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ABSTRACT  Adoptive cell therapy (ACT) can successfully treat hema-
topoietic cancers but lacks efficacy against solid tumors. This is due 
to insufficient T cell infiltration, high tumor heterogeneity, frequent 
antigen loss with subsequent tumor escape, and the immunosup-
pressive tumor microenvironment (TME). Alternative methods to 
boost the anticancer efficacy of adoptively transferred cells are ac-
tively pursued. Among adjuvants that are utilized to stimulate anti-
cancer immune responses, ligands of the stimulator of interferon 
genes (STING) pathway have received increasing attention. STING 
activation can trigger dendritic cell (DC) activation and endogenous 
immune responses, thereby preventing tumor escape. Activation of 
the STING pathway in the context of ACT was accordingly associated 
with improved T cell trafficking and persistence in the TME com-
bined with the reduced presence of immunosuppressive cells. Re-
cent findings also suggest cell-intrinsic effects of STING ligands on T 
cells. Activation of the STING signaling pathway was in this regard 
shown to enhance effector functions of CD4+ and CD8+ T cells, sug-
gesting that the STING signaling could be exploited to harness T cell 
anticancer functions. In this review, we will discuss how the STING 
signaling can be used to enhance the anticancer efficacy of ACT. 
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THE RELEVANCE OF ADOPTIVE T CELL THERAPY IN 
CANCER 
In 2018, Tasuku Honjo and James Allison were awarded the 
Nobel Prize for their research on immune checkpoint inhib-
itors (ICI). They found that inhibition of the suppressive 
molecules PD-1 and CTLA-4 enhanced the ability of the 
immune system to eliminate cancer cells [1]. Immune 
checkpoints are expressed on activated immune cells and 
serve to maintain self-tolerance and regulate immune re-
sponses. Tumor-induced engagement of these immune 
checkpoints is considered as a resistance mechanism that 
limits T cell activation [2]. Numerous anti-PD-1 and anti-
CTLA-4 therapies were developed and showed unparalleled 

survival rates for patients with non-small cell lung cancer, 
renal cell carcinoma, and melanoma [3]. Although these 
treatments are now FDA-approved for many cancer types, 
a significant number of patients suffers from immune-
related adverse effects or acquired resistance [4]. Especial-
ly in weakly immunogenic cancers, some patients cannot 
benefit from ICIs, highlighting the importance of further 
progress in this research area and the need for alternative 
therapeutic approaches [5]. One other treatment avenue 
with proven clinical success is adoptive cell therapy (ACT). 
In ACT, autologous immune cells are amplified ex-vivo, 
modified, and subsequently transferred back into the pa-
tient [6]. It has been successfully demonstrated that ICI and 
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Abbreviatons: 
ACT – adoptive cell therapy, TME – tumor 
microenvironment, STING – stimulator of 
interferon genes, DC – dendritic cell, ICI – immune 
checkpoint inhibitors, TILs – tumor-infiltrating 
lymphocytes, TCR – T cell receptor, CAR-T – 
chimeric antigen receptor T cells (CAR-T), MHC – 
major histocompatibility complex, TLRs – Toll-like 
receptors, NOD – nucleotide-binding 
oligomerization domain, NLRs – NOD-like 
receptors, RIG-I – Retinoic acid-inducible gene I, 
RLRs – RIG-I-like receptors, CLRs – C-type lectin 
receptors, cGAS – cGAMP synthase, IRF3 – 
interferon regulatory factor 3, IFNs – type I 
interferons, APCs – antigen-presenting cells. 
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ACT can be combined [7, 8], possibly providing additional 
benefits [9]. Some metastatic melanoma patients in whom 
ICI showed no therapeutic effect were successfully treated 
with ACT, suggesting that ACT can be used when ICIs fail 
[10-13]. 

