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Abstract
Influenza virus transmission is a crucial factor in understanding the spread of the virus within populations and developing 
effective control strategies. Studying the transmission patterns of influenza virus allows for better risk assessment and 
prediction of disease outbreaks. By monitoring the spread of the virus and identifying high-risk populations and geographic 
areas, it is possible to allocate resources more effectively, implement timely interventions, and provide targeted healthcare 
interventions to diminish the burden of influenza virus on vulnerable populations. Theoretical models of virus transmission 
are used to study and simulate of influenza virus spread within populations. These models aim to capture the complex 
dynamics of transmission, including factors such as population size, contact patterns, infectiousness, and susceptibility. 
Animal models serve as valuable tools for studying the dynamics of influenza virus transmission. This article presents a brief 
overview of existing research on the qualitative and quantitative study of influenza virus transmission in animal models. We 
discuss the methodologies employed, key insights gained from these studies, and their relevance.
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Introduction

The influenza virus poses a serious threat to public 
health worldwide due to potential to cause epidemics and 
pandemics. The incidence and mortality from influenza 
virus remain a significant problem for humanity, despite 
continuous monitoring and improvement of the healthcare 
system. Every year, 3 to 5 million people are infected with 
the influenza virus, with estimates ranging from 290,000 to 
650,000 fatalities (Kim et al. 2022).

Transmissibility refers to the properties of virus and is 
defined as the probability of infecting a healthy organism 
upon contact with an infected one (Jones 2007). The 
pathogens infectiousness, the contagiousness of the infected 
organism, the susceptibility of the recipient organism, and 
the environmental factors all have a role in how transmissible 
an infection is. There are various models for assessing 

transmissibility, primarily based on the reproduction 
number R0, which is defined as the number of organisms 
that will be infected by an infected individual introduced 
into a fully non-immunized environment in the absence of 
specific epidemiological measures aimed at preventing the 
spread of the disease. R0, in turn, is also evaluated using 
mathematical models. For example, Smith et al. estimated R0 
for malaria based on a study of an African population (Smith 
et al. 2007). In the work of Guerra et al., median R0 values 
for measles were calculated based on a systematic review of 
databases (Guerra et al. 2017).

Similar approaches can be applied to other respiratory 
agents as well. As a respiratory virus, influenza can be 
transmitted through direct (physical) contact, indirect contact 
(via fomites), and airborne droplets. Constant antigenic changes 
of the influenza virus can lead to the emergence of strains with 
high epidemic and pandemic potential. The Tool for Influenza 
Pandemic Risk Assessment (TIPRA) was created by WHO 
to provide a transparent and uniform method to facilitate the 
assessment of the risk associated with influenza viruses with 
the potential to cause a pandemic. One of the assessed risk 
elements is transmission in animal models by different infection 
routes. Understanding how to properly assess the transmission 
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of the influenza virus in animal models will enable the control 
of emerging strains with epidemic and pandemic potential. 
Studying virus transmission in animal models allows for 
controlled experiments that provide insights into the factors 
influencing transmission dynamics, including contact patterns, 
environmental conditions, and host characteristics.

There is a sufficient amount of research and reviews on 
the transmissibility properties of the influenza virus in vari-
ous animal models, but there are fewer studies specifically 
dedicated to quantitative measurement of transmissibility. It 
can be explained by several reasons. First of all, conducting 
controlled studies to measure influenza transmission in ani-
mals may raise ethical concerns. Animals used in research 
must be treated humanely, and there are stringent regula-
tions and guidelines in place to ensure their welfare. This 
can make it challenging to design and conduct studies that 
involve intentional exposure to infectious agents like the 
influenza virus. Also, there are species-specific factors and 
methodological challenges. Influenza virus exhibits species-
specific characteristics, meaning it has different interactions 
and effects in different animal species. Animal models often 
differ from humans in terms of anatomy, immune response, 
and receptor distribution, making it difficult to extrapolate 
findings directly to humans. Additionally, accurately quan-
tifying transmission requires careful experimental design, 
control groups, and statistical analysis, which can be com-
plex and resource-intensive. Consequently, studying influ-
enza transmission in animals may not always provide direct 
insights into human transmission dynamics. Finally, there 
are public health priorities. Research efforts have histori-
cally focused on developing vaccines, antiviral medications, 
and understanding human transmission dynamics to guide 
public health interventions. These priorities may limit the 
resources available for conducting extensive quantitative 
studies of influenza transmission in animals.

