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Abstract
We review current methods and bioinformatics tools for the text complexity estimates (information and entropy measures). 
The search DNA regions with extreme statistical characteristics such as low complexity regions are important for biophysical 
models of chromosome function and gene transcription regulation in genome scale. We discuss the complexity profiling for 
segmentation and delineation of genome sequences, search for genome repeats and transposable elements, and applications to 
next-generation sequencing reads. We review the complexity methods and new applications fields: analysis of mutation hot-
spots loci, analysis of short sequencing reads with quality control, and alignment-free genome comparisons. The algorithms 
implementing various numerical measures of text complexity estimates including combinatorial and linguistic measures 
have been developed before genome sequencing era. The series of tools to estimate sequence complexity use compression 
approaches, mainly by modification of Lempel–Ziv compression. Most of the tools are available online providing large-scale 
service for whole genome analysis. Novel machine learning applications for classification of complete genome sequences also 
include sequence compression and complexity algorithms. We present comparison of the complexity methods on the different 
sequence sets, the applications for gene transcription regulatory regions analysis. Furthermore, we discuss approaches and 
application of sequence complexity for proteins. The complexity measures for amino acid sequences could be calculated by 
the same entropy and compression-based algorithms. But the functional and evolutionary roles of low complexity regions 
in protein have specific features differing from DNA. The tools for protein sequence complexity aimed for protein structural 
constraints. It was shown that low complexity regions in protein sequences are conservative in evolution and have important 
biological and structural functions. Finally, we summarize recent findings in large scale genome complexity comparison and 
applications for coronavirus genome analysis.

Keywords Bioinformatics · Text complexity · Lempel–Ziv compression · Genetic codes · Sequence information · Entropy · 
Low complexity regions · Sequencing artefacts · Genomic rearrangement · Alignment-free · Genome comparison · Online 
tools

Introduction

We rereview current works and bioinformatics tools for 
DNA text complexity estimates with next applications in 
short sequence analysis, complete genome studies, and 
protein annotations. The methods for complexity estimates 
have been realized in 1990s before the Human genome 
project (Trifonov 1990; Gusev et al. 1991; Román-Roldán 
et al. 1998). Information measures and entropies estimates 
serve as background for biophysical models of genome 
structure and evolution (Sadovsky et al. 2008). The theory 
of overlapping genetic codes (protein coding triplets, RNA 
structure signal, nucleosome positioning codes, and topological 
chromosome codes) started from the works by E.N.Trifonov 
(Trifonov 1989, 1990) relies to numerical sequence complexity. 
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With development of the high-throughput sequencing 
technologies the complexity analysis tools evolved from simple 
algorithm realization to advanced online programs, large scale 
genome data processing software (Orlov and Potapov 2004; 
Kryukov et al. 2020; Agenis-Nevers et al. 2021; Karakatsanis 
et al. 2021; Zimnyakov et al. 2023; Bello et al. 2023).

In the next sections of this “Introduction,” we will discuss 
applications of the complexity profiling to segmentation and 
delineation of genome sequences, search for genome repeats 
and transposable elements, and next-generation sequencing 
reads. Furthermore, we review the applications of complex-
ity estimates for gene transcription regulatory regions analy-
sis, the alignment-free sequences comparison methods, and 
the compression-based complexity approaches.

The rest of the review follow standard scheme—methods 
and algorithms, results, and discussion. The section “Meth-
ods and algorithms for DNA sequence complexity” reviews 
the algorithms for DNA sequence complexity estimates. 
The “Results” section present comparison of the complex-
ity methods on the different sequence sets, online tools for 
sequence complexity analysis (summarized in the table), dis-
cuss low complexity for protein sequences, and the genome 
database compression methods based on the complexity. The 
“Discussion” section summarizes recent findings and actual 
applications for coronavirus genome analysis.

Complexity for segmentation and delineation 
of genome sequences

The measures of compositional complexity coming from 
the statistical physics methods help to find abnormalities in 
linear genome structure and make corresponding segmenta-
tion (Karakatsanis et al. 2021; Bernaola-Galván et al. 2023). 
Shannon information (Shannon 1948) as the first measure 
of nucleotide frequencies allows delineation of complexity 
blocks, coding, and non-coding regions in a sequence (Deng 
et al. 2012). Shannon information, as well as entropy, could 
be measured for nucleotides, dinucleotides, and oligonu-
cleotides of any reasonable length (up to 10) in available 
genome sequences. Despite this measure is easy to count, 
it can separate real and artificial sequences (Sadovsky et al. 
2008). Chang and colleagues have shown that the Shannon 
information for sequences from complete genomes are much 
higher than for random sequences of the same size (Chang 
et al. 2005). This observation raised the problem of artifi-
cial sequence generation that resembles properties of real 
genome sequences (Wang et al. 2020).