Three main T cell-based approaches are currently con-
sidered for ACT, including the use of tumor-infiltrating 
lymphocytes (TILs), antigen-specific T cells equipped with a 
specific T cell receptor (TCR), and chimeric antigen recep-
tor T cells (CAR-T) [14]. TCR-based ACT does not require an 
engineered construct but relies on the target antigen being 
presented via the major histocompatibility complex (MHC). 
CAR-T based ACT can target MHC independent antigens, as 
well as carbohydrates and glycolipids expressed on the cell 
surface of tumors [14]. CD8+ T cells can directly eliminate 
tumor cells due to their cytotoxic properties, which is why 
they have long been considered as the most suitable T cell 
subset for ACT. CD8+ T cell-mediated killing occurs through 
MHC-I-dependent recognition of tumor cells and subse-
quent granzyme- and/or FAS ligand-dependent elimination. 
This also requires cross-priming by DCs as well as co-
stimulation by natural killer cells and/or CD4+ T cells de-
rived cytokines [15]. However, the support of innate im-
munity to T cell adaptive immune responses is not always 
present in the TME. If CD8+ T cells cannot be primed and 
activated in the TME, CD8+ T cell-dependent tumor elimi-
nation fails [16]. The required co-stimulation to activate 
CD8+ T cells can also be provided by CD4+ T cells. Current 
strategies aim to exploit these properties of CD4+ T cells in 
ACT [17]. CD4+ T cells are also suitable for ACT because 
they support antigen presentation from DCs, T cell homing 
through the secretion of chemokines such as CXCL9-11, 
formation of CD8+ T cell memory, and direct tumor elimi-
nation by granzymes, perforin, TRAIL, or FasL (reviewed in 
[18]). A recent study examining long-persisting anti-CD19 
CAR T cells demonstrated that 9 years after therapy, the 
long-term protection against CD19+ cells was mediated 
almost exclusively by cytotoxic CD4+ CAR T cells. This sug-
gests that beyond the short-term tumor elimination medi-
ated by CD8+ T cells, CD4+ T cells contribute to long-term 
remission [19]. 

Because it is now accepted that the immune system 
shapes the initiation and progression of cancer [20], in-
creasing efforts are being made to design and exploit adju-
vants that will boost anticancer immune responses. Im-
mune adjuvants include agonists of pattern recognition 
receptors, such as Toll-like receptors (TLRs), nucleotide-
binding oligomerization domain (NOD)-like receptors 
(NLRs), Retinoic acid-inducible gene I (RIG-I)-like receptors 
(RLRs), C-type lectin receptors (CLRs) and cytosolic DNA 
sensors such as stimulator of interferon genes (STING) [21]. 
We will here discuss recent findings indicating that STING 
agonists enhance T cell anticancer responses and under-
score their relevance in the context of ACT. 

 
STING IN CANCER IMMUNOTHERAPY 
The STING pathway was initially considered as a protective 
mechanism against intracellular pathogens through the 

detection of cytosolic double-stranded DNA. STING signal-
ing is also induced following the detection of cytosolic self-
DNA, which can originate from tumor cells due to genomic 
instability [22]. Double-stranded DNA in the cytosol is 
bound in a sequence-independent manner by the cGAMP 
synthase (cGAS), resulting in the formation of cGAMP, 
which acts as a second messenger and activates the STING 
protein in the ER. STING then undergoes conformational 
changes and translocates into the ER-Golgi intermediate 
compartment and Golgi compartment. Here, TANK-binding 
kinase 1 is recruited for further signal transduction and 
phosphorylates interferon regulatory factor 3 (IRF3). IRF3 
translocates to the nucleus, where it leads to the synthesis 
of type I interferons (IFNs) and the activation of IFN-
stimulated genes (reviewed in [22, 23]). Increased type I 
IFN secretion subsequently induces tumor-specific priming 
of T cells by antigen-presenting cells (APCs). In tumor cells, 
STING induction can induce cell death and thus increases 
the amount of tumor antigens available for APCs. This en-
hances the activation of T cells, their infiltration into the 
tumor, thereby resulting in cancer cell elimination [24]. 
Treatment with STING pathway agonists accordingly pro-
motes adaptive immune responses in the TME [25]. The 
resulting induction of IFN-γ-expressing CD8+ T cells medi-
ates anticancer responses [26, 27]. These properties sup-
port the use of STING agonists like 2′3′-cGAMP for cancer 
immunotherapy (Figure 1).  

