Nature of the Inorganic Carbon Species Actively Taken Up by the Cyanobacterium *Anabaena variabilis*¹

Received for publication March 12, 1984 and in revised form July 5, 1984

MICHA VOLOKITA, DRORA ZENVIRTH, AARON KAPLAN*, AND LEONORA REINHOLD Department of Botany, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel

ABSTRACT

The nature of the inorganic carbon (C_i) species actively taken up by cyanobacteria CO₂ or HCO₃⁻ has been investigated. The kinetics of CO₂ uptake, as well as that of HCO₃⁻ uptake, indicated the involvement of a saturable process. The apparent affinity of the uptake mechanism for CO₂ was higher than that for HCO₃⁻. Though the calculated V_{max} was the same in both cases, the maximum rate of uptake actually observed was higher when HCO₃⁻ was supplied. C₁ uptake was far more sensitive to the carbonic anhydrase inhibitor ethoxyzolamide when CO₂ was the species supplied. Observations of photosynthetic rate as a function of intracellular C₁ level (following supply of CO₂ or HCO₃⁻ for 5 seconds) led to the inference that HCO₃⁻ is the species supplied. When the two species were supplied simultaneously, mutual inhibition of uptake was observed.

On the basis of these and other results, a model is proposed postulating that a carboic anhydrase-like subunit of the C_1 transport apparatus binds CO_2 and releases HCO_3^- at or near a membrane porter. The latter transports HCO_3^- ions to the cell interior.

The observed capability of green algae and cyanobacteria to accumulate C_i^2 within the cells has been attributed to the operation of a mechanism for active transport of HCO₃⁻ ions (for review, see Lucas [8]). However, the observation that supply of ¹⁴CO₂ to green algae (5, 9, 11) and cyanobacteria (2) leads to faster accumulation of C_i and acid-stable ¹⁴C than does HCO₃⁻ supply has prompted the proposal that CO₂ may in fact be the species actively transported. In the present study we have investigated the uptake of each C_i species within a brief period of its supply to *Anabaena variabilis* cells and, further, have examined interactions between CO₂ and HCO₃⁻ during the uptake process. Data obtained bear on the molecular mechanism involved in C_i uptake in cyanobacteria.

MATERIALS AND METHODS

Cultures of Anabaena variabilis M-3 (from the collection of Tokyo University) were grown as described earlier (6). Accumulation of acid stable (photosynthetic products) and labile (inorganic) carbon were determined using the filtering centrifugation technique (6, 7). All experiments were conducted at pH

The discrepancy between the rates of CO_2 and HCO_3^- uptake at low external C_i concentrations might conceivably be partly due to different rates of diffusion from medium to cell membrane. Diffusional resistances in this pathway may be greater for HCO_3^- ions than for the electrically neutral CO_2 molecule. However, experiments comparing the uptake performance of

8.0. ${}^{14}CO_2$ or $H^{14}CO_3^{-}$ were prepared and supplied as described by Volokita et al. (12). The stock of H¹⁴CO₃⁻ in 100 mM BTP (pH 9.5) was freshly prepared under N₂ and was also used to prepare the ${}^{14}CO_2$ stock. Conversion of $H^{14}CO_3^-$ to ${}^{14}CO_2$ was carried out as follows: Aliquots of the $H^{14}CO_3^-$ solution were injected into closed microfuge tubes containing 100 mM Mes (pH 2.4). Following this injection the pH rose to 5.1 (maximum). The solution in the tube was mixed for 60 s with a syringe and the required volume withdrawn and injected into the cell suspension. Another sample was injected into 0.1 N NaOH. The radioactivity in the letter sample was assessed in order to correct for the loss of ${}^{14}CO_2$ from the microfuge tube. This procedure enabled accurate determination of the concentration of CO₂ supplied, and ensured that the specific activity of the C_i supplied was the same, whether presented as CO₂ or HCO₃⁻. The injection of aliquots of the H¹⁴CO₃⁻ or ¹⁴CO₂ stocks changed the pH of the cell suspension (in 50 mM Hepes-NaOH, pH 8.0) to only a minor degree (maximum 0.1 pH units). This change was taken into account whenever the actual concentration of CO₂ or HCO₃⁻ present at a given time was calculated. EA was kindly donated by Professor S. Miyachi.