Fluctuations in nucleotide frequencies in genome regions 
allow find heterogeneous sequence regions at varying 
scale—from short gene regulatory regions (kilobases) to 
isochores and chromosome segments (megabases) (Ber-
naola-Galván et al. 2023). Thus, applications of complexity 
analysis could be listed by sequence size:

1) Short sequences (transcription factor binding sites, promot-
ers, gene regulatory regions, small domains, and microsat-
ellites (Orlov and Potapov 2004; Safronova et al. 2016).

2) Medium size genome regions (genes, patching exon/
intron structures, distal gene enhancers) (Abnizova et al. 
2007; Deng et al. 2012).

3) Chromosome arms, and complete prokaryotic genomes 
(Agenis-Nevers et al. 2021; Bonidia et al. 2022; Ber-
naola-Galván et al. 2023).

The concept of triplet periodicity class and a measure of 
similarity between such classes were introduced in (Frenkel 
and Korotkov 2008). Triplet periodicity in DNA is related 
to coding sequence properties. It could be used to find ORF 
(open reading frame) shifts (Frenkel and Korotkov 2009).

Suvorova et al. (2014) compared periodicity search meth-
ods in DNA sequences. It was shown that combination of 
spectral methods and information decomposition methos is 
necessary to define hidden periodicities with high mutation 
rate. Suvorova and Korotkov (2015) studied triplet periodic-
ity differences inside and between genomes extending the 
approach discussed by Dios et al. (2014).

Visible elements of low complexity regions in a genome 
are tandem repeats (Benson 1999; Frenkel et al. 2017). Such 
tandem (tail-to-tail) repeats are considered as a kind low 
complexity region. Tandem consist of tens to hundreds of 
residues of a repeated pattern, such as atcatcatcatcatc (“atc” 
repeated). They are classified as mini and microsatellites 
(Jurka et al. 2007). Molecular mechanism of replication 
slippage lead reproducing of tandem repeats. Tandem 
duplications are common for cancers (Li et al. 2020) and 
may occur in somatic cells at larger scale. Enrichment of 
head-to-tail somatic segmental tandem duplications in 
genome defined as the tandem duplicator phenotype also 
defines lower sequence complexity (Menghi et al. 2018). 
There are set of computational tools such TRF (Tandem 
Repeat Finder) (Benson 1999; Frenkel et al. 2017) and 
ULTRA (Olson and Wheeler 2018) to effectively search 
for degenerated tandem repeats (Delucchi et al. 2021).

There are set of methods for tandem repeat search—mreps 
(Kolpakov et al. 2003), TRStalker (Pellegrini et al. 2010), 
T-REKS (Jorda and Kajava 2009), G-IMEx (Mudunuri et al. 
2010). The methods for tandem repeat search are limited due 
to sensitivity to nucleotide deletions and insertions.

Korotkov et al. (2022) studied triplet and k-mer perio-
dicities in relation to genome adaptation. The grouping of 
bacterial genomes by periodicity in repeat composition was 
shown. Plant genomes present special case for genome com-
plexity studies. There are abundant repeat elements, trans-
posons and satellites. Korotkov et al. (2021) found highly 
divergent tandem repeats in the rice genome. Recently, 
Rudenko and Korotkov (2023) classified tandem repeats 
(TRs) in the Capsicum annuum (pepper plant) genome.
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Repeat search in genomes

The complexity measures were used for genome assembly, 
genome segmentation, search for low complexity regions 
(Gusev et al. 1991) and repeat masking (Jurka et al. 2007) 
from the time of first available genome data. RepeatMasker 
software tool is widely used to identify and mask repeti-
tive genome elements, including low-complexity sequences 
(Jurka et al. 2007; Tarailo-Graovac and Chen 2009). Inter-
spersed sequence repeats could be treated as low complex-
ity regions of genome. Such repeats play important roles 
in the evolution, genome variation, and instability, cause 
the disease. RepeatMasker algorithm searches and classify 
the repetitive sequences using library of known repeats. 
RepBase (Jurka et al. 2007) and Dfam (Hubley et al. 2016) 
databases were most frequently used for masking genome 
repeats. Due to growth of new sequencing data, especially 
for non-model species, new msRepDB database became 
has become more popular for multi-species genome repeat 
analysis (Liao et al. 2022).

