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to examine IR effects on disease-specific processes or 
to develop radiation countermeasures, this resource 
provides insights on resilience across physiologic sys-
tems and its relationship with biological aging. Expo-
sure to IR has well documented deleterious effects on 
health, but the late effects of IR are highly variable. 
Some animals exhibit multimorbidity and accumu-
lated health deficits, whereas others remain relatively 
resilient years after exposure to total body IR. This 
provides an opportunity to evaluate biological aging 
at the nexus of resilient/vulnerable responses to a 
stressor. Consideration of inter-individual differences 
in response to this stressor can inform individualized 
strategies to manage late effects of radiation exposure, 
and provide insight into mechanisms underlying sys-
temic resilience and aging. The utility of this cohort 
for age-related research questions was summarized 
at the 2022 Trans-NIH Geroscience Interest Group’s 
Workshop on Animal Models for Geroscience. We 
present a brief review of radiation injury and its rela-
tionship to aging and resilience in NHPs with a focus 
on the RLEC.
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Abstract  The Wake Forest nonhuman primate 
(NHP) Radiation Late Effects Cohort (RLEC) is a 
unique and irreplaceable population of aging NHP 
radiation survivors which serves the nation’s need to 
understand the late effects of radiation exposure. Over 
the past 16  years, Wake Forest has evaluated > 250 
previously irradiated rhesus macaques (Macaca 
mulatta) that were exposed to single total body irra-
diation (IR) doses of 1.14–8.5 Gy or to partial body 
exposures of up to 10 Gy (5% bone marrow sparing) 
or 10.75  Gy (whole thorax). Though primarily used 
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Introduction

Age is the strongest risk factor for multiple chronic 
diseases and conditions across many organ systems. 
In industrialized nations, modern medical care has 
increased lifespan, and as a result, people are surviv-
ing major health challenges and disease diagnoses 
that once would have proved fatal. The result is a 
rapidly rising population of older adults who increas-
ingly manage multiple chronic diseases and condi-
tions and frailty that may be accelerated or accen-
tuated as a result of exposure to major stressors. 
Relying exclusively on humans as subjects in aging 
research is complicated by numerous issues, includ-
ing ethical issues, long lifespan, and environmental 
and genetic influences [1]. The use of animal models 
may circumvent many of these issues. Thus in 2022, 
the Trans-NIH GeroScience Interest Group organized 
a workshop on Animal Models for Gerosicence to 
review progress and potential of model organisms for 
translational and preclinical research. One such model 
is the nonhuman primate (NHP), and the scientific 
potential of a specialized cohort of aging NHPs was 
summarized at the meeting and reviewed herein.

Though several mammalian species are promis-
ing models of aging, primate models uniquely reca-
pitulate key features of human function, behavior, and 
the ability to observe multiple chronic conditions [2]. 
The rhesus macaque model is advantageous in that 
it shares approximately 95 to 97.5% genetic similar-
ity to humans depending on the gene examined, with 
nearly identical anatomy, and is one of the few well-
characterized laboratory animal species that lives in 
social groups, and has a 28-day menstrual cycle [3, 
4]. Additionally, the rhesus spontaneously develops 
many conditions like humans as they age such as 
colorectal and mammary carcinomas, endometriosis, 
type 2 diabetes, heart disease, hypertension, glomeru-
lopathies, obesity, sarcopenia, osteopenia, degenera-
tive joint diseases, cataract formation, and cognitive 
decline [5]. Moreover, this coupled with their long 
lifespan makes them a natural model to investigate the 
late effects of exposure to stressors on aging health 
trajectories, frailty, and multimorbidity. Other animal 
models of aging, including marmosets and compan-
ion animals, are beyond the scope of this review and 
have been described elsewhere [6–9].

Aging, frailty, and resilience

Aging is a complex phenomenon in which genetics, 
epigenetics, the environment, and even chance play 
important roles. Aging also comprises the pheno-
typic effects of a lifetime of exposure to these vari-
ables. As aging progresses, the ability of the organ-
ism to deal with insults of equal magnitude decreases, 
which might underlie the increased prevalence of 
age-related multimorbidity. For example, data from 
the Framingham study indicate that being 70  years 
old is, by itself, a higher risk factor for cardiovascu-
lar disease than high cholesterol, high blood pressure, 
and obesity combined [10]. The reason for increased 
age-related multimorbidity is multifactorial, but is 
an accumulation of damage over time, and a reduced 
ability to mount robust defenses against homeostatic 
insults and challenges [11, 12]. Intimately linked are 
the concepts of frailty and resilience, which are often 
thought of as two sides of the same coin, though they 
are not strictly the reciprocal of one another [13].