RESULTS

The cells of low CO₂ grown *Anabaena* accumulated acid-labile ¹⁴C (C_i) more rapidly when the C_i supplied was in the form of ¹⁴CO₂ as compared with $H^{14}CO_3^-$ (Fig. 1). The discrepancy between CO₂ uptake and HCO₃⁻ uptake was larger in the case of high CO₂ adapted cells (not shown) than in that of low CO₂ grown cells.

Uptake of C_i from a range of CO₂ and HCO₃⁻ concentrations

was followed with time, and initial rate of uptake estimated from the initial slope of the curves obtained; the initial rates are plotted as a function of external concentration in Figure 2. Interestingly, the CO₂ uptake curve shows saturation characteristics. Over the concentration range up to 150 μ M, CO₂ was taken up faster than HCO_3^- . At external concentrations higher than 150 μ M, on the other hand, HCO₃⁻ was taken up faster than CO₂. Kinetic analysis of the data (see Fig. 2, inset) indicated that the affinity of the transporting system for CO₂ was higher than that for HCO_3^- ($K_{\nu_2} = 17 \ \mu M$ and 60 μM , respectively). Apparent V_{max} , by contrast, was estimated to be the same (Fig. 2, inset) regardless of the form in which C_i was supplied. The fact that the experimentally obtained curve for CO₂ supply did not reach as high a value for velocity as did that for HCO_3^- supply (Fig. 2) suggests that at high CO_2 concentration CO_2 transport is limited by some other factor.

¹ Supported by a grant from the United States-Israel Binational Science Foundation (BSF), Jerusalem, Israel.

² Abbreviations: C_i, inorganic carbon; EA, ethoxyzolamide; CA, carbonic anhydrase; Rubisco, ribulose 1,5-bisphosphate carboxylase; BTP, 1,3-bis(tris-[hydroxymethyl]methylamino)propane.

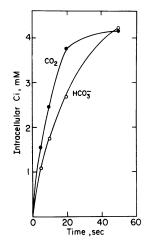


FIG. 1. The time course of accumulation of C_i within *A. variabilis* cells following the supply of C_i in the form of CO₂ or HCO₃⁻. Low CO₂ grown cells. Light intensity was 6 mw·cm⁻² (400-700 nm). Density of cell suspension corresponded to 11 µg Chl/ml, 30°C. C_i concentration was 10 µM (pH 8.0).

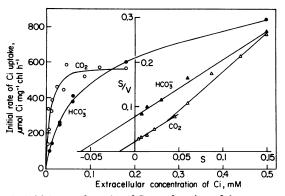


FIG. 2. Initial rate of uptake of C_i as a function of the concentration of CO_2 or HCO_3^- supplied. Data obtained from experiments in which the time course of uptake was determined. See Figure 1 for experimental conditions.

intact cells with that of spheroplasts prepared from the cells (13) have not yielded decisive enough evidence to assess the contribution of such diffusion resistances.

Nature of C_i Species Arriving at Inner Membrane Surface. The dependence of photosynthetic rate on the size of the intracellular C_i pool was analyzed using data obtained from experiments in which C_i was supplied for 5 s at various concentrations either in the form of CO₂ or of HCO₃⁻, and the accumulation of acid stable (photosynthetic products) and labile ¹⁴C (intracellular C_i) determined. Figure 3 shows that the points for both CO₂ and HCO₃⁻ supply lie on the same curve, *i.e.* the rate of photosynthesis at a given intracellular C_i level was not affected by the form in which C_i was supplied externally during the 5-s period. Since it is accepted that the substrate for Rubisco is CO₂ and not HCO₃⁻ ([4], confirmed also for *Anabaena* [1], one must conclude from Figure 3 that the ratio CO₂/HCO₃⁻ was the same at a given intracellular C_i concentration, regardless of whether CO₂ or HCO₃⁻ was the form of C_i supplied.

Figure 3 also shows that intracellular C_i pools as high as 15 mM (obtained following 5 s of CO₂ supply) were not saturating for photosynthesis. Since the $K_m(CO_2)$ for Rubisco isolated from *Anabaena* has been estimated as 0.2 to 0.3 mM (1; and A. Kaplan, unpublished data) this result indicates that the C_i in the internal pool after a 5-s supply was present mainly as HCO₃⁻. The possibility might be considered that, owing to interconversion

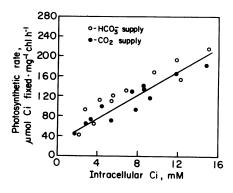


FIG. 3. Photosynthetic rate as a function of intracellular C_i concentration. Accumulation of acid stable ¹⁴C and intracellular C_i were determined 5 s after the supply of C_i either as CO₂ or as HCO₃⁻ at concentrations ranging from 2 to 200 μ M for CO₂ or 4 μ M to 2 mM for HCO₃⁻.