Searching for dispersed repeats in large eukaryotic 
genomes raises technical and methodical problems. Trans-
posable elements are class of dispersed genome repeats 
widely represented in mammalian genomes. After inser-
tion in a new position in the genome, Transposable ele-
ments accumulate mutations, which complicate their iden-
tification and annotation. New Highly Divergent Repeat 
Search Method suggested by Suvorova et al. (2021) make 
repeat search more effective than standard RepeatMasker. 
Recently, Korotkov et al. (2023) presented method for 
dispersed repeats search in bacterial genomes using an 
iterative procedure.

Low complexity heterochromatic regions of human 
genome centromeric such satellite arrays remained not 
completely sequenced till last year (Nurk et al. 2022). The 
T2T (Telomere-to-Telomere) Consortium finished com-
plete sequencing of reference human genome (Nurk et al. 
2022). New repeat elements in the genome were found 
previously unknown satellite arrays and mobile elements 
(Hoyt et al. 2022). Thus, interspersed repeats yet to be 
found despite detailed previous sequencing and genome 
assembly. The example of new repeat structure is Short 
Interrupted Repeat Cassette (SIRC) found in the A. thali-
ana genome (Gorbenko et al. 2023).

Complexity for next‑generation sequencing reads

The complexity estimates are important for NGS reads map-
ping (te Boekhorst et al. 2016; Abnizova et al. 2017) and 
sequencing error correction. It was shown that the entropy 
in the sequencing reads not allow accurate mapping onto a 
reference genome. Moreover, low complexity of the reads 
relates to technological problem of sequence detection in 

Illumina sequencing platform (te Boekhorst et al. 2016). 
Some programs for sequencing error correction may intro-
duce new errors in reads that overlapping low complexity 
regions. New error correction tool for Illumina sequencing 
data, BrownieCorrector, specially checks only the reads that 
overlap with highly repetitive (low complexity) regions in 
the genome (Heydari et al. 2019). The complexity estimates 
were used for large plant genome analysis—to analyze the 
repetitive sequence fraction in wheat (Sergeeva et al. 2014).

Complexity methods for proteins

Low complexity, repetitive protein sequences with a limited 
amino acid composition are common and important for the 
protein structure and function (Alba et al. 2002; Ntountoumi 
et al. 2019; Jarnot et al. 2020; Lee et al. 2022). Intrinsically 
disordered proteins have lower sequence complexity than 
ordered proteins, but have unique functions (Uversky 2016). 
There are set of tools for search of low complexity regions 
in proteins: SubSeqer (He and Parkinson 2008), 0j.py (Wise 
2001), ProBias (Kuznetsov 2008). The Complexity tool has 
also universal option for amino acid sequences estimates 
as well as for other alphabets (RNA, grouped amino acids, 
binary DNA alphabet) (Orlov and Potapov 2004).

Complexity methods for gene regulatory regions 
analysis

Regulatory regions of gene transcription promoters, tran-
scription factor binding sites, and its cluster also present 
hierarchical structure to be studied by the complexity 
methods (Abnizova et al. 2005). The problem is to find 
signal in gene promoter region and analyze their possible 
combinations (Vityaev et al. 2001, 2002; Voropaeva et al. 
2019). Clusters of different transcription factor binding sites 
revealed by ChIP-seq technology (Chen et al. 2008) provide 
data for combinatorial analysis of such regions (Dergilev 
et al. 2022). It was shown that promoter sequences have 
varying text complexity, and this feature is statistically sig-
nificant (Simões et al. 2021). But it is not enough for find-
ing of transcription factor binding sites or weak signal for 
nucleosome positioning (Orlov et al. 2006a, b; Goh et al. 
2010). However, the problem is to reveal the signals in 
DNA sequence itself, and deal with overrepresentation of 
the motifs (Abnizova et al. 2005). Note MEME software 
for analysis of repeated signals, such as transcription factor 
binding sites, in a sequence set (Tognon et al. 2023). So, 
the entropy estimates and text linguistic methods could not 
be used directly for combination of transcription factor ele-
ments. Recently, an extension of complexity measure called 
Abelian complexity was suggested for prediction of gene 
regulatory regions (Wu et al. 2019).
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Analysis of genes and gene regulatory regions raised 
the challenge of searching for regions with low complexity 
(Hancock 2002; Wan et al. 2003). It could be used to find 
borders between coding and non-coding gene regions. Intui-
tively, the complexity of a symbolic sequence reflects an 
ability to represent a sequence based on some structural fea-
tures of this sequence that need a repeated pattern—simple 
sequence repeats (Hancock 2002), recognizable direct and 
inverted repeats (Cox and Mirkin 1997). Following (Orlov 
and Potapov 2004) we note the methods of clusterization of 
cryptically simple sequences (Alba et al. 2002); evaluation 
of the alphabet-capacity l-gram (combinatorial complexity 
and linguistic complexity) (Kisliuk et al. 1999; Troyans-
kaya et al. 2002); complexity measures by Lempel and Ziv 
(Gusev et al. 1991;1999; Chen et al. 1999; Dai et al. 2013); 
stochastic complexity (Orlov et al. 2002), and grammatical 
complexity (Jimenez-Montano et al. 2002).