One of the most important stages for successful 
infection is the binding of viral particles to susceptible cells 
surface receptors. For the influenza virus, these receptors 
are sialic acid residues on the cells of the respiratory or 
gastrointestinal epithelium, depending on the host species. 
Avian influenza viruses primarily bind to α2,3-linked sialic 
acids, while human strains bind to α2,6-linked sialic acids 
(Gambaryan et al. 2002; Shinya et al. 2006). The presence 
and distribution of such receptors are the key criteria for an 
organism susceptibility to influenza virus infection.

Theoretical models of respiratory virus 
transmission

Theoretical models of respiratory virus transmission play 
a crucial role in understanding the dynamics of how these 
viruses spread within populations. These models employ 

mathematical and computational frameworks to simulate 
and predict the transmission patterns, assess the impact of 
different factors, and inform public health interventions. 
By integrating epidemiological principles, population 
dynamics, and specific virus characteristics, these models 
aid in predicting the impact of interventions, assessing the 
effectiveness of different control measures, and exploring 
scenarios for disease containment. There are different types 
of theoretical models used in the study of respiratory virus 
transmission:

1.	 Compartmental models. Compartmental models split the 
population into several compartments according on how 
infected they are (Tillett 1992). The most commonly used 
compartmental model for respiratory virus transmission, 
including influenza virus, is the susceptible-exposed-
infectious-recovered (SEIR) model (Gilbert et al. 2014; 
Etbaigha et al. 2018; Rezapour and Mohammadi 2020). 
This model tracks the flow of individuals between 
compartments and incorporates parameters such as 
infection rates, incubation periods, and recovery rates. 
SEIR models can be expanded to include more detailed 
sub-compartments and variations, such as age-specific 
compartments or spatial considerations.

2.	 Agent-based models. Agent-based models represent 
individuals as discrete agents and simulate their 
interactions within a population (Eubank et al. 2004). 
Each agent possesses specific attributes and behaviors 
that influence their susceptibility, infectiousness, and 
movement patterns. Agent-based models allow for the 
incorporation of individual-level heterogeneity, contact 
networks, and spatial information. These models can 
provide insights into the impact of behavioral factors, 
contact patterns, interventions on transmission dynamics 
and can be applicable to the influenza virus (Arduin 
et al. 2017; Krauland et al. 2023).

3.	 Network models. Network models represent individuals 
as nodes in a network and interactions as edges between 
nodes (Keeling et al. 2011). These models capture the 
structure of social or contact networks and allow for 
the study of disease transmission dynamics within the 
network framework. Network models can reveal the 
role of influential individuals (e.g., super-spreaders) 
or identify key connections for targeted interventions. 
They also examine the impact of network structure on 
the spread of respiratory viruses, including influenza 
virus (Jin et al. 2011; Xu and Wu 2021).

4.	 Spatial models. Spatial models incorporate the geo-
graphical dimension to study how respiratory viruses 
spread across different locations or regions (Tatem et al. 
2012). These models consider the movement of individ-
uals, the spatial distribution of the population, and fac-
tors that affect transmission within specific areas. Spatial 
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models help understand the local and global patterns of 
virus transmission, the effect of travel on disease spread, 
and the impact of interventions in different geographi-
cal contexts. Such models are useful for evaluation of 
transmission risk and prediction of hotspots of novel 
virus (Nelson et al. 2011; Prosser et al. 2013).

5.	 Stochastic models. Stochastic models incorporate ran-
domness and probability in the modeling framework 
(Keeling and Rohani 2011). These models consider 
the inherent variability and uncertainty associated with 
disease transmission. Stochastic models account for the 
probabilistic nature of events such as infection, recovery, 
and contact, allowing for the assessment of uncertainty 
and the estimation of confidence intervals around model 
predictions. It also applies to influenza virus spread 
(Baleanu et al. 2019; Whitmanid and Jayaprakash 2020).

