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Abstract  The prevalence of age-related cogni-
tive disorders/dementia is increasing, and effective 
prevention and treatment interventions are lacking 
due to an incomplete understanding of aging neu-
ropathophysiology. Emerging evidence suggests that 
abnormalities in gut microbiome are linked with 
age-related cognitive decline and getting acceptance 
as one of the pillars of the Geroscience hypothesis. 
However, the potential clinical importance of gut 
microbiome abnormalities in predicting the risk of 

cognitive decline in older adults is unclear. Till now 
the majority of clinical studies were done using 16S 
rRNA sequencing which only accounts for analyzing 
bacterial abundance, while lacking an understanding 
of other crucial microbial kingdoms, such as viruses, 
fungi, archaea, and the functional profiling of the 
microbiome community. Utilizing data and samples 
of older adults with mild cognitive impairment (MCI; 
n = 23) and cognitively healthy controls (n = 25). Our 
whole-genome metagenomic sequencing revealed 
that the gut of older adults with MCI harbors a less 
diverse microbiome with a specific increase in 
total viruses and a decrease in bacterial abundance Supplementary Information  The online version 
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compared with controls. The virome, bacteriome, and 
microbial metabolic signatures were significantly dis-
tinct in subjects with MCI  versus controls. Selected 
bacteriome signatures show high predictive potential 
of cognitive dysfunction than virome signatures while 
combining virome and metabolic signatures with bac-
teriome boosts the prediction power. Altogether, the 
results  from our pilot study indicate that trans-king-
dom microbiome signatures are significantly distinct 
in MCI gut compared with controls and may  have 
utility for predicting the risk of developing cognitive 
decline and dementia- debilitating public health prob-
lems in older adults.

Keywords  MiaGB · Gut microbiome · Shotgun 
metagenomics · Cognitive impairment · Aging · Gut-
brain axis

Introduction

With an aging world population, cognitive decline 
and dementia are debilitating public health problems 
in older adults [17]. Alzheimer’s disease (AD) is 
the most common age-related cognitive disorder 
[53]. Around 6 million older adults are living with 
Alzheimer’s disease and related dementia (ADRD) 

in the USA, and this number is expected to grow 
double by 2050 [41]. Currently, there are no clinically 
impactful prevention strategies and no treatments that 
can significantly alter the course of the illness. As a 
result, ADRD causes great strain on families, society, 
and the healthcare system [12, 39]. Drug clinical trials 
for treating AD [34, 57] lack a full understanding 
of ADRD pathophysiology as well as the right 
targets and time frame to introduce interventions. 
Prior studies indicate that specific diet and exercise 
regimens may slow the progression of ADRD in 
older adults [42, 49]. However, the early detection of 
cognitive decline and dementia risk is cumbersome, 
expensive, and not available for routine clinical use 
[29]. Therefore, development of inexpensive, safe, 
and easy-to-measure testing is direly needed for 
slowing or preventing the progression of dementia in 
older adults.

Emerging evidence suggests that abnormalities 
in gut microbiome may contribute to aging biology 
mechanisms [45]. A few studies also indicate that 
the gut microbiome signatures may be different in 
older adults with ADRD compared with their age-
matched controls [14, 36, 37, 56]. Vogt, et al. showed 
that Blautia, Phascolarctobacterium, Gemella, Bac-
teroides, Bilophila, and Alistipes bacteria (many of 
them are commensal pathogens) were significantly 
increased, and SMB53 (family Clostridiaceae), 
Dialister, Clostridium, Turicibacter, Bifidobacte-
rium, Adlercreutzia, and cc115 (family Erysipel-
otrichaceae) (many of them are beneficial/probiotics) 
were specifically decreased in gut of AD patients 
compared to controls [55]. In addition, Escheri-
chia/Shigella, Ruminococcaceae, Enterococcaceae, 
and Lactobacillaceae bacteria were significantly 
increased and E. rectale, Lanchnospiraceae, Bac-
teroidaceae, and Veillonellaceae were significantly 
decreased in older adults with mild cognitive impair-
ment (MCI) and were linked with AD markers in cer-
ebrospinal fluid (CSF) [11, 36, 37, 62].

Gut microbiome signatures are greatly influenced 
by dietary habits, and impact of dietary manipula-
tions on slowing cognitive decline or dementia pro-
gression may be through gut microbiome [2, 15]. We 
have shown that a modified Mediterranean ketogenic 
diet (MMKD) may change the gut microbiome com-
position and ameliorate AD pathology in MCI subjects 
[36]. However, these studies were aimed at describ-
ing the difference in microbiome signatures, but not 
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testing their significance for predicting or differenti-
ating cognitive dysfunctions in older adults. In addi-
tion, majority of previous studies have used 16S rRNA 
sequencing which only allows for analysis of the bac-
teria population (bacteriome) of gut microbiome. The 
role and significance of other microbial kingdoms (i.e., 
viruses, fungi, and archaea) that also coexist with bac-
teria in the human gut remain unstudied. Herein, we 
performed whole genome sequencing on fecal DNA 
samples of older adults (≥ 60 years of age) with MCI 
and normal cognition from the cohort of the MiaGB 
(Microbiome in aging Gut and Brain) consortium—a 
multi-site study focused on examining the relationship 
between the microbiome and aging [31]. The present 
study investigated the associations between shotgun 
metagenomics-based trans-kingdom microbiome sig-
natures and cognitive health by comparing older adults 
with and without mild cognitive impairment.