Alignment‑free sequences comparison and visual 
methods

Visual presentation of DNA sequence in 2D and 3D also 
gives background for repeat search and new mathemati-
cal methods development (Dai et al. 2006; Xie and Mo 
2011; Mo et al. 2018). Note chaos game presentation, 
new approaches such as algebraic biology to find pat-
terns in genome sequences (Petoukhov 2017). We may 
also refer to these methods as to the methods of extended 
gene regions analysis.

Alignment-free approaches for sequence compari-
son assume compression-based sequence analysis. The 
alignment-free methods may be divided into two groups 
(Zielezinski et al. 2017): methods based on comparison 
word frequencies (Provata et al. 2014) and methods that 
evaluate mutual informational between sequences. In 
general, alignment-free sequence comparisons used the 
concepts derived from IT, such as entropy and mutual 
information (Vinga 2014).

There are also methods that cannot be classified into these 
groups, including those based on the length of matching 
words, chaos game representation (Löchel and Heider 2021), 
iterated maps, as well as graphical representation of DNA 
sequences, which capture the essence of the base composi-
tion in a quantitative manner (de la Fuente et al. 2023).

Compression‑based complexity estimates

Discussing the compression-based sequence analysis note 
the general concept to estimate the complexity of symbolic 
sequence (text) suggested by Kolmogorov (1965). He proved 
that there exists an optimal algorithm or binary program p 
for a binary string s generation. The Kolmogorov complex-
ity, K is the length |p| of a shortest binary program p that 

computes s in a universal Turing machine and halts (Turing 
1936). Complexity K(s) =|p| is the size of compressed stor-
age p—the minimum number of bits required to computa-
tionally reproduce the string s. In general, the Kolmogorov 
complexity is not computable in reasonable time for arbi-
trary sequence. Various constructive realizations of non-
optimal coding have been developed (Lempel and Ziv 1976), 
including applications for DNA analysis (Gusev et al. 1999; 
Antão et al. 2018; Li and Vitányi 2019).

The concept of the complexity of a finite symbolic 
sequence as the compression size was introduced by Lem-
pel and Ziv (Lempel, and Ziv 1976). Initially, this approach 
was implemented for analyzing DNA by Gusev and coau-
thors (Gusev et al. 1991; 1999). Based on this approach, we 
presented the Internet-available tools LZcomposer (http:// 
wwwmgs. bionet. nsc. ru/ mgs/ progr ams/ lzcom poser/) (Orlov 
et al 2003) and complexity (Orlov and Potapov 2004). Dai 
et al. (2013) used Lempel–Ziv decomposition (LZ-words) 
for sequence comparison without alignment. Note that 
Lempel–Ziv complexity algorithm could be applied to any 
sequence of signals (physiological time series) to study 
repeats and irregularities (Zhang et al. 2016). Thus, the same 
algorithm and software could be applied for non-DNA arbi-
trary alphabet. A relative Lempel–Ziv complexity measure 
was used for alignment-free sequence comparison (Liu et al. 
2012). Pirogov et al. (2019) used Lempel–Ziv complexity, 
and the match complexity measure to analyze the relation-
ship between the complexity and gene function. Enrichment 
of gene content and development genes in high-complexity 
genome regions was shown. Hosseini et al. (2020) devel-
oped Smash ++ , an alignment-free tool to find and visualize 
small- and large-scale genomic rearrangements between two 
DNA sequences. This tool also exploiting a data compres-
sion technique to find the rearrangements.

Methods and algorithms for DNA sequence 
complexity

General classification of complexity approaches

We overview approaches for sequence complexity measure-
ment in the general scheme (Fig. 1). DNA sequence com-
plexity as well as protein sequence complexity methods 
could be broadly classified into large groups—entropy-based 
and compression-based methods.

Entropy based methods of complexity estimates include 
word frequency (linguistic) approaches, Shannon entropy 
and its variants. Compression based methods include modi-
fications of Lempel–Ziv compression scheme, could be 
applied for repeat search in genomes (direct, inverted, gen-
erated) and alignment-free genome comparisons. Spatial 
(3D) visualization of linear sequence, fractal presentation, 

http://wwwmgs.bionet.nsc.ru/mgs/programs/lzcomposer/
http://wwwmgs.bionet.nsc.ru/mgs/programs/lzcomposer/
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sequence polarization, and other techniques could be used 
for genome analysis. Basically, protein sequence complexity 
estimates use entropy approaches, but may refer to all the 
methods for DNA complexity.