Frailty is the decline in tissue and organism func-
tion that occurs with age, and it can be objectively 
measured without perturbation. Numerous methods 
have been proposed to define frailty, though most 
aging researchers agree that frailty is a state of physi-
ological vulnerability from age-related decline in 
biological systems, and it manifests clinically as an 
increased risk of adverse outcomes. Operationally, 
it can be defined by either a phenotype or dynamic 
state characterized by the accumulation of health 
and functional deficits [14, 15]. Resilience is the 
dynamic property which enables cells, organs, and 
organisms to resist or recover from adverse effects of 
a stressor [13, 16–18]. Resilience is diminished with 
age, observable as accumulation of health deficits, 
multimorbidity, and greater risk of mortality [17]. 
However, the response to exposure is heterogeneous 
and influenced by the magnitude of the stressor and 
individual, age-related biologic processes [17]. If so, 
biomarkers of biologic aging may predict resilience 
and late effects of stressor exposure in survivors. A 
deeper understanding of the physiologic and molecu-
lar mechanisms underlying resilience to an exposure 
may identify novel protective factors and strategies to 
prevent or delay multimorbidity, disability, and death 
in aging survivors.
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Translational modeling of resilience and frailty

Translational models that reflect the interplay 
between the biology of aging, frailty, and resilience 
are of particular interest in the field of geroscience 
[12]. We expect that the hallmarks of aging (genomic 
instability, telomere attrition, epigenetic alterations, 
loss of proteostasis, deregulated nutrient-sensing, 
mitochondrial dysfunction, cellular senescence, pro-
genitor cell exhaustion, and altered intercellular com-
munication) would teleologically drive vulnerability 
to stressors and age-related frailty, and vice versa 
[19]. Animal models may be uniquely suited to dis-
entangle this biology at the nexus of frailty and resil-
ience, and extensive translational testing paradigms 
are being established for mice. Many translational 
experimental methods have been employed, including 
administering acute stressors including mild-to-mod-
erate starvation, anesthesia, surgical stress, trauma, 
chemotherapy, and exposure to ionizing radiation 
[12, 20]. Following exposure to experimental stressor, 
investigators measure acute effects on resilience, 
including amplitude of response (degree of health 
or function lost), duration of sustained impairment, 
and recovery of health or function [12]. However, 
testing paradigms in mice and rodents rarely explore 
the long-term effects of acute major stressors such as 

ionizing radiation exposure on the trajectory of aging 
and frailty (Fig. 1).

Characterizing the late- and long-term effects of an 
acute but severe stressor is important because there is 
often heterogeneous late-response to stress exposures 
observed clinically that may impact risk of frailty, 
multimorbidity, and death. For example, some older 
patients tolerate cancer or radiation therapy without 
significant adverse effects on health (highly resilient). 
Others experience major toxicities, and of these, some 
will return to their prior level of health or function-
ing (resilient) and others do not (nonresilient) [21]. 
Heterogeneity in response to a major acute stressor 
is thought to be influenced by pre-stressor biological 
determinants and the magnitude of the stressor itself. 
A related concept is hormesis, the evolutionarily con-
served adaptive strategy, whereby exposure to stress-
ors can lead to the development of acquired resilience 
in a dose-response fashion [22, 23]. Hormesis is best 
captured by the layman’s adage: “what doesn’t kill 
you makes you stronger.” In this case, there could be 
a negative effect of radiation on late-life outcomes 
and aging phenotypes, but there may be some survi-
vors of early life radiation exposure, especially at low 
doses, that are paradoxically resilient to age-related 
dysfunction and disease accumulation [24]. The 
legacy effects of these heterogeneous responses are 

Fig. 1   Translational approach to study resilience as a short-
term or long-term response to an acute stressor in animal mod-
els. An acute response to a stressor like radiation exposure can 
have several stages and elements, including A amplitude of 
response — which may be an index of the robustness of the 
organism, B duration of time spent in perturbed state or in 

ill health, and C degree of resolution after the acute stressor. 
These resilience measures can be complemented by long-term 
follow-up of health trajectories after major acute stressors like 
whole body ionizing radiation that have residual effects after 
the acute stressor
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postulated to depend on the same age-related biologic 
processes that drive aging, frailty, and multimorbid-
ity. If this is true, then biomarkers of aging may be 
candidate measures to predict resilience in older sur-
vivors of substantial acute stress exposures.