Materials and methods

Human subjects

The data and samples used in this study were pro-
cured from the Microbiome in aging Gut and Brain 
(MiaGB) Consortium cohort as a pilot study. The 
MiaGB consortium is recruiting community dwelling 
older adults in Florida at five sites. All the participants 
(n = 48) included in this study were 60  years of age 
or older. Among them, 23 were with MCI, while 25 
subjects were cognitively healthy controls. Cognitive 
function assessments were performed as described 
below. The demographic characteristics are depicted 
in Table  1. Exclusion criteria consisted of persons 
with (a) history of brain and gut-related surgeries in 
the past five  years; (b) history of cancer diagnosis 
and/or treatment (except non-melanoma skin cancer) 
in the past five  years; (c) neurological disorders of 
epilepsy, Parkinson’s disease, and amyotrophic lateral 
sclerosis; (d) antibiotic use in the preceding 30 days, 
(e) diarrhea, vomiting, or food poisoning in the past 
30 days; and (f) a history of inflammatory bowel dis-
eases. Informed consent was obtained from each par-
ticipant. All recruitments, study protocols, and proce-
dures were approved the Institutional Review Board 
of University of South Florida committee and were 
performed according to the approved guidelines.

Cognitive function assessments

The Montreal cognitive assessment (MoCA) [23], 
MiniCog [7], and Memory impairment screen (MIS) 
[30] were performed by trained staff and scores were 
calculated using standard protocols.

Stool sample collection

Fecal microbiome samples were collected using an 
in-house developed stool sample collection kit, which 
has been validated and accepted by older adults in 
several of our past [36, 37] and ongoing clinical stud-
ies. The use of this kit has increased the compliance 
and adherence in our studies. The stool collection kit 
is given to participants to take home, and samples 
transported to the lab within 24 h of stool passing and 
collection, and samples were immediately aliquoted 
and stored at − 80 °C until further analysis.

Metagenomic shotgun sequencing

Fecal DNA was extracted using 150 mg of the human 
stool samples using QIAamp PowerFecal Pro DNA 
Kit (Qiagen, USA) following the manufacturer’s 
instructions. The DNA was quantified using Qubit 
dsDNA HS assay kit (Thermo Fisher Scientific, 
USA). The extracted and quantified DNA (150  ng) 
was used for library preparation using Illumina® 

Table 1   Demographic information of the study participants

Controls (n = 25) MCI (n = 23)

Male/Female 11/14 6/17
Age 70.7 ± 9 75 ± 10.1
BMI 27.1 ± 4.4 25.9 ± 5.6
Ethnicity
  NOT Hispanic or Latino 25 (100%) 20 (87%)
  Hispanic or Latino - 1 (4%)
  Not reported - 2 (9%)

Race
  White 24 (96%) 17 (74%)
  Asian - 3 (13%)
  Black or African American 1 (4%) 1 (4%)
  Not reported - 2 (9%)

MoCA 28.0 ± 1.5 23.1 ± 1.7
MiniCog 4.8 ± 0.5 3.4 ± 1.4
MIS 7.2 ± 0.9 5.9 ± 2.3
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DNA Prep, (M) Tagmentation kit (Illumina, Inc, 5200 
Illumina Way, San Diego CA, USA) by following 
the manufacturer’s instructions. Additionally, sam-
ple specific unique IDT for Illumina–Nextera DNA 
UD Indexes were used. The sequencing was done 
on Illumina NextSeq1000 machine using an Illu-
mina NextSeq 1000/2000 P2 Reagents (300 Cycles) 
v3 reagent cartridge (Illumina, Inc, 5200 Illumina 
Way, San Diego CA, USA). All the data was captured 
and stored in the BaseSpace cloud and was analyzed 
further using bioinformatics pipelines, as described 
below.

Bioinformatics and statistical analysis

The analysis for the shotgun sequencing data was 
performed using the Yet Another Metagenomic 
Pipeline (YAMP) workflow [54]. The YAMP work-
flow uses tools from bbmap suite for de-duplication, 
trimming, and decontamination of metagenomics 
sequences [10]. It uses FastQC for the visualiza-
tion of the raw and QC filtered metagenomic reads 
[1]. The additional tools used in the YAMP pipe-
line are MetaPhlAn [5] for taxonomic binning and 
profiling of microbes and their relative abundance 
in the samples, HUMAnN pipeline for the estima-
tion of the functional capabilities of the micro-
biome community [5], and QIIME2 [21] for the 
evaluation of the multiple alpha diversity measures 
including observed OTUs, Shannon and Simpson 
alpha diversity. The MetaPhlAn database relies 
on ~ 1.1 M unique clade-specific marker genes iden-
tified from ~ 100,000 reference genomes (~ 99,500 
bacterial and archaeal and ~ 500 eukaryotic), which 
allows unambiguous taxonomic assignments, an 
accurate estimation of organismal relative abun-
dance, species-level resolution for bacteria, archaea, 
eukaryotes, and viruses. The HUMAnN pipeline 
which uses MetaPhlAn and ChocoPhlAn pange-
nome database to facilitate fast, accurate, and 
organism-specific functional profiling of Archaea, 
Bacteria, Eukaryotes, and Viruses considerably 
expanded databases of genomes, genes, and path-
ways by mapping the metagenome reads on the ref-
erence databases. The β-diversity across the sample 
groups was estimated using Principal Component 
Analysis (PCA) based on Euclidean distances. 
Taxonomic abundance of microbial taxa at phylum 
and species level are represented. The shared and 