Algorithms for DNA sequence complexity estimates

Several estimates of complexity were incorporated to the 
complexity tool to compare different approaches (Orlov and 
Potapov 2004). It includes frequency of nucleotide content 
(Wootton and Federhen 1996), entropy estimates, and lin-
guistic complexity (Gabrielian and Bolshoy 1999; Troyans-
kaya et al. 2002). By applying l-gram trees for the sequence 
representation in the complexity software the operation time 
for computation was optimized. We further refer to (Orlov 
and Potapov 2004) for the examples and details of sequence 
complexity algorithms.

Since main complexity algorithms were first published in 
2000s, the software implementations differ in sequence size 
to be processed, optimization, and the applications areas. 
Though novel additions such as long-range correlations 
(Abnizova et al. 2007) and polarization coding (Zimnyakov 
et al. 2023) differ from information-based and compression-
based techniques.

The Hurst exponent estimate for long-range correla-
tion was added to the software to measure dependencies 
in DNA sequences (Orlov et al. 2006a, b). It was shown 
that the complexity of introns and regulatory regions is 
lower than that of coding regions, while Hurst exponent 
is larger due to long-range correlation between transcrip-
tion factor binding sites (Abnizova et al. 2007). Promoter 
sequences have lower complexity than protein coding 
regions. Long-range correlation analysis tool was imple-
mented in CorGen software (as http:// corgen. molgen. mpg. 
de) (Messer and Arndt 2006). The examples of sequence 
complexity for transcription factor binding sites were con-
sidered (Orlov et al. 2006a, b). It was noted that the DNA 
sequence of transcript factor binding sites have in average 
lower complexity than protein coding regions.

Naumenko et al. (2018) used complexity estimates to 
reveal artefacts in short sequencing read mapping on a 
chromosome (aligner artefacts) (te Boekhorst et al. 2016; 
Naumenko et al. 2018; Subkhankulova et al. 2021).

Nucleotide sequences containing human mutation sites 
are associated with varying sequence complexity related to 
mutagenesis mechanism (Chuzhanova et al. 2003). Com-
plexity estimates for the analysis of mutation sites (SNP 
containing regions) confirmed presence of low complexity 
regions at the flanking sites of mutation/polymorphism posi-
tion (Safronova et al. 2015; 2016).

Nucleotide sequences forming non-B DNA structures (not 
double DNA helix) have repeated patterns as palindromes 
that can form hairpins, cruciform or triplexes. To analyze 
the sequences potentially forming non-B DNA structures the 
NeSSie tool was presented (Berselli et al. 2018).

Gene expression regulation studies (Orlov and Baranova 
2020; Voropaeva et al. 2019) give broad field for applica-
tion of application of information and entropy measures. 
Nucleotide sequences containing binding sites of many pro-
tein transcription factors have symmetrical structure due to 
contacts with protein dimers. Thus, due to presence of the 
repeated elements the transcription factor bindings sites have 
lower sequence complexity. Transcription factor binding 
sites have been catalogued in the databases such as TRRD, 
TRANSFAC, and JASPAR (Heinemeyer et al. 1998; Sand-
elin et al. 2004) filled by data high-throughput sequencing 
technologies (ChIP-seq, ATAC-seq and related approaches) 
(Chen et al. 2008). The clusters of transcription factor (TF) 
binding sites in genomes were constructed based on ChIP-
seq data (Dergilev et al. 2016, 2022). The effect of lower 
complexity estimates was shown for longer gene regulatory 
regions (with multiple TF binding) in plants (Dergilev et al. 
2022). Recently, cooperative effect of transcription factor 
binding in sequential and spatial proximity was shown using 
chromatin conformation capture data (Vadnala et al. 2023), 
thus extending the theory of chromosome and high order 
regulatory codes.

Note recent work original by Zimnyakov et al. (2023) on 
revealing and visualization of sequence dependencies using 

Fig. 1  Classification of the 
methods for sequence complex-
ity analysis

DNA sequence complexity

Entropy based methods

Compression based methods

Protein  sequence complexity Alignment free

2D and 3D sequence 
visualization, fractals, chaos

game presentation

Repeat search

Lempel-Ziv schemes

Word frequencies

Markov models

http://corgen.molgen.mpg.de
http://corgen.molgen.mpg.de
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so called polarization coding. It refers to 2D sequence visu-
alization for pattern search (Dai et al. 2006). The polariza-
tion coding presents nucleotide sequence in a two-dimen-
sional phase screen, where each element corresponds to a 
specific nucleotide. The polarization-based technique was 
shown on the model data from a comparative analysis of 
the spike protein gene sequences of the SARS-CoV-2 virus 
complementing other complexity-based works on this topic 
(Akbari Rokn Abadi et al. 2023).