Because of STING agonist-mediated immune cell infil-
tration, combination therapies with ICIs were tested [28]. 
Promising preclinical results when combining ICIs and 
STING agonists were achieved in multiple cancer models, 
including melanoma and an HPV+ oral tumor [29-32]. How-
ever, these successes failed to translate into the clinic due 
to the pharmacokinetic properties of STING agonists that 
preclude effective drug delivery [33]. Furthermore, some 
tumors feature limited responses to STING ligands due to 
inhibitory mechanisms that include for instance p53 [34], 
ecto-nucleotide pyrophosphatases 1 (ENPP1) [35], Hypox-
ia-induced RNASEH2a upregulation [36], and TIM-3 [37]. To 
tackle some of these hurdles, a better bioavailability of 
STING agonists is needed. This could be achieved through 
more stable STING agonists or improved delivery systems 
(discussed in [33]).  

 
STING-DRIVEN ACTIVATION OF INNATE IMMUNE CELLS 
FAVORS T CELL ACTIVATION 
Two major uses for STING activation can be contemplated. 
The first is to deliver STING agonists directly into the TME 
of the host. This approach can trigger anticancer responses 
[38], thereby contributing to overall tumor elimination as 
discussed above. Macrophages and DCs are critical innate 
immune cells that affect CD8+ T cell-mediated tumor elimi-
nation. Type-2 macrophages can be repolarized into type-1 
macrophages by STING activation, which can improve the 
antitumor response by enhancing the co-stimulation and 
differentiation of CD4+ and CD8+ T cells [39]. In DCs, cGAS-
STING is required for antigen presentation and cross-
priming of T cells [27]. DC-mediated cross-priming is fol-
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lowed by recruitment of cytotoxic T cells to the TME 
through the chemokines CXCL9 and CXCL10 [37, 40]. 

Numerous studies (discussed in [24]) showed that dis-
ruption of the STING-axis led to compromised CD8+ T cell-
mediated tumor elimination. STING activation in the TME 
therefore supports T cell functions. This was exploited us-
ing either CD8+ and CD4+ CAR T cells, as discussed further 
below. 

Using a murine second-generation specific CD8+ CAR T 
cell model, the group of Sandra Hervas-Stubbs demon-

strated that 2'3'-cGAMP treatment induced an endogenous 
T cell response, prevented antigen-loss variant outgrowth 
and led to an improved overall survival rate [42]. By using a 
bilateral B16-OVA tumor mouse model, the authors ob-
served restrained tumor progression in the injected and 
opposite tumor, when the combination of 2'3'-cGAMP in-
jection and antigen-specific CD8+ CAR-T cells was used. 
Most importantly, mice treated with the combination were 
the only ones to survive, while the control groups receiving 

 

FIGURE 1: STING agonist-induced effects on innate immune cells in the TME. Intratumoral injection of STING agonists induces repolariza-
tion of type-2 macrophages into type-1 macrophages, resulting in enhanced co-stimulation and differentiation of CD4+ and CD8+ T cells [39]. 
STING ligand-induced tumor cell death leads to the release of tumor-derived antigens and DNA, which are taken up by DCs, resulting in the 
release of type I IFNs and enhanced T cell activation [23, 24, 27]. Intratumoral injection of STING agonists results in the secretion of the 
chemokines CXCL9, CXCL10, and CXCL10, CXCL11, which are secreted by DCs and macrophages, respectively [37, 41]. As a result, cytotoxic 
CD8+ T cells are recruited to the TME. STING agonists induces the secretion of type I IFN, leading to terminal differentiation of immature 
DCs and enhanced activation of DCs. Overall, intratumoral STING agonists injection leads to macrophage repolarization, DC cross-
presentation, T cell trafficking, and DC maturation and activation, resulting in enhanced recruitment and activation of anti-tumor CD8+ T 
cells and improved tumor control. 
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standalone CAR-T cells or 2'3'-cGAMP died within the first 
20-30 days.  