unique bacterial taxa were estimated using a web-
based tool interactiveVenn [22]. Statistical analysis 
of the data was done using Graphpad Prism [6] and 
Stamp [40]. Various R-scripts including ggplot2 
were used for the analysis and presentation of the 
data like corrplot for the correlation analysis of 
microbiome components and the cognitive scores of 
the study participants. The random forest analysis 
was performed using the web-based tool microbi-
ome analysts [13].

Results

The gut of older adults with MCI harbors 
significantly distinct transkingdom microbiome 
signatures than their cognitively healthy counterparts

Whole metagenome shotgun sequencing analysis was 
performed on 48 study participants (23 with MCI 
and 25 cognitively healthy controls). Taxonomic pro-
filing identified that bacteria comprised the majority 
of microbiome composition. However, total bacterial 
abundance was slightly lower in the gut of subjects 
with MCI than cognitively healthy controls (Fig. 1a). 
Conversely, the abundance of total viruses was 
higher in the gut of subjects with MCI than controls 
(Fig.  1a). An abundance of fungi and archaea were 
detected in only a few participants. Fifty-three bacte-
ria and 16 viruses were uniquely abundant in the gut 
of MCI participants and 105 bacteria, and 27 viruses 
were uniquely present in the gut of controls (Fig. 1b; 
Supplementary Table  S1), suggesting an associa-
tion between certain gut microbes and differences 
in cognitive health. The microbiome β-diversity (a 
measure of microbial diversity between the samples/
groups) signatures were not significantly different in 
gut of MCI and controls (Supplementary Fig. S1a). 
However, a trend of lower bacterial α-diversity (a 
measure of microbial diversity within a sample; 
higher indicates healthier microbiome) was seen 
in MCI gut compared with controls, while virome 
α-diversity remained unchanged (Supplementary 
Fig. S1b-e). These changes in the viral and bacterial 
α-diversity (both Shannon and Simpson) showed a 
trend of positive correlation with MoCA scores (cog-
nitive function measure) without achieving statisti-
cal significance (Supplementary Fig. S1f-i). Overall, 
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these results indicate that trans-kingdom microbiome 
(majorly built by bacteria and viruses) were unique 
and significantly distinct in the gut of older adults 
according to their cognitive state, and a trend of 
lower bacterial diversity was linked with poor cogni-
tive function.

The gut of older adults with MCI harbors distinct 
virome signature compared with cognitively healthy 
participants

A virome signature comprising Podoviridae, Inoviri-
dae, Myoviridae, and Siphoviridae viral families was 
distinctly abundant in the gut of older adults with 
MCI and cognitively healthy controls (Fig. 2a); how-
ever, the clustering of virome signatures in principal 
component analysis (PCA) was not distinct in MCI 
versus controls (Supplementary Fig.  S2). Lactoba-
cillus (Lb.) phage Sha1, Klebsiella (Kl.) virus KP36, 
Lb. phage LF1, and Lactococcus (Lc.) phage bIL309 
were uniquely and significantly increased in the gut 
of MCI, while Enterococcus (Ec.) phage EFRM31, 
Ec. phage EFAP 1, Pseudomonas (Ps.) phage PAJU2, 
Ps. phage Pf1, Escherichia (Es.) virus JES2013, and 
Bacteroides (Ba.) phage B124 14 were uniquely 
increased in the gut of cognitively healthy controls 
(Fig.  2b). Heatmap and dendrogram of hierarchical 
clustering analysis revealed three significantly distinct 