between the C_i species, CO₂ arriving at the transmembrane interface was rapidly converted to HCO₃⁻. However, assuming a cytoplasmic pH of 7.5 to 7.8 (a minimum estimate at this external pH, [14]) even if interconversion had reached equilibrium, the intracellular CO₂ concentration when the total internal C_i level was 15 mM would still be 0.54 to 1.04 mM, *i.e.* 2 to 4 times the K_m for Rubisco. The curve in Figure 3 should therefore have deviated markedly from linearity. That this is not observed indicates that the CO₂ level must be lower even than that expected after interconversion to the CO₂/HCO₃⁻ equilibrium value. Moreover, the C_i species are not likely to have reached equilibrium in *Anabaena* cells for reasons pointed out earlier (6) including the lack of detectable carbonic anhydrase activity.

If the period of C_i supply is extended, the curve relating photosynthetic rate to the intracellular C_i level tends to deviate from linearity toward the shape of a saturation curve, but again the same curve is obtained regardless of whether CO_2 or $HCO_3^$ is supplied. The data are consistent with the suggestion that, whatever the form in which C_i is provided, it reaches the inner side of the plasmalemma as HCO_3^- . The latter is then converted to CO_2 and utilized in photosynthesis. If the relative rates of CO_2 formation and utilization are such that at high C_i concentrations CO_2 tends to accumulate within the cell, then with time it will reach levels which saturate photosynthesis, leading to a curvilinear relationship between photosynthetic rate and intracellular C_i concentration.

CO₂ and HCO₃⁻ Interaction. Possible interaction between the two species during uptake was investigated in competition experiments where the concentration of one species (labeled) was held constant while the concentration of the second (unlabeled) was varied. It was observed that the uptake of each species was suppressed in the presence of the other. Figure 4 presents a Dixon plot of the data. It indicates that the type of inhibition was competitive. The K_i values (200 μ M CO₂ or HCO₃⁻) however is larger than the corresponding K_{V_2} for each species (Fig. 2).

Interconversion between CO_2 and HCO_3^- in the external medium is unlikely to have affected the results appreciably. At the external pH used (8.0) the uncatalyzed rate of conversion of CO_2 to HCO_3^- is faster than the reaction in the reverse direction. While after 5 s up to 20% of the ¹⁴CO₂ supplied have been converted to ¹⁴ HCO_3^- , only 0.3% of the ¹⁴ HCO_3^- supplied in the parallel experiment would have been converted to ¹⁴ CO_2 . Thus, the apparent competitive effects observed are unlikely to be attributable to conversion between CO_2 and HCO_3^- .

Effect of Carbonic Anhydrase Inhibitors. Sulfonamides such as acetazolamide (Diamox) EA, which are reputedly carbonic anhydrase inhibitors, have been observed to inhibit C_i uptake in cyanobacteria (6). Since CA activity is not detectable in *Anabaena*, it has been postulated (6) that the C_i transporter may

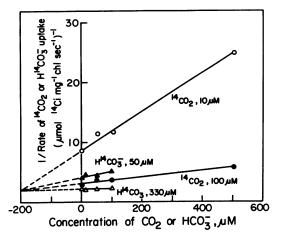


FIG. 4. Dixon plot showing reciprocal of the rate of ${}^{14}C_i$ (${}^{14}CO_2$ or $H{}^{14}CO_3^-$) uptake as a function of the concentration of unlabeled C_i (HCO_3^- or CO_2 , respectively). ${}^{14}CO_2$ and HCO_3^- were supplied simultaneously; alternatively, $H{}^{14}CO_3^-$ was supplied with CO_2 . Uptake was terminated after 5 s by centrifugation.

Table I. Intracellular C_i Pool Following the Supply of CO_2 or $HCO_3^$ to Cells of Anabaena as Affected by EA

100 μ M ¹⁴C_i supplied for 5 s as ¹⁴CO₂ or as H¹⁴CO₃⁻. Other conditions as in Figure 1.

Treatment	Intracellular C _i	% of Control
	тм	
HCO3-	5.6 ± 0.5	100
$HCO_3^- + 10 \ \mu M EA$	4.8 ± 0.4	86
CO2	14.4 ± 1.2	100
СО ₂ + 10 µм ЕА	4.6 ± 0.6	32

possess a CA-like subunit which is sensitive to the sulfonamides. The results of experiments in which the effects of EA on CO_2 uptake and on HCO_3^- uptake were compared are given in Table I. Uptake of C_i was far more sensitive to EA when the C_i species supplied was CO_2 .