Since the combined treatment enabled to control tu-
mor progression in treated and untreated tumors and re-
sulted in the survival of the mice, the authors concluded a 
strong synergistic effect of the STING agonist and the CAR T 
cells they used. 

Subsequently, they investigated whether STING ago-
nists could induce an immune response and thus could 
target the cancer systemically [42]. To verify this, the au-
thors examined the presence of endogenous CD8+ T cells in 
treated and untreated tumors, lymph nodes, and peripher-
al blood three days after STING agonist administration. 
Furthermore, they analyzed the frequency of Ag-specific 
CD8+ T cells restricted to two immunodominant epitopes of 
B16-OVA tumors, OVA, which is a foreign antigen, and M8 
is an endogenous one. Their analysis revealed a significant-
ly increased number of M8-specific CD8+ T cells in the 
group receiving CAR T cells and administration of STING 
ligand in all tissues examined. The number of OVA-specific 
CD8+ T cells was generally lower, but significantly increased 
except in the contralateral lymph nodes. The increased 
presence of OVA+ or M8+ endogenous CD8+ T cells, particu-
larly in the blood, lymph nodes, and untreated tumor sug-
gests that the combination treatment induced an endoge-
nous CD8+ T cell response. Overall, this may have led to the 
increased overall survival of the mice receiving the com-
bined therapy. Notably, the administration of CAR T cells 
without STING ligand also resulted in high levels of OVA+ or 
M8+ endogenous CD8+ T cells in the untreated tumor.  In 
line with the observations of Corrales et al. [40], the au-
thors also found that cross-priming DCs are responsible for 
the ability of the combined therapy to eliminate tumors 
[42]. 

To next address the question of whether and to what 
extent the STING pathway was responsible for the ob-
served antitumor responses, the authors used STING-
deficient tumor-bearing mice or mouse STING-deficient 
CAR T cells. The authors found that the use of STING-
deficient CAR T cells was associated with reduced anti-
tumor effects and decreased overall survival of recipient 
mice but did not affect the frequency of endogenous tu-
mor-specific T cells. In STING-deficient mice, no tumor 
growth delay and no increased overall survival was detect-
ed in response to the combined treatment, along with a 
complete lack of activated endogenous tumor-specific T 
cell response [42]. Therefore, the STING pathway in the 
host has to be fully functional for successful antitumor 
therapy. T cells possess an intrinsic tumor-eliminating po-
tential, which can be triggered by STING agonist-mediated 
activation prior to transfer. This study by Sandra Hervas-
Stubbs's group extends previous findings obtained with 
other STING ligands. Indeed, DMXAA and synthetic cyclic 
dinucleotides (CDN) elicited a systemic antitumor response 
dependent on STING signaling in host cells [40]. Collectively, 
this suggests that intratumoral injection of STING ligands 
can be exploited in combination with CD8+ T cells to target 
cancer systemically. 