clusters of viral species such as cluster 1 (containing 
Lb. phage A2 and Lb. phage Sha1) and cluster 2 (con-
taining Lc. phage bIL309, Kl. virus KP36, Lc. phage 
bIL310, Stx2 converting (Sc.) phage 1717, Es. phage 
TL 2011, Vibrio (Vi.) phage pYD38 A, and Lb. phage 
LF1) were increased in the gut of MCI compared to 
the controls (Fig. 2c). Similarly, within cluster 3, two 
clear subclusters were apparent, in which cluster 3a 
(containing Enterobacteria (Eb.) phage mEp460, Ps. 
phage PAJU2, Streptococcus (St.) virus phiAbc2, 
Ec. phage EFRM31, Es. virus JES2013, Ba. phage 
B124 14, Bacillus (Bc.) phage phBC6A51 and Ec. 
virus FL3) was reduced, while cluster 3b (contain-
ing Streptococcus (St.) phage EJ 1, Salmonella (Sl.) 
virus Jersey, St. phage P7132, Sl. virus Epsilon15, 
Lc. phage ul36 and St. virus 7201) was increased in 
the gut of MCI subjects compared to their controls 
(Fig.  2c). Further, random forest analyses to deter-
mine the unique signature of virome with predictive 
potential showed that the Sc. phage 1717, St. phage 
P7132, Lc. phage ul36, Lc. phage jm3, Clostridium 
(Cl.) phage vB CpeS CP51, Kl. virus KP36, St. virus 
7201, St. phage SM1, Ec. phage EFAP 1, Lc. virus 
c2, St. virus phiAbc2, Lb. phage phiadh, Lc. phage 
bIL310, Lc. phage bIL285, and Es. phage TL 2011b 
were significantly distinct between MCI and controls 
with potential to be used as biomarkers (Fig.  2d). 
To further, test their ability to diagnose cognitive 

Fig. 1   Trans-kingdom microbiome signatures significantly 
differ in the gut of older adults with mild cognitive impairment 
(MCI) compared with cognitively healthy controls. a) Bar plots 
depict the mean relative abundance of archaea, bacteria, fungi, 

and viruses in the gut microbiome of the participants with MCI 
and controls. b) Venn diagram depicting the presence of shared 
and unique microbial species of the archaea, bacteria, fungi, 
and viruses in the gut of older adults with MCI and controls
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decline, a Receiver Operating Characteristic (ROC) 
curve (a graphical plot used to show the diagnostic 
ability of binary classifiers) method show  that  the 
abundance of Cl. phage vB CpeS CP51, Lc. phage 
jm3, Sc. phage 1717, St. phage P7132, and Lc. phage 
ul36 show an area under curve (AUC) of 0.54, 0.54, 
0.58, and 0.56 to 0.58 (Fig. 2e), suggesting that these 
individual viral species have 54 to 58% confidence/
ability to discriminate MCI from cognitively healthy 
controls. In addition, the combination of these five 
viral species showed 0.56 ROC suggesting that alto-
gether these viral species have a limited diagnostic 
potential individually as well as their combination 
together. Pearson correlation analyses also indicated 
that the selected viral species were significantly cor-
related with cognitive function measures MoCA 
and MiniCog scores, though, Lc. phage ul36 and Sc. 
phage 1717 showed highest correlation with MoCA 
(r2 = 0.06 and r2 = 0.07 respectively) and MiniCog 
(r2 = 0.04 and r2 = 0.05, respectively) scores (Fig. 2f), 
suggesting that the increased abundance of these viral 
species may be indicators of cognitive decline in 
older adults.

The bacteriome signature in gut of older adults with 
MCI was significantly distinct than in cognitively 
healthy controls with potential to differentiate them

The abundance of major phyla was distinct in 
gut of MCI than their controls (Fig.  3a), without 

significant differences in the microbiome diversity 
indices (both α- and β-diversity) between these 
groups (Supplementary Fig.  S1a, b-e; S3a). The 
abundance of Bacteroidetes, Actinobacteria, and 
Proteobacteria was higher, while Firmicutes, Ver-
rucomicrobia, and Synergistetes were lower in the 
gut of MCI than controls (Fig.  3a), but these dif-
ferences were marginal or non-statistically signifi-
cant. Among major bacterial species An. hadrus 
and Bl. obeum increased while Ru. bromii and Eu. 
rectale decreased in the gut of MCI than controls 
(Fig.  3b). Similarly, hierarchical clustering indi-
cates that the abundance of Ru. torques, Eu. hallii, 
Ba. stercoris, St. salivarius, and An. hadrus was 
higher while Bi. pseudocatenulatum, Al. putredi-
nis, and Ak. muciniphila were lower in gut of MCI 
than controls (Fig. 3c). The differential abundance 
analysis shows that Ruminococcus (Ru.) lactaris, 
Su. sp. APC924, Eu. siraeum, La. asaccharolyti-
cus, Sl. isoflavoniconvertens, Fi. bacterium CAG 
137, Cl. sp CAG 273, Gemmiger (Ge.) formicilis, 
and Rb. intestinalis reduced, while Bl. wexlerae, 
Bi. Bifidum, Ba. stercoris, Catabacter (Ca.) hong-
kongensis, Eu. eligens, Cl. bolteae, and Phasco-
larctobacterium (Pb.) faecium increased in the 
gut of MCI compared to controls (Supplemen-
tary Fig.  3b-g). Further, random forest analysis 
revealed that Rb. hominis, Ru. lactaris, Rb. inulini-
vorans, Rb. intestinalis, La. asaccharolyticus, Su. 
sp APC924 74, Ty. nexilis, Es. coli, and Ba. xylani-
solvens were significantly distinct between MCI 
and control with potential to be used as predictive 
markers for differentiating MCI from cognitively 
healthy controls (Fig.  3d). The LEfSe (linear dis-
criminant analysis effect size) analysis commonly 
used for the high dimensional data biomarker dis-
covery also observed the majority of microbiome 
signatures including the higher abundance of bac-
terial species Rb. hominis, Rb. intestinalis, Su. sp. 
APC924 in the control group and identified as the 
important biomarkers associated with the cogni-
tive state of the study participants (Supplementary 
Fig. 4a, b), like random forest analyses. The ROC 
analysis shows that the four selected single bacte-
rial species (Rb. intestinalis, Su. sp APC924 74, 
Rb. hominis, and La. asaccharolyticus) have each 
around 67–70% power to differentiate the MCI 
from controls (p > 0.05) (Fig.  3e). Interestingly, 
the combination of these four selected bacterial 