DISCUSSION

Evidence collected in this investigation suggests that the C_i species arriving at the inner side of the membrane is HCO₃⁻ regardless of whether HCO3⁻ or CO2 is the species supplied (deduced from Fig. 3). Further, the kinetics of CO₂ uptake (initial rate versus concentration, Fig. 2) indicate that a saturable process is involved. The possibility that the saturation kinetics reflect a process which consumes CO₂ after it has diffused into the cell, thus maintaining the inward diffusion gradient, can be rejected for the following reasons: First, after 5 s (the period of the experiment) C_i had been accumulated to a concentration 75 to 1000 (depending on the extracellular C_i concentration) times that in the external medium (Fig. 3), *i.e.* the diffusion gradient was very steep in the opposite, outward, direction. Second, during the experimental period only about 5 to 10% of the ¹⁴C taken up was fixed; thus, CO_2 consumption in photosynthesis was almost negligible. Third, the reported K_m (CO₂) of carbonic anhydrase, which catalyzes the second major process in which CO₂ is consumed, differs from that indicated in Figure 2 by several orders of magnitude (10), and CA has in any case not been detected in Anabaena (6).

We conclude that the initial uptake of C_i when CO_2 is supplied is a saturatable, mediated transport process. This conclusion is supported by the following findings: First, there is mutual interaction between CO_2 uptake and HCO_3 uptake in competition experiments (Fig. 4). Second, CO_2 uptake as well as that of HCO_3^- is stimulated by light and inhibited by DCMU (D. Zenvirth, A. Kaplan, L. Reinhold, in preparation).

The evidence summarized above, together with the suggestive result that the uptake of CO₂ is depressed more drastically in the presence of a carbonic anhydrase inhibitor than is that of HCO₃⁻ (Table I) lead us to suggest a schematic model for C_i uptake. This model not only can account for the findings just referred to, but for a number of others as will be indicated below. We propose that a subunit of the Ci-transporting apparatus possesses CA-like activity (Fig. 5). CO₂ binds to this subunit and is converted to HCO_3^- . The nascent HCO_3^- generated in this process is immediately available, at or very near the site of its formation, to a HCO_3^- porter which transfers it to the inner membrane surface. The rate of conversion of CO₂ to HCO₃⁻ sets the upper limit for the rate of CO₂ uptake and is responsible for the lower maximum rate actually observed for CO2 uptake as compared with HCO3⁻ (Fig. 2). Linear conversion of uptake values at low external concentrations (Fig. 2) allows calculation of the V_{max} for the HCO₃⁻ porter, which would be expected to be the same for CO₂ and for HCO₃⁻. Figure 2, inset, indicates that this is indeed the case. The apparently lower affinity of HCO_3^- for the porter as reflected in the relative K_m values for CO₂ and HCO₃⁻ may be attributable to the fact that the charged HCO_3^- ion encounters resistance in diffusing through the cell wall, and within the membrane, to the active site on the porter, whereas CO₂ meets with less resistance in the wall and may be very efficiently transferred to the porter within the membrane by the CA-like moiety. In other words, the 'nascent HCO₃^{-'} pool located within the membrane does not equilibrate very readily with the HCO₃⁻ in the medium.

The K_i for CO₂ inhibition of HCO₃⁻ uptake was observed to be conspicuously larger than the K_m for CO₂ uptake (Figs. 2, 4). Perhaps the weak performance of CO₂ as a competitor is due to strong product inhibition of the CA-like moiety by HCO₃⁻ when the latter is supplied together with CO₂. (Effective product inhibition has been reported for CA itself [10].)

The somewhat larger K_i for HCO₃⁻ (acting as an inhibitor of CO₂ uptake) as compared with its K_m remains perplexing. Perhaps the presence of an intermediate intracellular C_i pool, the nascent HCO₃⁻ pool, is responsible for the complexity of the interrelations between HCO₃⁻ and CO₂. On the other hand, each C_i species might be able to bind to the other's specific sites, but with relatively low affinity. At O₂ compensation point, the concentration of C_i in the bulk medium is very close to zero (A. Kaplan, unpublished data). It is possible, however, that the unstirred layer contains some HCO₃⁻. This may have led to

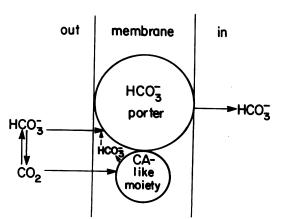


FIG. 5. Schematic model for HCO_3^- and CO_2 uptake in *Anabaena*. In and Out refer to the inner and outer interfaces of the plasmalemma.

underestimation of the kinetic parameters determined for HCO_3^- uptake. Those for CO_2 uptake would be far less affected because at the alkaline pH the concentration of this species would be very low.

