that, in many cases, products consisting of
many primitive Gaussians can be accurately approximated by
models with only a few, well-optimized Gaussians. We
anticipate that when such models are used in quantum
chemical calculations, the resulting errors will be small while
the computational speed will be significantly enhanced.
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