Fig. 2   The virome signature is significantly distinct in the gut 
of older adults with MCI compared with controls, with limited 
potential to predict cognitive health. a,b) The relative abun-
dance of major viral families (a) and species (b) was distinct 
in the gut microbiome of older adults with MCI compared 
with controls. c) Heatmap depicting the clusters of increased 
and decreased abundance of viral species in the gut of older 
adults with MCI and controls. d) Random forest analysis 
(RFA) showing the top 15 viral species with the highest dis-
criminatory power between MCI and control groups. Red color 
indicates high abundance, and blue indicates a low abundance 
of the particular viral species in MCI and control groups. (e) 
Receiver operating characteristic (ROC) curve plots represent 
the specificity and sensitivity of the five selected viral species 
for the two groups. (f) The Pearson correlation matrix shows 
the association between the relative abundance of selected 5 
viral species with cognitive function measures such as MoCA 
and MiniCog. Abbreviations—Bacillus; Bc, Bacteroides; 
Ba, Clostridium; Cl, Enterobacteria; Eb, Enterococcus; Ec, 
Escherichia; Es, Klebsiella; Kl, Lactobacillus; Lb, Lactococ-
cus; Lc, Pseudomonas; Ps, Salmonella; Sl, Streptococcus; St, 
Stx2 converting; Sc, Vibrio; Vi 

◂
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species showed similar power to differentiate MCI 
from controls (0.68 AUC or 68% confidence). 
These four bacterial species showed significant 
association with MOCA and MiniCog (Fig.  3f). 
Together, these results indicate that the bacteriome 
signatures are significantly distinct in MCI com-
pared to controls and have moderate power to dif-
ferentiate the cognitive health in older adults.

Metabolic functions of gut microbiome in the gut 
of older adults with MCI significantly differs from 
controls

The HMP Unified Metabolic Analysis Network 
(HUMAnN 3.0) [5] analyses depicted that the meta-
bolic functions of the microbiome were significantly 
distinct in the gut of older adults with MCI com-
pared to their controls (Fig. 4). PCA analysis plot of 
microbial metabolic pathways of the gut microbiome 
of older adults with MCI and controls showed mar-
ginal clustering across the axis 2 (Supplementary 
Fig.  S5). A total of 355 pathways were detected, in 
which 27 were exclusively present in controls and 
21 were uniquely detected in the MCI participants 
(Fig.  4a, Supplementary Table  S2). The abundance 
of 5-Aminoimidazole Ribonucleotide Biosynthe-
sis (5-ARB) namely 5-ARBI and 5-ARBII, as well 
as pathways relating to the synthesis of the Uridine 
MonoPhosphate (UMP) viz. UMP BI, UMP BII, 
and UMP BIII, was lower in the gut microbiome of 

MCI than controls (Fig. 4b). These observations were 
further confirmed in the heatmap of the hierarchi-
cal clustering showing that all the major microbial 
metabolic pathways reduced in MCI compared to 
controls (Fig. 4c). In addition, the differential analy-
sis revealed that 45 pathways were differentially 
abundant between the MCI and control groups (Sup-
plementary Table  S3). Among these 11 pathways 
including the superpathway of 5-ARB and 5-ARBII, 
Chorismate biosynthesis (CB) from 3-dehydroqui-
nate, 5-ARBI, CBI, L-histidine biosynthesis, super-
pathway of L-tyrosine biosynthesis, mannan degra-
dation, 2-oxobutanoate degradation I, formaldehyde 
assimilation III (dihydroxyacetone cycle), and iso-
propanol biosynthesis were downregulated in MCI 
participants compared to controls. While 34 path-
ways including peptidoglycan maturation, guano-
sine nucleotides degradation III, seleno-amino acid 
biosynthesis, adenosine nucleotides degradation II, 
phosphatidylglycerol biosynthesis I, L-methionine 
biosynthesis II, purine nucleotides degradation II, 
guanosine nucleotides degradation II, fatty acid elon-
gation, oleate biosynthesis IV (anaerobic), and (5Z)-
dodecenoate biosynthesis I were upregulated in the 
gut of MCI than controls (Supplementary Table S3). 
Further, random forest analyses revealed that the 
upregulated UDP-N-acetylmuramoyl-pentapeptide 
biosynthesis I (UDP-N-APBI) and Co-A BI and 
downregulated UMP BII, TCA cycle, and 5-ARBII 
were among the top 5 pathways detected as the most 
significant to be useful for prediction of cognitive 
function in the MCI and control groups (Fig. 4d). The 
ROC analyses performed on all the pathways selected 
on random forest analyses demonstrated that the indi-
vidual pathways like 5-ARBII, UMPBI, UMPBII, and 
UMPBIII showed statistically significant area under 
the curve, suggesting predictive power of 71–78% 
confidence. The combination of these pathways 
showed 68% predictive power (Fig. 4e). In addition, 
the increased abundance of UMP BI, UMP BII, and 
UMP BIII was positively correlated with MoCA and 
MiniCog scores, while UDP-N-APBI and superpath-
way of CoA BI were negatively correlated with these 
cognitive function markers (Fig. 4f). Altogether, these 
results suggest that the metabolic pathways of micro-
biome are significantly distinct in the gut of older 
adults with MCI compared with controls, and these 
differences can moderately predict cognitive state in 
older adults.