Quantitative transmission models 
of influenza virus

Quantitative measurement of influenza virus transmission 
in animals involves assessing the efficiency and dynamics 
of virus spread within a population. Such parameters 
are crucial for the implementation of effective control 
measures. There are several methods and approaches used 
to quantitatively measure influenza virus transmission in 
animal populations:

1.	 Direct contact transmission studies. In this approach, 
susceptible to influenza virus infection animals are 
placed in direct contact with infected ones. Transmis-
sion rates can be quantified by monitoring the infection 
status of the susceptible animals over time. Quantitative 
measurements involve monitoring infection rates, trans-
mission efficiency, and the impact of factors like viral 
load, host immune responses, and viral shedding.

2.	 Respiratory droplet transmission studies. Influenza 
viruses are primarily transmitted through respiratory 
droplets. It is possible to simulate this mode of 
transmission by using specialized equipment to generate 
aerosols containing virus particles. These aerosols are 
then exposed to susceptible animals, and transmission 
rates can be determined by monitoring the infection 
outcomes. Quantitative measurements include assessing 
the dose–response relationship, infectiousness of emitted 
droplets, and the effectiveness of interventions such as 
masks or air filtration systems.

3.	 Airborne transmission studies. In addition to respira-
tory droplets, influenza viruses can also be transmit-
ted through the air over longer distances. To simulate 
such conditions specialized chambers or cages to house 
infected and susceptible animals separately but con-

nected by airflow are used. By monitoring virus trans-
mission in this controlled environment, it is possible to 
quantify the efficiency of airborne transmission. Quan-
titative measurements are the same as for airborne trans-
mission.

4.	 Serial passage studies. This method involves serially 
infecting animals with influenza virus and then trans-
ferring the virus from infected animals to new hosts. 
Repeating this process over multiple generations allows 
to determine the transmission potential of the virus and 
assess changes in transmissibility over time. Quantita-
tive measurements can include determining transmission 
rates, genetic changes in the virus, and evaluating the 
impact of mutations on transmission efficiency.

5.	 Mathematical modeling. Mathematical models are 
extensively used for simulation and prediction of 
influenza virus spread in animal populations. These 
models incorporate various factors, such as contact rates, 
transmission probabilities, and population demographics, 
to estimate the transmissibility of the virus. The model 
outputs allow to quantify transmission dynamics and 
assess the impact of different environmental factors.

Animal models

Various animal models are used to study influenza virus 
transmission, including mice, ferrets, guinea pigs, hamsters, 
non-human primates and etc. Each model has its advantages 
and limitations. Below is a brief overview of the most 
commonly used animal models.

1.	 Mouse Model

Among the animal models for influenza virus study, mice 
(Mus musculus) are one of the most commonly used models 
due to their ease of manipulation and low cost of purchase 
and maintenance. Although mice are not natural hosts of 
the influenza virus, they exhibit some disease symptoms 
upon infection, and high titers of the influenza virus RNA 
are detected in homogenates of internal organs. Typically, 
clinical signs appear 2–3 days after infection, and severity 
depends on the dose. Clinical manifestations include 
lethargy, huddling, ruffled fur, weight loss, hypothermia, 
cyanosis, occasional neurological disorders, cytokine 
storm, primary viral pneumonia, and death (Barnard 2009; 
Tripp and Tompkins 2009; Margine and Krammer 2014). 
Seroconversion, as in humans, is observed approximately 
21  days after infection/vaccination (Bharmoria et  al. 
2016). Despite the advantages of mouse model for 
studying the influenza virus, studying transmissibility in 
mice is challenging. Mice can transmit influenza virus 
through direct contact that occurs through close physical 
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proximity and can involve various routes, including nasal 
secretions, saliva, and feces (Bao et  al. 2014). Also, it 
can be transmitted through respiratory droplets expelled 
during coughing, sneezing, or breathing. The efficiency 
of transmission can vary depending on factors such as 
the strain of the virus and the specific mouse model being 
used. There are few available studies in which transmission 
of the influenza virus was observed in mice (Eaton 1940; 
Schulman and Kilbourne 1962; Schulman 1968). These 
studies have shown that effective transmission requires 
prior adaptation of strains, and only certain strains adapt 
with good efficiency. Additionally, specific laboratory 
conditions such as airflow rate, humidity, and temperature 
are crucial for efficient transmission. More recent studies 
also indicate that influenza virus transmission in mice is 
inefficient and often requires direct contact, adherence to 
the aforementioned conditions, or the use of humanized 
mice (Lowen et al. 2006; Edenborough et al. 2012; Ortigoza 
et al. 2018; Mendoza et al. 2020). This situation can be 
explained by the absence or insufficient presence of α2,6 
receptors on the surface of mouse epithelial cells, making 
it difficult to infect them with human strains of the influenza 
virus (Ibricevic et al. 2006).