Radiation exposure as stressor

One of the experimental manipulations used to test 
resilience is exposure to ionizing radiation (IR). IR 
induces DNA and macromolecular damage via reac-
tive oxygen species (ROS) which manifest broadly as 
chronic inflammation, multiorgan fibrosis, and short-
ened lifespan, recapitulating the basic mechanisms 
of aging on an accelerated timeline [25]. The acute 
effects of IR, known collectively as Acute Radiation 
Syndrome (ARS), have been widely explored and 
consist of hematopoietic, gastrointestinal, cutaneous, 
and cerebrovascular injury [26, 27]. More relevant to 
human aging are the late effects of radiation exposure 
on long-term health events such as incidence and pro-
gression of cancer, cardiovascular diseases, muscu-
loskeletal decline, and multimorbidity. For example, 
studies of individuals subjected to moderate and high 
levels of IR from nuclear weapons (Hiroshima and 
Nagasaki) or occupational exposure (Chornobyl) have 
demonstrated an increased risk of neoplasia [28–30], 
and radiotherapy patients have a 1.7‐ to 2-fold 
increase in cardiovascular death and an up to 10-fold 
acceleration of bone loss leading to an elevated risk 
of fracture in already vulnerable older adults [31, 
32]. However, it is difficult to identify clear biologi-
cal mediators of resilient versus vulnerable survivors 
in epidemiologic studies given opportunistic data col-
lection following exposures and complex variables 
related to underlying health status, environmental and 
occupational risk, and radiation dose, type, and expo-
sure duration.

Biological aging and late effects of radiation

Following the development and use of nuclear 
weapons, investigators in the 1940s through to the 
1960s vigorously pursued links between IR and 
longevity [33]. These were temporarily abandoned 
because radiation’s effects initially appeared to 
cause genetic damage and to affect dividing cells 

leading to neoplasms [34]. But in recent decades, our 
understanding of both IR and biological aging have 
undergone a renaissance, and as it does, we can better 
appreciate both differences and areas of convergence 
between processes. For instance, we now know that 
radiation-mediated aging appears to be associated 
with ROS tissue injury, double-stranded breaks 
(DSBs) and DNA damage response, apoptosis and 
cell cycle checkpoints, epigenetic alterations, and 
immune dysfunction and inflammation. These shared 
processes can induce further damage to cellular 
and molecular processes that are also implicated in 
biological aging, including DNA damage response, 
cell cycle checkpoints and cellular senescence, 
epigenetic alterations, immune dysfunction, and 
dysregulated nutrient sensing and metabolism, among 
many others [25]. Moreover, IR induces cellular 
senescence and is an experimental model to test 
the effects of senolytics, drugs that target clearance 
of senescent cells both in vitro and in vivo [35]. IR 
also induces widespread transient and persistent 
methylation changes across tissues, mirroring the 
global and gene-specific methylation changes seen 
in aging [36]. The persistence of these cellular and 
molecular changes cannot be evaluated in studies of 
ARS. Thus, animal models of radiation survival, such 
as the Radiation Late Effects Cohort (RLEC), are a 
unique and essential resource to characterize late and 
long-term effects of exposure to IR.