Fig. 3   The bacteriome signatures in the gut of older adults 
with MCI significantly differ from cognitively healthy con-
trols with a moderate predictive potential of cognitive health. 
a,b) The relative abundance of major bacterial phyla (b) and 
species (b) in the gut of the older adults with MCI in com-
parison to controls. (c) Heatmap depicting the group-specific 
enrichment of the bacterial species in the gut of older adults 
with MCI and controls. (d) Random forest analysis showing 
the top 15 bacterial species with the highest discriminatory 
power between the control and MCI groups. (e) ROC analyses 
of selected bacterial species to predict the cognitive health in 
older adults. (f) Correlation matrix showing the association 
between the relative abundance of selected bacterial species 
with MoCA and Mini-Cog. Abbreviations—Acidaminococcus; 
Ac, Akkermansia; Ak, Alistipes; Al, Anaerostipes; An, Bacte-
roides; Ba, Bifidobacterium; Bi, Blautia; Bl, Clostridium; Cl, 
Collinsella; Co, Dorea; Do, Escherichia; Es, Eubacterium; 
Eu, Faecalibacterium; Fa, Firmicutes; Fi, Fusicatenibacter; 
Fb, Fusicatenibacter; Fu, Lachnospiraceae; Ls, Lawsonibac-
ter; La, Parabacteroides; Pb, Prevotella; Pr, Roseburia; Rb, 
Ruminococcus; Ru, Streptococcus; St, Subdoligranulum; Su, 
Tyzzerella; Ty 
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Combining virome, bacteriome, and microbial 
metabolic signatures boosts the prediction of 
cognitive impairment in older adults

Our findings indicate that the gut of older adults with 
MCI harbors a significantly distinct trans-kingdom 
microbiome (virome, bacteria, fungi, and archaea), 
which show moderate predictive strength. Rb. homi-
nis was detected as the top contributor among the 
bacteria, virus taxa, and metabolic pathways (Sup-
plementary Fig.  S5) One limitation, however, is the 
fact that the viral and bacterial species and meta-
bolic pathways shortlisted in the above analyses are 
not detected in the microbiome signature of all the 
participants. To make our results widely applicable, 
using multi-omics approach, we tested the combina-
tion of virome, bacterial, and microbial metabolic 
signatures that were detected in all the samples. We 
performed three model combinations using ROC 
analyses. Model 1 included bacterial and viral species 
along with microbial metabolic pathways that were 
significantly different using random forest analyses 
(Fig.  5a). This model showed an area under curve 
of 0.78 (78% confidence) in comparison to 0.76 by 
bacteria alone, 0.56 by viruses alone and 0.76 by 
metabolic pathways alone indicating that combining 
selected bacteriome, virome, and metabolic pathways 
slightly boosts the predictive power for differentiating 

MCI from controls. Model 2 included bacterial, viral, 
and microbial metabolic pathways that were distinct 
between MCI and control participants. The prediction 
power was significantly decreased (0.67 AUC), how-
ever boosted within the differentially abundant dis-
tinct kingdom signatures. In addition, we also tested 
if combining model 1 and 2 with uniquely abundant 
taxa in MCI (model 3) can boost the prediction, but 
we did not see improvements in predictive power 
(Fig.  5b). However, unique viruses showed highest 
predictive potential (0.78 AUC) in model 3 (Fig. 5c). 
These results indicate that the multi-omics analyses 
of bacteriome, virome, and functional analyses boost 
the predictive potential to detect cognitive impair-
ment in two ways—(1) increasing its coverage in all 
the samples and (2) boosting the prediction. There-
fore, selected microbiome signatures can be used 
for developing markers to boost the risk of cognitive 
decline in older adults.