Results

Comparison of the methods and analysis 
of sequence sets

The complexity estimates for different classes of genome 
sequences—exons, introns, regulatory nucleotide 
sequences—confirmed general theory about overlapping 
genetic codes suggested by E.N.Trifonov (Trifonov 1989, 
1990). The more genetics messages have the sequence, 
the higher its complexity is. It was demonstrated that the 
complexity of exons is, on average, higher, whereas that of 
introns is lower (Orlov and Potapov 2004). The alteration 
in the local complexity for splicing sites was shown using 
sequences the SpliceDB database (Burset et al. 2001). The 
splicing sites in eukaryotic genes have intermediate place 
between protein coding regions (exons) and non-coding 
regions (introns). The average complexity of protein coding 
genes is higher than for non-coding, as it might be expected 
(short sequence repeats, simple repeats and polytracks (like 
AAAA…, TTTTT…) are common for introns making lower 
complexity). So, the average complexity of splicing sites 
sequence has corresponding intermediate place between 
complexity exons and introns (Orlov and Potapov 2004).

The complexity estimates were used for large eukary-
otic genome analysis—in plants. To analyze the repetitive 
sequence fraction in plant genomes such as wheat Sergeeva 
et al. (2014) used RepeatMasker program (http:// www. 
repea tmask er. org/) and calculated GC content and total 
content of satellites, simple repeats, and low complexity 
regions (Orlov et al. 2006a, b).

To search for satellite repeat structures such as simple 
sequence repeats (GAA)n(GGA)m and telomeric (TTT AGG 
G)n satellites and inverted repeats in chromosome 5B 454 
sequences, the authors used a custom script based on the 
Lempel–Ziv approach, which identified the perfect satellite 
repeat tracts and inverted, as well as direct, repeat structures 
in DNA sequences (Sergeeva et al. 2014). This program 
works with different types of repeats and does not require 
sequence alignment. The algorithm implements structural 
and comparative analysis of the significant amount of col-
lections of DNA fragments of moderate length, developed 
at the Sobolev Institute of Mathematics (Gusev et al. 1999; 
Orlov et al. 2003). Analysis of genome inversions in plant 
as mutual genome comparison method was presented for 
rice genome (Suvorova et al. 2021; Zhou et al. 2023). The 
lack of consensus concerning the biological meaning of 
entropy and complexity of genomes and the different ways 
to assess these data hamper conclusions concerning what 
are the causes of genomic entropy variation among species 
(Simões et al. 2021).

Online tools for sequence complexity analysis

There are novel online tools for the sequence complexity 
analysis and information processing that were not widely 
published, being presented at the conferences, such as 
ICGenomics (Orlov et al. 2020). Table 1 shows online tools 
for text complexity estimates for DNA and proteins.

Table 1  Existing tools for complexity estimates

Sequence type Tool name URL Reference

Protein RES repeatability scanner http:// cbdm- 01. zdv. uni- mainz. de/ ~munoz/ res/ (Kamel et al. 2019)
Protein 0j.py https:// doi. org/ 10. 1093/ bioin forma tics/ 17. suppl_1. S288 (Wise 2001)
Proteins and DNA fLPS 2.0 (find low prob-

ability subsequences)
https:// biolo gy. mcgill. ca/ facul ty/ harri son/ flps. html (Harrison 2017)

Proteins and DNA Complexity http:// wwwmgs. bionet. nsc. ru/ mgs/ progr ams/ low_ compl exity/ (Orlov and Potapov 2004)
Proteins and DNA CLC (Local complexity) https:// resou rces. qiage nbioi nform atics. com/ manua ls/ clcge 

nomic swork bench/ 750/ index. php
(Wootton and Federhen 1993)