2.	 Ferret Model

Ferrets (Mustela putorius furo) are considered the 
most suitable animal model for transmissibility studying. 
Due to their ability to adapt to infection, similar clinical 
sights, and pathogenesis, ferrets closely mimic human 
influenza infection. Clinical signs include sneezing, 
nasal secretions, lethargy, hyperthermia, and weight loss. 
Some of the influenza virus strains in ferrets can lead to 
pneumonia, tracheobronchitis, and, in severe cases, death 
(Smith and Sweet 1988). The acute phase of illness for 
influenza in ferrets typically lasts for 3–5 days. During 
this period, the animals are highly contagious and can 
transmit the infection. The distribution of receptors in 
ferrets is similar to humans, their respiratory tissues 
express both α2,3- and α2,6-linked sialic acids (Jia et al. 
2014). It makes ferrets an excellent model for studying 
of influenza virus transmission. Limitations of the model 
include the high cost of acquisition and maintenance and 
limited availability of specific immunological reagents. 
Similar to humans, influenza in ferrets primarily affects 
the epithelium of the upper respiratory tract, but there 
is also a possibility of lower respiratory tract infection 
(Huang et al. 2014; Camp et al. 2015). Ferrets can transmit 
influenza through direct contact, including close physical 
proximity, such as snout-to-snout contact or fighting 
by exchange of nasal secretions and saliva (Zhu et  al. 
2013). Ferrets are capable of generating and expelling 
respiratory droplets containing infectious virus particles 

and also can transmit influenza viruses through airborne 
routes (Richard et  al. 2020). Susceptible ferrets can 
acquire the infection by inhaling these droplets or through 
contact with contaminated surfaces. For example, it was 
demonstrated that influenza virus transmission between 
ferrets could occur via small particle aerosols, simulating 
airborne transmission (Lowen et  al. 2007). There are 
several quantitative studies of influenza virus transmission 
using ferrets as animal model. Some quantitative data were 
obtained by serial passage studies on ferrets (Sutton et al. 
2022). The indicators for influenza A virus transmissibility 
in ferrets were estimated in airborne transmission (Pulit-
Penaloza et al. 2023). One of the recent studies proposed 
a quantitative model of airborne transmission of influenza 
virus in ferret model (Gudymo et al. 2023).

3.	 Guinea Pig Model

Guinea pigs (Cavia porcellus) are widely used for studying 
influenza virus transmission due to certain similarities they 
share with humans in terms of respiratory physiology and 
susceptibility to non-adapted strains of the influenza virus. 
They have smaller sizes, making them commercially more 
advantageous than ferrets. Anatomically and physiologically, 
the lungs of guinea pigs are more similar to humans 
than the lungs of rats and mice (Ressmeyer et al. 2006). 
Nasopharyngeal swabs of infected guinea pigs contain 
influenza virus RNA, and seroconversion is observed after 
infection. In some cases, signs of viral pneumonia have been 
detected during necropsy (Tang and Chong 2009; Kwon 
et al. 2009). However, the most significant disadvantage of 
the guinea pig model is the absence of significant clinical 
symptoms of the disease. Increased mucus secretion from the 
nose and mild sneezing can be considered relative indicators 
of infection (Steel et al. 2009). The guinea pig respiratory 
tract has both α2,3 and α2,6 sialic receptors, which are 
presented in the nasal tract and the trachea, while in the lungs 
predominantly contain α2,3 receptors (Sun et  al. 2010). 
Therefore, guinea pigs are generally susceptible to a wide 
range of influenza virus strains, including both human and 
avian origin viruses. Guinea pigs, like humans, primarily 
transmit influenza viruses through respiratory droplets (Lowen 
et al. 2006). In addition to respiratory droplet transmission, 
studies have shown that influenza viruses can be transmitted 
through direct contact between infected and susceptible 
guinea pigs (Bouvier et al. 2008; Pica et al. 2012). Some 
studies have suggested the possibility of airborne transmission 
of influenza viruses in guinea pigs (Mubareka et al. 2009; 
Asadi et al. 2020). Due to influenza virus susceptibility, it is 
possible to investigate quantitative parameters of transmission 
on guinea pigs such as infectivity, magnitude of replication, 
kinetics of replication, efficiency of transmission, and kinetics 
of transmission (Danzy et al. 2021).
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4.	 Hamster Model