Jonathan Serody's group recently used mouse CD4+ T 
helper cells in combination with STING agonist to treat a 
locally advanced breast cancer model [43]. While the po-
tential of CD4+ T cells for ACT is clear, the diversity of CD4+ 
T cell responses should be considered. CD4+ T cells are a 
highly heterogeneous group consisting of TH1, TH2, TH9, 
TH17, TFH, and TReg cell subsets. Each is characterized by a 
subset-specific cytokine profile and thereby fulfills differ-
ent effector functions [44]. Although there is a large 
agreement that Tregs and TH1 cells respectively favor and 
restrict tumor progression, TH2, TH9 and TH17 cell functions 
in cancer are context-dependent [45]. TH17 cells can con-
trastingly affect cancer depending on their environment 
[46]. However, in the setting of adoptive cell therapy, IL-
17-secreting T cells are considered beneficial, with report-
ed antitumor activity in melanoma and lung cancer [47-49]. 
The effect of DMXAA and 2'3'-cGAMP in combination with 
murine Neu-specific TC/TH17 CAR T cells was investigated in 
the setting of breast cancer [43]. The authors have demon-
strated that the combined treatment mediates antitumor 
control due to improved trafficking and persistence of CAR 
T cells in the TME [43]. TC/TH17 CAR T cells featured im-
proved antitumor efficacy in mice receiving DMXAA, result-
ing in long-term control in some of the treated mice, while 
standalone treatments remained ineffective [43]. The infil-
trating CAR-T cells were then analyzed by flow cytometry 
to determine the cause of the enhanced antitumor re-
sponse. The authors found that some of the transferred 
TC/TH17 CAR-T cells had undergone a shift to TC/TH1 CAR-T 
cells and that DMXAA enhanced the accumulation of these 
TC/TH1 CAR-T cells in the TME. This phenotypic shift was 
accompanied by the upregulation of TC/TH1 signature tran-
scription factors and cytokines (Tbx21 and IFN-γ). By using 
anti-IFN-γ mAb, they found that tumor elimination oc-
curred in a TC/TH1 CAR-T cell mediated manner [43]. It was 
previously shown that TH17 cells possess some levels of 
plasticity enabling their transformation into IFN-γ-
producing TH1-like cells [50]. This plasticity is necessary for 
their antitumor response in TH17 ACT [51]. However, the 
observation that activation of the STING signaling pathway 
further enhances this plasticity and the antitumor respons-
es is of high interest for cancer immunotherapy. Despite 
the improved effect of the combined CAR T cell and STING 
agonist treatment, one question remains: Why do most 
tumors recur as IL-17-secreting T cells are known to be 
long-lived and self-renewing with superior persistence 
[52]? To address this, the authors have performed a single-
cell transcriptome sequencing of CD45+ cells from the TME. 
The authors compared leukocytes on the day of best tumor 
control with their counterparts collected on the day of 
tumor recurrence. In DMXAA treated mice, they found a 
shift in the myeloid cells of the TME favoring M1-like mac-
rophages. Interestingly, their depletion by means of lipo-
some clodronate was associated with a complete loss of 
the DMXAA-induced therapeutic benefit. This shift was 
accompanied by a stronger M1 gene expression including 
nos2 and inhba, and a reduced expression of M2 associat-
ed genes like retnla, mrc1, folr2, and il10. Furthermore, 
M1-associated chemokines (cxcl9, cxcl10, and ccl5) were 
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increasingly secreted to attract TC/TH1 T cells to the TME. In 
addition, they have found that while the combined therapy 
transiently relieves immunosuppression in the TME, this 
effect is short-lived and immunosuppressive myeloid cells 
were subsequently present in the TME. They also analyzed 
the TC/TH17 CAR T cells from the TME and discovered an 
increased expression of markers associated with dysfunc-
tion and apoptosis, providing evidence for their assump-
tion that T cell dysfunction is the key limiting factor of the 
therapy. This suggested that both immunosuppression 
driven by myeloid cells and T cell dysfunction were respon-
sible for the absence of complete responses to the com-
bined therapy. To test this further, the combination of 
TC/TH17 CAR T cells and DMXAA was administered with 
anti-PD-1 and anti-GR-1 monoclonal antibodies twice a 
week, starting one day after the CAR T cell injection. This 
resulted in a marked increase in the ability of tumor-
bearing mice to reject tumors. Importantly, only the com-
bination of both antibodies was effective, indicating that 
both PD-L1 and myeloid cell-driven immunosuppression 
needed to be targeted to yield a therapeutic benefit. Next, 
the authors examined the effect of their TC/TH17 CAR T 
cells by comparing them with CAR T cells expanded with IL-
7 and IL-15. The use of TC/TH17 CAR T cells resulted in an 
improved in vivo anticancer efficacy over the latter [43]. 
The authors linked this difference to the significantly high-
er proliferation rate of CD4+ CAR T cells in the spleen and 
the enhanced expansion of CD8+ CAR T cells with a central 
memory phenotype. Finally, the authors compared DMXAA 
with the other STING agonist 2'3'-cGAMP. Although the use 
of 2'3'-cGAMP resulted in significantly more TC/TH17 CAR T 
cells in the TME, there was only a minor difference in ther-
apeutic efficacy [43]. Overall, this study suggests that 
STING ligands and CAR T cells have synergistic effects that 
can successfully fight breast cancer when combined.  