Protein ProBias http:// lcg. rit. albany. edu/ ProBi as/ (Kuznetsov 2008)
Protein Subseqer https:// www. comps ysbio. org/ subse qer (He and Parkinson 2008)
DNA Macle http:// guani ne. evolb io. mpg. de/ compl exity/ (Pirogov et al. 2019)
Protein PlaToLoCo http:// plato loco. aei. polsl. pl (Jarnot et al. 2020)
DNA CorGen http:// corgen. molgen. mpg. de/ (Messer and Arndt 2006)

http://www.repeatmasker.org/
http://www.repeatmasker.org/
http://cbdm-01.zdv.uni-mainz.de/~munoz/res/
https://doi.org/10.1093/bioinformatics/17.suppl_1.S288
https://biology.mcgill.ca/faculty/harrison/flps.html
http://wwwmgs.bionet.nsc.ru/mgs/programs/low_complexity/
https://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/750/index.php
https://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/750/index.php
http://lcg.rit.albany.edu/ProBias/
https://www.compsysbio.org/subseqer
http://guanine.evolbio.mpg.de/complexity/
http://platoloco.aei.polsl.pl
http://corgen.molgen.mpg.de/
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Some online tools developed early are no longer acces-
sible or have no web-version to be included to Table 1. In 
CLC Genomics Workbench it is possible to calculate local 
complexity for both DNA and protein sequences (CLC bio 
was a bioinformatics software company that developed the 
software suite. It was subsequently purchased by QIAGEN 
(https:// digit alins ights. qiagen. com/ produ cts- overv iew/ disco 
very- insig hts- portf olio/ analy sis- and- visua lizat ion/ qiagen- 
clc- genom ics- workb ench/). The local complexity realizes 
measure of the diversity in the amino acid composition 
(Wootton and Federhen 1993).

The AC tool was created for compression of amino acid 
sequences (Hosseini et al. 2019). New version of his protein 
sequence compression tool, AC2, was proved to be more 
effective for specialized compression purposes (Silva et al. 
2021). The methods to detect such regions in protein include 
classical entropy, SEG (Wootton and Federhen 1993) meas-
ure, and other tools such as LCR-eXXXplorer (Kirmitzoglou 
and Promponas 2015), see also Table 1.

Low complexity analysis tools for protein sequences

Low complexity regions of proteins are abundant in pro-
teomes (Lee et al. 2022). Low complexity regions in the 
proteins have important functional roles (Alba et al. 2002). 
They are highly conserved (Ntountoumi et al. 2019). Con-
trary to a widespread belief based on older and not complete 
data, low complexity regions have a significant, persistent, 
and highly conserved presence in many prokaryotes. Their 
specific amino acid content is linked to proteins with cer-
tain molecular functions, such as the binding of RNA, ions 
and polysaccharides (Jarnot et al. 2020). Jarnot et al. (2022) 
show that existing methods for protein similarity search 
need improvements to count low complexity regions. Li and 
Kahveci (2006) defined new complexity measures to com-
pute the complexity of a sequence based on a given scoring 
matrix, such as BLOSUM 62.

Database compression and large scale analysis

Compression of genomes data for all the studied species 
is important by technical reasons. Growth of NGS (Next 
Generation Sequencing) data challenge analysis of mul-
tiple sequences and effective database storage (Agenis-
Nevers et al. 2021). Due to multiple sequence repeats 
this task could be solved using operational compression 
algorithms (variants of Lempel–Ziv compression). Map-
ping, quality control, and redundancy removal are related 
to sequence complexity. Comparison of existing tools 
Mardre (Expósito et al. 2017), Bioseqzip (Urgese et al. 
2020), and others to process such sequencing database 
by algorithmic complexity was presented by (de Oliveira 
Veras 2021). Overall, the operational complexity could be 

used for duplicate removal and effective NGS sequencing 
database processing. Future application here are for cloud 
computing. Although the complexity of algorithms is not 
a new subject, there is a lack of materials within the area. 
Note first works by Gusev et al. (1999) for optimization of 
Lempel-Zive algorithm for DNA compression in terms of 
operation time. Performance of order O(n log n) and even 
O(log log n) was shown (de Oliveira Veras 2021).

Mutual information measures (relative information could 
be used for complete genomes comparison, alignment free 
method (Veluchamyet al. 2021). At the same time, it could 
be used for compression of genome databases. The iDoC-
omp tool may compress an individual genome using a refer-
ence data (Ochoa et al. 2015).

Discussion

Previously, the complexity estimates were applied for analy-
sis of decompositions of several complete bacterial genomes 
and fragments of eukaryotic chromosomes (Orlov et al. 
2003). The complexity of sequences containing introns and 
regulatory regions is less than that of coding regions (Orlov 
and Potapov 2004). This observation is also valid in eukary-
otes by estimating complexity of gene regions using several 
other complexity measures (Orlov et al. 2006a, b). Modern 
works on complexity use large scale calculations, present 
online tools for convenient and reproducible complexity 
analysis ((Jarnot et al. 2020; Pirogov et al. 2019). Recent 
studies described low complexity regions and compressed 
hundreds of complete genome sequences (Agenis-Nevers 
et al. 2021; Munagala et al. 2022).