Hamsters (Mesocricetus auratus) can also be used 
to study the properties of the influenza virus. They are 
cheap and easy to handle, susceptible to influenza, and 
can be used for transmissibility studies and vaccine 
effectiveness assessments. The main disadvantage of 
the hamster model is the absence of clinical signs of the 
disease. Like most mammals, viral infection in hamsters 
primarily affects the upper respiratory tract, which is 
confirmed by the presence of a high titer of the virus 
in nasopharyngeal swabs (Ali et al. 1982). Additional 
sigh of infection is a specific immune response (Taylor 
and Parodi 1942). The distr ibution of sialic acid 
receptors is very similar to the human respiratory tract 
(Iwatsuki-Horimoto et al. 2018). Influenza virus can be 
transmitted between hamsters through direct contact. It 
has been observed for both human and avian influenza 
strains (Belser et al. 2013). Influenza viruses can also 
spread through the air and infect susceptible hamsters in 
close proximity (Herfst et al. 2012). In addition to direct 
contact and airborne transmission, influenza viruses 
can persist on surfaces (fomites) for a certain period. 
Hamsters can get infected by coming into contact with 
virus-contaminated objects such as bedding, cages, or 
water bottles (Bouvier and Lowen 2010). Respiratory 
droplets, larger than aerosols, are another mode of 
inf luenza virus transmission on hamsters. These 
droplets can be generated when an infected hamster 
exhales, coughs, or sneezes, and can transmit the virus 
to susceptible hamsters in close proximity (Imai et al. 
2012). Despite the susceptibility of hamsters to the 
inf luenza virus and the possibility of transmission, 
the absence of clinical signs makes the hamster model 
not extensively used. Therefore, there are no research 
devoted to the for the purpose of quantitative study.

5.	 Chicken Model

Chicken (Gallus gallus domesticus) is a suitable 
model for the study of avian strains of the influenza virus 
transmission, since the epithelium of the lower digestive 
tract contains a large number of α2,3 receptors (Cui 
et al. 2017; Bertran et al. 2017). Symptoms of infection 
include cough, nasal discharge, respiratory distress, 
diarrhea, cyanosis, and paralysis (Hemmink et al. 2018). 
There are a few quantitative studies of influenza virus 
transmission. For example, the transmission rate of avian 
influenza virus from experimentally infected chicken to 
naïve ones was investigate (Takadate et al. 2023). The 
main disadvantage of chicken model is the impossibility 
of studying human strains of the influenza virus, due to 
the lack of α2,6 receptors.

6.	 Swine Model

Transmission of influenza virus in pigs (Sus scrofa) 
extensively studied due to the important role of pigs as 
intermediate hosts for the generation of novel influenza viruses 
with pandemic potential. Pigs can serve as a mixing vessel 
for the reassortment of influenza viruses. Due to the presence 
of both avian and human receptor types in their respiratory 
tract, pigs can be infected with influenza viruses from avian 
and mammalian sources (Ito et al. 1998; Suzuki et al. 2000). 
This provides an opportunity for genetic reassortment between 
different strains, potentially leading to the emergence of novel 
viruses. Influenza viruses can be transmitted directly between 
pigs through close contact (Lange et al. 2009). Infected pigs 
shed the virus through respiratory secretions, and healthy 
pigs can become infected by inhaling the virus or through 
contact with contaminated surfaces or objects. Influenza 
viruses can also be transmitted between pigs through aerosols, 
when infected pigs release virus-containing droplets into the 
air through coughing or sneezing, and susceptible pigs can 
become infected by inhaling these infectious aerosols (Zhang 
et al. 2013). Influenza viruses can persist on surfaces and in 
the environment, allowing for indirect transmission, when pigs 
can become infected by coming into contact with contaminated 
objects, such as feed troughs, waterers, or fomites carrying 
the virus (Allerson et al. 2013). The high cost and difficulties 
in animal handling make pigs less favorable as a model for 
influenza virus transmission study. However, there are some 
studies, for example, influenza virus transmission of A/H1N1 
was quantified in swine model (Romagosa et al. 2011).