 
T CELL-INTRINSIC STING ACTIVATION AND ITS RELE-
VANCE IN ACT 
Direct administration of STING agonists faces obstacles 
such as difficulties with drug delivery and poor pharmaco-
kinetics. It is further accompanied by reports of autoim-
mune events after excessive STING stimulation [33]. To 
circumvent this, cells can be directly activated with the 
STING agonist prior to transfer. This would prevent a 
STING-mediated detrimental inflammatory response in the 
host and minimize drug-induced adverse events. We will 
therefore next focus on the intrinsic effect of STING ago-
nists in T cells and discuss how STING signaling affects their 
viability, cell proliferation, cytokine secretion, and anti-
tumor functions (Figure 2). 

Alexander Poltroak's team studies on mouse T cells 
showed that the STING signaling pathway, already shown 
to be active in macrophages, was also functional in T cells. 
In T cells, STING induction with DMXAA leads to IFN-I pro-
duction, prevention of cell proliferation, and induction of 
proapoptotic genes. However, these cell-adverse effects 
were not observable with low doses of DMXAA [53]. An-
drea Ablasser's group confirmed the cell death-inducing 

effect of the STING agonists CMA and DMXAA, but addi-
tionally found that this was due to an intensified STING 
signaling response in T cells as compared to macrophages 
and DCs [53, 54]. It should be noted that those findings 
were mostly established using synthetic STING ligands such 
as CMA and DMXAA. By contrast, other studies reported 
limited apoptosis induction upon treatment of T cells with 
2’3’-cGAMP [42, 55]. Liufu Deng's laboratory instead inves-
tigated whether STING signaling in CD8+ T cells was neces-
sary for their antitumor effects. They found that the cGAS-
STING pathway was required in CD8+ T cells to induce an 
antitumor response [56]. The use of murine tumor-specific 
T cells lacking either cGAS or STING showed reduced anti-
tumor activity as compared to controls. Likewise, condi-
tional knockout of STING in CD4Cre+-STINGflox/flox mice re-
sulted in accelerated tumor progression in the mouse T cell 
lymphoma model EG7 and mouse glioblastoma model 
GL261. Examination of proliferative capacity and effector 
functions revealed that cGAS- and STING-deficient CD8+ T 
cells displayed impaired proliferation rate after adoptive 
transfer as compared to controls. In addition, the number 
of TNF-α+ and IFN-γ+ CD8+ T cells in tumor draining-lymph 
nodes was significantly reduced, suggesting dysfunctional 
effector functions. Finally, the authors showed that cGAS 
or STING deficiency in CD8+ T cells led to an accumulation 
of effector CD8+ T cells at the expense of self-renewing and 
persistent central memory CD8+ T cells. cGAS- or STING-
deficient CD8+ T cells also exhibited a terminally exhausted 
phenotype. 

Collectively, the authors' findings support the funda-
mental role of the cGAS-STING axis in CD8+ T cells for ACT 
[56]. Importantly, in line with the observations of other 
investigators [42, 55], STING treatment did not affect the 
cell viability of the human CD8+ T cells used [56]. In sum-
mary, an intact cGAS-STING axis in CD8+ T cells is required 
for their anticancer effector functions. Because excessive 
STING activation in T cells may trigger cell death, it remains 
important to carefully consider the dose of the STING lig-
ands used to harness T cell effector functions without 
compromising their proliferation or viability. We have ac-
cordingly shown that STING ligands can enhance T cell ef-
fector functions and the differentiation of TH1 and TH9 cells 
[55]. 