The problem of long-range correlations in genome could 
be also studied by sequence complexity methods. Experi-
mental data on 3D genomics show presence of topologically 
associated domains (TAD) in eukaryotes (Li et al. 2012; 
Kulakova et al. 2017). The DNA sequences from such chro-
mosome regions are close in 3D cell space giving new point 
of view for long range genome correlations and topologi-
cal code (Vadnala et al. 2023). Such topologically proxi-
mal sequences should be analyzed by complexity methods 
(Kulakova et al. 2015). Such TAD in chromosomes present 
higher level of sequence constraints (chromosome come) 
after triple coding, gene regulation signals, and nucleosome 
positioning. Thus, the theory of multiple genetic codes (Tri-
fonov 1990) could be extended to new signals and repetitive 
sequence elements.

Repetitive sequences in annotated non-coding RNAs 
(ncRNAs) are found to constitute functional components 
that perform specific biological functions (Zeng et al. 2022). 
Complexity measures are applied to novel data such as ncR-
NAs (miRNA, siRNA, tsRNA, circRNA, lncRNA) in plants 
(Chao et al. 2022).

https://digitalinsights.qiagen.com/products-overview/discovery-insights-portfolio/analysis-and-visualization/qiagen-clc-genomics-workbench/
https://digitalinsights.qiagen.com/products-overview/discovery-insights-portfolio/analysis-and-visualization/qiagen-clc-genomics-workbench/
https://digitalinsights.qiagen.com/products-overview/discovery-insights-portfolio/analysis-and-visualization/qiagen-clc-genomics-workbench/
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Alignment-free technique for sequence analysis is wide 
area for complexity algorithms. Information theory and data 
compression algorithms provide mathematical and com-
putational tools to capture essential patterns in biological 
sequences (Bonidia et al. 2022). Recently, Munagala et al. 
(2022) investigated the use of compression-complexity 
based distance measures for analyzing genomic sequences. 
The proposed distance measure is used to successfully repro-
duce the phylogenetic trees for a mammalian dataset consist-
ing of eight species clusters, a set of coronaviruses. k-mer 
and physic-chemical properties of nucleotides were recently 
used for SARS-CoV-2 genomes classification (Akbari Rokn 
Abadi et al. 2023).

Inversion index (number of genome inversion) was used 
for rice genome structure analysis (Oryza sativa) (Zhou et al. 
2023). The authors used 73 genomes of rice (O. sativa) and 
the genomes of wild relative species to build a pan-genome 
inversion index for the reference genome sequence. Detailed 
analyses of these inversions show evidence of their effects 
on gene expression, recombination rate, and linkage disequi-
librium. Complex plant genomes became object of the hid-
den periodicity search (Suvorova et al. 2021). Recombina-
tions and inversions in plant genomes could be revealed by 
sequence compression technique (Chao et al. 2023).

Scaling of computations in comparative genomics demand 
new algorithm development. Bello et al. (2023) used text 
compression to accelerate algorithms for Hidden Markov 
Models. Their work provides an efficient approach to big 
data computations with HMM using compression measures.

Overall, information theory is widely used for model 
development and data analysis for a variety of biologically 
derived data types ranging from molecular, sequence and 
phenotypic data in genomics and genetics to gene expres-
sion, protein and spectral data in transcriptomics, proteomics 
and metabolomics, respectively (Chanda et al. 2020; Bar-
tal and Jagodnik 2022). Sequence compression of whole 
genomes became routine procedure to be standardized in 
benchmark test—Sequence Compression Benchmark data-
base (Kryukov et al. 2020). Novel machine learning applica-
tions for classification of complete genome sequences also 
include sequence compression and complexity algorithms 
(Silva et al. 2021; Akbari Rokn Abadi et al. 2023). We have 
reviewed here text complexity applications starting from 
basic definitions and algorithms to the online applications 
and approaches for large-scale NGS analysis and machine 
learning techniques. The complexity analysis, sequence 
compression, and information-based methods gave raise to 
new findings and challenges in molecular biophysics such as 
coronavirus genome studies (Munagala et al. 2022).

We conclude by mentioning new application areas of 
sequence complexity estimates in Big Data and Machine 
Learning methods. Statistical estimates of sequence 
complexity and periodicities patterns could be using in 

Machine Leaning application as input parameters that 
might be even not interpretable (Silva et al. 2021; Mun-
agala et al. 2022; Balcı et al. 2023). There are new AI 
solutions in bioinformatics that use additional sequence 
features and statistics as input parameters (Expósito et al. 
2017; Penzar et al. 2023).
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