7.	 Another animal models

and non-human primates are also can be used to study 
the transmissibility of the influenza virus among other 
models. Although cats, dogs, and nonhuman primates can 
be infected with the influenza virus, these animal models 
are not widely used.

Cats (Felis catus) can be infected with influenza A viruses 
through close contact with infected humans, other infected cats, 
or, in rare cases, through direct exposure to infected birds or 
pigs. Several studies reported cases of influenza transmission 
from humans to cats (Kuiken et al. 2004; Su et al. 2015). 
For example, during the H1N1 influenza pandemic in 2009, 
cases of transmission from humans to cats were documented 
(Löhr et al. 2010; Sponseller et al. 2010). It is important to 
note that while cats can be infected with influenza viruses, the 
transmission from cats to humans is extremely rare.

The influenza virus strains that infect dogs (Canis familiaris) 
are known as canine influenza viruses (CIV). There are two 
main subtypes of CIV: H3N8 and H3N2 (Crawford et al. 2005; 
Yang et al. 2014). CIV can spread among dogs through close 
contact with respiratory secretions. This typically occurs in 
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places with a high dog population density, such as shelters, 
kennels, or dog parks. Infected dogs shed the virus through 
coughing, sneezing, or barking, and healthy dogs can become 
infected by inhaling the respiratory droplets or by direct contact 
with contaminated surfaces. The canine influenza viruses are 
distinct from human influenza viruses, and human-to-human 
transmission of CIV has not been reported. Due to the presence 
of α2,3-linked sialic acid receptors in lower respiratory tract, 
dogs are susceptible to influenza without adaptation (Song 
et al. 2008). In 2015, an outbreak of H3N2 canine influenza 
occurred in the United States, and it was determined that the 
virus originated from an avian influenza strain that had adapted 
to infect dogs (Voorhees et al. 2017). This suggests that there 
can be cross-species transmission from birds to dogs, although 
it is not a common route of transmission.

Influenza viruses can infect nonhuman primates through 
respiratory droplets or direct contact. For instance, certain 
subtypes of avian influenza viruses (e.g., H5N1, H7N9) can 
infect non-human primates under experimental conditions 
(Kuiken et al. 2003; Fukuyama et al. 2020). Instances of 
transmission from non-human primates to humans are rare. 
Therefore, it is important to exercise caution and implement 
preventive measures to minimize the risk of introducing 
or spreading influenza viruses in non-human primate 
populations. Nonhuman primates can also be infected by 
human strains of the influenza virus and transmit the infection 
(Moncla et al. 2013).

Given the existing difficulties in studying influenza virus 
transmission in cats, dogs and non-human primates, there 
are no quantitative studies for these animal model.

Conclusion

This paper provides an overview of influenza virus 
transmission in animal models. Studying influenza virus 
transmission provides valuable data for ongoing research and 
surveillance efforts. There are numerous studies that provide 
insights into specific aspects of transmission, such as viral 
kinetics, immune responses, and the impact of environmental 
factors on transmission dynamics. While there may be fewer 
studies specifically dedicated to quantifying influenza virus 
transmission in animals, research involving animal models 
remains crucial for understanding the basic biology of the 
virus, evaluating vaccine candidates, and exploring potential 
interventions. Quantitative measurement of influenza virus 
transmission in animals is essential for understanding the 
factors influencing the spread of the virus. The combination 
of experimental studies and mathematical modeling provides 
a comprehensive approach to influenza virus studying. This 
knowledge is useful for such fields as the development of 
vaccines, antiviral treatments, and preventive measures 
to mitigate the impact of influenza outbreaks. This review 

highlights the importance of continued surveillance and 
control measures to prevent the emergence and spread of novel 
influenza strains.
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