Discussion

Gut microbiome composition and functions are 
known to be significantly different between healthy 
older adults and young adults as well as between 
older adults with cognitive disorders like AD and 
cognitively healthy adults [8, 9, 14, 36, 37, 47, 56]. 
Similar observations are noted in animal models [26, 
60]. However, the results are inconsistent and largely 
based on targeted 16S rRNA sequencing, which 
accounts only for bacterial abundance. It is evident 
that the microbiota is a complex community com-
prising bacteria, viruses, fungi, and archaea, which 
together, are interconnected to survive and function. 
However, the relationship of these microbiome com-
munities in aging biology and cognitive health is 
poorly understood. Earlier studies show that the gut 
bacterial population (bacteriome) is variable, which 
limits its potential to be used as a biomarker to pre-
dict cognitive decline in older adults. Furthermore, 
it is unclear if combining bacteria, viruses, and their 
metabolic pathways using combinatorial approach 
can be used to predict cognitive decline. Herein, our 
results show that the gut of older adults with MCI 
harbors not only distinct bacteria, but also distinct 
viruses, with limited number of fungi and archaea 
detected, and we show that combining the bacteri-
ome, virome, and their metabolic pathways boosts 

Fig. 4   The functional metabolic pathways of the microbiome 
in the gut of older adults with MCI were significantly distinct 
from their controls with a moderate predictive potential of cog-
nition. a) Venn diagram representing the shared and unique 
microbial metabolic pathways in the gut of older adults with 
MCI compared to their controls. b) The relative abundance 
of the top 20 microbial metabolic pathways that are distinct 
between older adults with MCI and controls. c) Heatmap rep-
resenting the group-specific enrichment of the pathways in the 
control and MCI participants. d) Random forest analysis show-
ing the top 15 pathways with the highest discriminatory power 
between the control and MCI groups (e) ROC analysis show-
ing the specificity and sensitivity of the four selected path-
ways with discriminating potential between MCI anda controls 
(f) Correlation matrix showing the association of the relative 
abundance of microbiome functional pathways with MoCA 
and Mini-Cog. Abbreviations—5-Aminoimidazole Ribonucle-
otide Biosynthesis I; 5-ARB, Acetylmuramoyl-pentapeptide; 
AP, Adenine and Adenosine; A&A, Biosynthesis; B, Build-
ing Blocks Biosynthesis; BB B, Corismate biosynthesis from 
3-dehydroquinate; CB from 3DQ, Coenzyme A; CoA, Deg-
radation; Guanosine ribonucleotides; GR, L-homoserine and 
L-methionine; LH and LM, Rhamnose; R, Tricaboxylic Cycle; 
TCA, Uridine 5’-monophosphate; UMP
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the predictive potential of microbiome to differentiate 
MCI from cognitively healthy older adults.

The microbiome α-diversity is an indicator of 
function of the microbiota (higher is better), and 
we show that the gut of older adults with MCI has 
lower microbiome α-diversity indices like Shannon 
and Simpson indexes, which were positively associ-
ated with reduced MoCA and MiniCog scores (lower 
scores indicate poor cognitive function). These results 
indicate that the gut of older adults with MCI harbors 
a significantly distinct microbiome compared with 
the gut of cognitively healthy older adults. Multiple 
emerging studies indicate associations between gut 
microbiota diversity and taxonomic signatures with 
neurological outcomes, including cognitive func-
tion and dementia [29, 42]. Preclinical studies using 
germ-free or antibiotic-treated rodents show no or 
reduced microbiome diversity, respectively with sig-
nificant cognitive deficits such as reduced memory, 
impaired working memory, and changes in brain-
derived neurotrophic factor in the hippocampus [19, 
32, 35, 43]. Small-scale human studies including ours 
also showed a link between abnormalities in micro-
bial features and cognition dysfunctions, or found 
significant improvements when comparing controls 
with persons who have been treated with probiotics 
or Mediterranean ketogenic diet to increase commen-
sal microbiota [43]. Our findings are consistent with 
results from animal models and other clinical studies 
and advance the understanding of trans-kingdom dif-
ferences of bacteria and viruses corresponding to the 
cognitive function in the gut of older adults.

The mechanisms by which the gut microbiome is 
associated with cognitive health are not fully estab-
lished yet; however, growing data indicate that 
microbiota-produced beneficial metabolites such as 

short-chain fatty acids (SCFAs like acetate, propion-
ate, and butyrate) significantly contribute in gut-brain 
communications [16, 24]. Herein, we observed that 
the abundance of butyrate producing bacteria such 
as Lachnospiraceae family, Subdoligranulum sp., 
Roseburia intestinalis, and Roseburia hominis were 
reduced in the gut of MCI participants compared to 
cognitively healthy controls. It has been previously 
reported that a decline in abundance of butyrate pro-
ducing bacteria is associated with multiple disorders 
such inflammatory bowel disease, type 2 diabetes 
mellitus as well as poor intestinal barrier function, 
immune dysregulation, and gut dysbiosis [4, 38, 51, 
52, 59]. In the mice study, the increased abundance of 
Lachnospiraceae family was associated with reduced 
deposition of β amyloid in brain tissue [35]. Butyrate 
administration to animals has shown protective effects 
against vascular dementia, cognitive impairment, and 
against metabolic risk factors for cognitive decline 
and dementia [3, 20, 27, 28, 46]. Previous studies 
performed in our team also demonstrated that feed-
ing modified Mediterranean-ketogenic diet (MMKD) 
increased production of butyrate, which was associ-
ated with reduced AD markers in the cerebrospinal 
fluid of older adults with MCI [36]. These studies sug-
gest that the reduced abundance of butyrate produc-
ing bacteria is associated with higher risk of cognitive 
decline, and butyrate supplementation shows protec-
tive effects against cognitive decline in animal mod-
els. It remains to be determined the role of bacterial 
abundance in prediction of cognitive decline risk and 
whether butyrate therapies can be effective to prevent 
and/or treat cognitive decline in human populations. 
Therefore, further studies using larger human cohorts 
are needed to confirm these findings and test transla-
tion of findings from animal models to humans.