Wake Forest NHP RLEC

Animal models such as NHPs reveal the late and long-
term effects of radiation exposure, including cellular, 
molecular, and metabolic changes leading to chronic 
inflammation, organ dysfunction and failure, fibrosis, 
and neoplasia. The RLEC is an unparalleled resource 
to identify and understand the late effects of radiation 
exposure and provide critical data regarding inter-
survivor differences in tissue damage, recovery, and 
long-term outcomes. RLEC investigators at Wake 
Forest have assessed adverse effects of single-dose 
exposures of IR in male and female rhesus macaques 
(M. mulatta) observed for up to 16 years. At the time 
of publication, the cohort includes ~ 200 live animals 
(17% unirradiated controls) and ~ 120 deceased animals 
(15% controls). Irradiated NHPs were exposed to single 
total body irradiation (TBI) doses of 1.14–8.5  Gy of 
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IR or to partial body exposures of 10  Gy (5% bone 
marrow sparing)–10.75 Gy (whole thorax). The LD50 
for TBI is 6.75  Gy without supportive care. These 
single exposures were either from Cobalt-60 or linear 
accelerator sources. The cohort includes juvenile and 
adult exposures, and subsets of animals (39%) received 
post-IR mitigating treatments such as hematopoietic 
growth factors or antibiotics. The animals are pair-
housed in indoor/outdoor pens and are fed a specially 
formulated high-fat, high-sodium chow diet designed 
to replicate a Western pattern diet. Importantly, 
these NHPs are well characterized clinically, with 
an annual cycle of veterinary examinations, imaging 
(ultrasound, CT, and MRI), complete blood counts, 
chemistry panels, bone marrow analyses, and cognitive 
assessments. When an experimental or humane 
endpoint is reached, the animal is euthanized and taken 
to necropsy by board-certified veterinary pathologists 
with extensive tissue examination and archiving.

Major findings in the RLEC include the 
development of skeletal muscle fibrosis with 
microvascular loss; myocardial fibrosis and systemic 
inflammation; monocyte polarization and adaptive 
immune system derangements, and “blind spots”; 
type 2 diabetes and insulin-resistance in adipose and 
skeletal muscle tissues; and adipose progenitor cell 
dysfunction [37–45]. Late effects of radiation are also 
observed within the central nervous system including 
disruption of the blood brain barrier, microvascular 
and white-matter injury, neuroinflammation, and 
cognitive impairment [46–50]. Bone is particularly 
sensitive to IR, and the RLEC reports substantial 
cortical thinning and structural changes in bone, and 
loss of bone mineral density [51]. These published 
findings in the RLEC are summarized in Table  1. 
Additional clinical findings include increased rates 
of cataracts, testicular atrophy, renal disease, and 
mesenchymal neoplasms [52–54]. Most conditions 
manifest 5–10 years post-exposure, making the RLEC 
animals a unique national resource as they age. Like 
aging, IR impacts nearly every major organ system 
— resulting in widespread multimorbidity and a 
shortened average health span and lifespan.

Resilient and vulnerable NHP radiation survivors

Despite an overall elevated risk of disease in radiation 
exposed compared to non-irradiated NHPs, there is 

marked heterogeneity in system-level response to 
radiation exposure in survivors. Multimorbidity and 
accumulation of health deficits are not consistently 
observed following IR, even in animals receiving 
doses that are typically lethal (Fig.  2). In our 
preliminary examination of multimorbidity, both IR 
and non-IR animals show increased multimorbidity 
with age. While the order of onset of diseases 
varies across animals, the first chronic condition is 
diagnosed at a mean age of 9.0 years (equal to 35% 
of median lifespan) and the second at age 10.7 years. 
However, 20% of animals that live to age 12 remain 
healthy, while others had as many as 9 comorbidities. 
In a Cox proportional-hazard model, each additional 
morbidity doubles likelihood of death (hazard 
ratio > 2) among animals 3–6  years of age with the 
hazard ratio declining from 1.9 to 1.4 from ages 6 
to 15. IR animals have more comorbid conditions 
and at a younger age than non-IR animals. However, 
while animals exposed to higher doses have the most 
conditions on average, variability in multimorbidity 
in IR-exposed animals is not explained by dose 
alone, nor driven by any single disease process. This 
suggests that an intrinsic set of biological processes 
drives a resilient survivor phenotype in aging animals 
previously exposed to IR. The richness of the RLEC 
and the frequency of specific diseases of aging in the 
cohort enables study of tissue-specific resilience at a 
molecular level and progression of disease of aging 
including white matter brain legions, cognition, 
diabetes, cancer, osteoarthritis, and declining 
immune function. Ongoing studies are characterizing 
cellular senescence histologically in tissues from 
this cohort. We anticipate discovering new disease 
patterns and unanticipated mechanisms that will 
allow us to broaden our mechanistic understanding 
into new domains of inquiry and formation of new 
collaborative teams to facilitate additional research in 
this cohort by established RLEC researchers and new, 
geroscience-focused scientists.