An alternative scheme for uptake might postulate two distinct transport mechanisms, for HCO_3^- and CO_2 , respectively. The CO_2 porter might resemble a CA molecule vectorially placed across the membrane so as to liberate HCO_3^- at its inner surface. The competitive effects observed might be due, as suggested above, to the ability of each species to bind to the other's porter with a relatively high K_m .

It has recently been proposed that the activity of CA in green algae (which, in the case of *Chlamydomonas* is located in the periplasmic space) enables fast interconversion of the C_i species (3, 9). We could not detect CA activity in *Anabaena*. The postulated CA-like moiety of the transport system, therefore, does not exhibit CA activity.

Both schemes would account for the hyperpolarization of membrane potential observed on addition of HCO_3^- to C_i-depleted cells. Similarly, both would explain the high sensitivity of CO_2 uptake to CA inhibitors.

LITERATURE CITED

- 1. BADGER MR 1980 Kinetic properties of RuP₂ carboxylase from Anabaena variabilis. Arch Biochem Biophys 201: 247-254
- BADGER MR, TJ ANDREWS 1982 Photosynthesis and inorganic carbon usage by the marine cyanobacterium Synechococcus sp. Plant Physiol 70: 517-523
- 3. COLEMAN JR, JA BERRY, RK TOGASAKI, AR GROSSMAN 1983 Location and

identification of carbonic anhydrase in Chlamydomonas reinhardtii. Carnegie Inst Wash Year Book 82: 99-105

- COOPER TG, D FILMER, M. WISHNICK, MD LANE 1969 The active species of "CO₂" utilized by ribulose diphosphate carboxylase. J Biol Chem 244: 1081– 1083
- IMAMURA M, M TSUZUKI, Y SHIRAIWA, S MIYACHI 1983 Form of inorganic carbon utilized for photosynthesis in *Chlamydomonas reinhardtii*. Plant Cell Physiol 24: 533-540
- KAPLAN A, MR BADGER, JA BERRY 1980 Photosynthesis and the intracellular inorganic carbon pool in the blue-green alga Anabaena variabilis: Response to external CO₂ concentration. Planta 149: 219-226
- KAPLAN A, D ZENVIRTH, L REINHOLD, JA BERRY 1982 Involvement of a primary electrogenic pump in the mechanism for HCO₃⁻ uptake by the cyanobacterium Anabaena variabilis. Plant Physiol 69: 978-982
- LUCAS WJ 1983 Photosynthetic assimilation of exogenous HCO₃⁻ by aquatic plants. Annu Rev Plant Physiol 34: 71-104
- MARCUS Y, M VOLOKITA, A KAPLAN 1984 The location of the transporting system for inorganic carbon and the nature of the form translocated in *Chlamydomonas reinhardtii*. J Exp Bot. In press
- REED ML, D GRAHAM 1981 Carbonic anhydrase in plants: distribution, properties and possible physiological role. In L Reinhold, JB Harborne, T Swain, eds, Progress in Phytochemistry, Vol 7. Pergamon Press, Oxford, pp 47-94
- 11. TSUZUKI M 1983 Mode of HCO₃⁻ utilization by the cells of *Chlamydomonas* reinhardtii grown under ordinary air. Z Pflanzenphysiol 110: 29-37
- VOLOKITA M, A KAPLAN, L REINHOLD 1983 Nature of the rate-limiting step in the supply of inorganic carbon for photosynthesis in isolated Asparagus mesophyll cells. Plant Physiol 72: 886–890
- ZENVIRTH D, A KAPLAN 1984 Photosynthesis and inorganic carbon uptake by spheroplasts isolated from the cyanobacterium Anabaena variabilis. J Gen Microbiol. 130: 1995-1997
- ZENVIRTH, D, M VOLOKITA, A KAPLAN 1984 Evidence against H⁺-HCO₃⁻ symport as the mechanism for HCO₃⁻ transport in the cyanobacterium Anabaena variabilis. J Mem Biol 79: 271-274