Fig. 5   The combination of bacteriome, virome, and microbial 
metabolic pathways improves the prediction of cognitive health 
in older adults. a–c) ROC analyses depicting prediction model 

1 (a), 2 (b), and 3 (c) with a distinct combination of bacteri-
ome, virome, and microbial metabolic pathways to predict the 
cognitive health of older adults
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Although, bacteria and their metabolites play an 
important role in regulating gut-brain axis function 
and cognitive health, evidence also shows that cog-
nitive impairment is associated with viral infections 
either through direct invasion to the central nervous 
system or through an indirect effect by inducing sys-
temic inflammation, cytokine storm, hypercoagula-
bility, and neuro-inflammation [48]. In this study, we 
show that the overall abundance of viruses increased 
in the gut of older adults with MCI compared with 
controls. We also observed an abundance of Podoviri-
deae, Inovirideae, Myovirideae, and Siphovirideae, 
which belong to bacteriophage types of viral fami-
lies [18, 25, 58] detected in the human gut and are 
associated with cognitive function. Recently [33] 
et al. showed that the higher abundance of Lactoba-
cillus phages (family Siphoviridae of the order Cau-
dovirales positively associated with better cognitive 
function; and transplantation of these phages from 
humans to mice and Drosophila showed increased 
memory scores and upregulation of memory-involved 
brain genes. Bacteriophages influence the bacterial 
composition by impacting their survival and func-
tions, thus contributing to shaping the microbiome 
diversity, structure, and function [50]. We showed 
that older adults with MCI had higher abundance of 
Lactococcus phage ul36 which specifically regulates 
the probiotic bacteria like Lactococcus lactis (a com-
mon yogurt culture) [44] and may diminish their 
abundance in the gut, which may ultimately be det-
rimental for gut-brain axis. On other hand, certain 
bacteriophages exhibit prophage-like properties, such 
as Stx2 converting phage 1717, which functions as a 
mobile genetic element in bacterial genome contain-
ing crucial genes associated with bacterial patho-
genesis [61]. The virome signatures detected in the 
present study were highly variable, and their precise 
role in age-related cognitive decline remains to be 
determined.

The importance of microbiome signature differ-
ences is debatable due to the high variability in their 
diversity, taxonomic features, and functions. In this 
study, we tested the potential of bacteriome, virome, 
and their metabolic signatures to predict the cognitive 
health in older adults. Interestingly, we found that the 
virome showed the highest number of unique viral 
species in the gut of MCI versus cognitively healthy 
controls and the strongest predictive power. How-
ever, one limitation of using the virome is that viruses 

are not uniformly present in the human gut. Bacte-
rial species chosen based on differential microbiome 
signatures and random forest analyses showed sig-
nificant potential to differentiate (~ 76%) MCI from 
their cognitively healthy controls. We also observed 
that the one bacterial species representing a specific 
enterotype presents more predictive power to differ-
entiate MCI from controls; however, single species 
or that particular enterotype was not present in all the 
samples, instead of present in limited samples. Thus, 
our approach of using combination of virome, bac-
teriome, and metabolic signatures presented broader 
application for all the individuals. Interestingly, the 
addition of selected signatures of virome and micro-
bial metabolic pathways to bacteriome signatures 
boosted the power to predict the risk of cognitive 
decline in older adults.

Our study presents several strengths: our results 
are derived from community dwelling older adults 
rather than institutionalized patients; the microbiome 
sequencing was done using whole genome metagen-
omics which allowed us to identify bacteria, viruses, 
fungi, and archaea altogether, and we used the well-
established cohort of MiaGB consortium which uses 
standardized protocols for all data collection and 
quality control, including participant surveys, cogni-
tive functions assessments, stool collection, process-
ing, and sequencing.

We acknowledge that our study also has few limi-
tations. Our sample size is relatively small for com-
prehensive analysis of multiple microbial signatures, 
and we were also not able to determine the poten-
tial role of sex, race, and ethnicity. We attempted to 
understand the association of cognitive health and 
microbiome of the study participants. However, no 
statistically significant differences were recorded in 
this cross-sectional study. Nonetheless, the present 
study was an exploratory analysis of initial data col-
lected in the MiaGB consortium, which is a cohort 
study aimed at recruiting approximately 400 older 
adults and following them on a yearly basis. Further 
analyses to use and validate the findings of this study 
will be performed in the future. One immediate use 
will be to use these results as a training cohort/dataset 
to test the efficacy and accuracy of these predictions. 
Lastly, while the current study is cross-sectional, 
which prevents the assessment of temporality in 
microbiome signatures as longitudinal data from par-
ticipants in the MiaGB consortium become available, 
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we will be able to define the temporal changes associ-
ated with trans-kingdom signatures so we can better 
understand the relationship between these and cogni-
tive health.
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