Conclusions

The rhesus macaque’s genetic, epigenetic, physiologic, 
anatomic, and geropathologic similarities to humans 
make them one of the most well-characterized and 
valuable large animal models for the study of aging. 
The RLEC represents nearly 17  years of unique 
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longitudinal data in an aging population of animals 
exposed to a stressor that decreases health span and 
lifespan. Utilizing ionizing radiation as a stressor 
is particularly valuable as the basic mechanisms of 
injury — ROS tissue injury in combination with DNA 
damage — are similar to those of biologic aging. The 
observed heterogenic response to irradiation provides 
rich territory for studying resilience and vulnerability 
in a large population of aging rhesus macaques.

Acknowledgements  We thank the laboratory and veterinary 
technicians and research assistants who conducted assess-
ments. We also give special thanks to John Olson at WFSM 
for assistance with the animal cohort, and data retrieval, and 
members of the Register Laboratory for performing clinical 
biochemical assays.

Funding  This work was supported by the National Insti-
tutes of Health (NIH) program grant to Wake Forest Univer-
sity School of Medicine to support the NIAID-funded Radia-
tion Survivor Cohort, U01 AI150578, (Drs. Cline and Schaaf), 

Table 1   Age-related chronic diseases or conditions in the RLEC cohort that have been published

Chronic disease or condition Study design/comparison Primary finding Reference

Type II diabetes mellitus 6.5–8.4 Gy TBI animals compared to 
age-matched unirradiated  
controls 5–9 years post-irradiation

Higher prevalence of T2DM in 
irradiated animals

Kavanagh et al. [43]

Adipose tissue insulin resistance 4 Gy TBI animals compared to  
unirradiated controls 2 years  
post-irradiation

Irradiated animals exhibited 
decreased overall adipose tissue 
with increased insulin  
resistance, incidence of T2DM, 
and macrophage infiltration

Bacarella et al. [44]

Skeletal muscle fibrosis,  
microvascular changes, and  
insulin resistance

6.5–8.4 Gy TBI animals compared 
to unirradiated controls 5–9 years 
post-irradiation

Skeletal muscle in irradiated  
animals exhibited increased levels 
of collagen IV and TGF-β1 with 
decreased microvascular density 
and insulin resistance

Fanning et al. [37]

Myocardial fibrosis and systemic 
inflammation

6.5–8.4 Gy TBI animals compared 
to unirradiated controls 5–10 years 
post-irradiation

Increased histologic evidence of 
myocardial fibrosis & increased 
circulating biomarkers of  
inflammation in irradiated 
animals

DeBo et al. [38]

Bone structural changes and  
bone mineral density loss 
(osteopenia)

Animals received 10 Gy thorax only 
irradiation and were  
compared to unirradiated  
controls 8 months post-irradiation

DEXA, CT, and histopathol-
ogy revealed cortical thinning, 
increased bony porosity, and 
decreased bone mineral density in 
the superior lumbar vertebrae of 
irradiated animals

Farris et al. [51]

Cerebrovascular injury 1.14–8.5 Gy TBI animals  
followed longitudinally with MRI 
up to 11 years post-irradiation and 
compared to age-matched controls

Increased prevalence of MRI SWI 
lesions (cerebral microbleeds or 
necrosis) in irradiated animals 
with new lesion formation 
observed years after irradiation

Andrews et al. [46]

Cognitive impairment 6.75–8.05 Gy TBI animals  
compared to age-matched  
unirradiated controls

Irradiated animals exhibited slower 
performance on cognitive  
reversal tests

Hanbury et al. [50]

Immune “blind spots” 6.5–8.5 Gy TBI animals compared 
to age-matched controls 2 years 
post-irradiation

While irradiated animals  
produced antibodies to 10 out of 
11 exposed antigens, they  
uniformly failed to produce  
antibodies to a pneumococcal 
antigen in contrast to the control 
animals

Hale et al. [45]
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