TH9 cells are defined as cells lacking Foxp3 but secreting 
high levels of IL-9 [57]. They also secrete IL-10 and IL-21 [58, 
59]. Polarization of naive T cells into TH9 cells is initiated by 
IL-4 and TGF-β and requires a complex interaction of a 
network of transcription factors, including IRF4, GATA3, 
BATF3, and PU.1 [60]. TH9 cells are particularly promising in 
the context of ACT, as Puwar and colleagues demonstrated 
superior antitumor properties of TH9 cells upon adoptive 
transfer as compared to other CD4+ subsets in a mouse 
model of melanoma [61]. Their superiority was subse-
quently independently demonstrated by multiple laborato-
ries [58, 62, 63]. Adoptively transferred tumor Ag-specific 
murine TH9 cells were shown to provide superior antitumor 
immunity by eliminating variants with antigen loss [64]. All 
these findings provide impetus to investigating the rele-
vance of TH9 cells in the ACT of cancer. 
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Investigations conducted by our group using different 
subsets of CD4+ T cells, including TH1, TH9, and TH17 cells, 
which were directly activated with different STING ligands, 
revealed that the differentiation and effector functions of 
TH1 and TH9 cells could be enhanced by STING activation 
[55]. 

We further demonstrated that TH1 and TH9 cells re-
spond differently to STING ligands, as illustrated by our 
observation that TH1 cells were more sensitive to STING 
ligand-induced apoptosis than TH9 cells. STING activation 
enhanced human TH1 and TH9 polarization, and resulted in 
increased expression and secretion of IFN-γ and IL-9, the 
respective TH1 and TH9 signature cytokines [55]. These re-
sults showing that ligands of STING enhance TH9 cell differ-
entiation are in line with published investigations indicat-
ing that pro-inflammatory components such as glucocorti-
coid-induced TNFR-related protein (GITR), IL-1β, TNFα, 
OX40L, and TL1A support TH9 effector functions [58, 65-68]. 

It is noteworthy that distinct mechanisms were contrib-
uting to the cell-intrinsic STING-driven enhancement of TH1 
and TH9 differentiation. IRF3 activation was essential for 
the STING-mediated induction of TH1 cell differentiation, 
while mTOR signaling accounts for the increased TH9 cell 
differentiation following STING activation [55]. We tested 
the in vivo functions of TH9 cells treated with 2'3'-cGAMP in 
the B16-OVA melanoma model. For both subcutaneously 
or intravenously injected B16-OVA cells, we demonstrated 
that adoptively transferred 2'3'-cGAMP-stimulated tumor 
Ag-specific TH9 cells secreted more IL-9 and triggered bet-
ter antitumor immunity compared to controls without 
STING agonists [55]. These results show that STING activa-
tion can enhance the anticancer efficacy of adoptively 
transferred T cells (Figure 2). 

 
 
 

 

FIGURE 2: Cell-intrinsic STING activation effects on T cells. Direct stimulation of T cells by STING ligands can produce contrasting effects. 
Mild activation levels of STING signaling can be exploited to boost TH1 and TH9 differentiation [55]. Impaired STING signaling in T cells results 
in reduced frequency of central memory CD8+ T cells, reduced proliferation, and reduced effector functions upon adoptive transfer [56]. 
Potent STING signaling results in reduced proliferation and induction of cell death by apoptosis [53, 54]. 
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CONCLUSIONS 
While STING function was initially characterized in fibro-
blasts [69], it is now clear that STING shapes the biology of 
multiple immune cell types, including T cells. STING ago-
nists have the potential to address some of the critical 
challenges of adoptive cell therapy. STING agonists can 
indeed enhance T cell infiltration and reduce tumor-
induced immunosuppression [42, 43]. Despite these prom-
ising advances, the disappointing results obtained when 
combining STING agonists with ICIs underscore the chal-
lenge to translate the use of STING agonists into the clinic. 
Documented issues such as toxicity, low bioavailability, and 
related difficulties of administration likely prevent the clin-
ical implementation of STING ligands against cancer (dis-
cussed in [70]). In that regard, the recent work of Jneid et 
al. that relies on the use of virus-like particles to deliver 
cGAMP in the TME highlights an elegant venue to circum-
vent some of these issues [71]. Recent results suggest that 
direct T cell activation by STING agonists can be exploited 
in the context of ACT. Both Liufu Deng's laboratory and 
ours have shown that T cells can be directly activated with 
STING agonists without triggering marked cell death [55, 
56]. A thoughtful selection and careful use of STING ligands 
will allow harnessing of T cell anticancer functions without 
compromising their fitness. Further research is warranted 
to translate the therapeutic use of STING ligands in the 
setting of ACT. 
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