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Abstract
Purpose  To provide agreed-upon guidelines on the management of a hyper-responsive patient undergoing ovarian stimula-
tion (OS)
Methods  A literature search was performed regarding the management of hyper-response to OS for assisted reproductive 
technology. A scientific committee consisting of 4 experts discussed, amended, and selected the final statements. A priori, it 
was decided that consensus would be reached when ≥66% of the participants agreed, and ≤3 rounds would be used to obtain 
this consensus. A total of 28/31 experts responded (selected for global coverage), anonymous to each other.
Results  A total of 26/28 statements reached consensus. The most relevant are summarized here. The target number of oocytes 
to be collected in a stimulation cycle for IVF in an anticipated hyper-responder is 15–19 (89.3% consensus). For a potential 
hyper-responder, it is preferable to achieve a hyper-response and freeze all than aim for a fresh transfer (71.4% consensus). 
GnRH agonists should be avoided for pituitary suppression in anticipated hyper-responders performing IVF (96.4% con-
sensus). The preferred starting dose in the first IVF stimulation cycle of an anticipated hyper-responder of average weight 
is 150 IU/day (82.1% consensus). ICoasting in order to decrease the risk of OHSS should not be used (89.7% consensus). 
Metformin should be added before/during ovarian stimulation to anticipated hyper-responders only if the patient has PCOS 
and is insulin resistant (82.1% consensus). In the case of a hyper-response, a dopaminergic agent should be used only if hCG 
will be used as a trigger (including dual/double trigger) with or without a fresh transfer (67.9% consensus). After using a 
GnRH agonist trigger due to a perceived risk of OHSS, luteal phase rescue with hCG and an attempt of a fresh transfer is 
discouraged regardless of the number of oocytes collected (72.4% consensus). The choice of the FET protocol is not influ-
enced by the fact that the patient is a hyper-responder (82.8% consensus). In the cases of freeze all due to OHSS risk, a FET 
cycle can be performed in the immediate first menstrual cycle (92.9% consensus).
Conclusion  These guidelines for the management of hyper-response can be useful for tailoring patient care and for harmo-
nizing future research.
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Introduction

A hyper-response to ovarian stimulation (OS) with gon-
adotropins in assisted reproductive technology (ART) 
is often associated with poorer outcomes related both to 
the increased risk of ovarian hyperstimulation syndrome 
(OHSS) and a lower live birth rate (LBR) if a fresh transfer 
is attempted [1–5]. While there are many recommendations 

and guidelines for the prevention and management of OHSS, 
many of these guidelines are based on studies done before 
to the common use of a GnRH agonist (GnRHa) trigger for 
final oocyte maturation. The GnRHa trigger and freeze-all 
approach practically eliminate the risk of severe OHSS [6, 
7], perhaps making some of the recommendations in these 
guidelines obsolete. For example, the ASRM guidelines 
state that there is fair evidence that aspirin treatment during 
OS can reduce the risk of OHSS [8]; however, this aspect 
of aspirin treatment may be less relevant with a GnRH 
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antagonist cycle and a GnRHa trigger. Moreover, if the risk 
of OHSS is lower, the management of a hyper-responder 
patient can focus on reproductive outcomes such as cumula-
tive LBR rather than on OHSS. Unfortunately, to the best 
of our knowledge, no guidelines on the management of a 
hyper-responder, apart from OHSS prevention, exist.

We recently conducted a Delphi consensus (the HERA—
Hyper-response Risk Assessment) to better define the 
hyper-responder patient [9] (Table 1). Seeing that there is a 
growing need for updated recommendations regarding the 
management of a hyper responder, a Delphi consensus was 
conducted with the aim of developing agreed-upon recom-
mendations on the management of hyper-response in patients 
undergoing IVF. The Delphi technique was selected because 
it is a systematic way of determining expert consensus and 
helps answer questions not amenable to experimental and 
epidemiological methods.

Materials and methods

The consensus coordinators (consisting of Michael H. 
Dahan and Ido Feferkorn) performed a literature search 
on commonly used approaches for the management of 

hyper-responders. Based on these approaches, an initial list 
of defining questions was developed. This list was dissemi-
nated to a scientific board consisting of Samuel Dos San-
tos-Ribeiro, Filippo Maria Ubaldi, and Juan Garcia Velasco 
under the chairmanship of Dr. Dahan. The scientific board 
was selected for its expertise as well as significant experi-
ence in writing national and international guidelines and 
publications in the field. The scientific board discussed, 
amended, and selected the final statements in the question-
naire for the first round of the Delphi consensus (figure 1s). 
The board also discussed and agreed upon the method of 
disseminating the questionnaire, processing the results, and 
establishing a threshold for accepting a statement as a con-
sensus. Each member of the scientific board was able to sug-
gest experts who would participate in the Delphi consensus 
expert panel. The facilitator of the Delphi consensus was 
Dr. Ido Feferkorn.

Consensus participants

A group of 31 professionals in the field of reproductive 
medicine (with representation selected for global cov-
erage) were approached by email and offered to partici-
pate as panelists. Each was provided with information 

Table 1   The consensus statements from the HERA study. No consensus was reached regarding the number of growing follicles ≥ 10 mm that 
would define a hyper-response. OS, ovarian stimulation

Definitions of a hyper-response
   Hyper-response is characterized by the collection of ≥ 15 oocytes
   A history of a hyper-response or OHSS in a prior cycle is not required to define a hyper-responder
   OHSS is not relevant for the definition of hyper-response if the number of collected oocytes is above a threshold (≥15).

Recognition of pending hyper-response during ovarian stimulation
   The most important factor in defining a hyper-response during the ovarian stimulation is the number of follicles ≥ 10 mm in mean diameter

Risk factors for a hyper-response—risk factors prior to OS
   I consider the serum Anti Mullerian Hormone (AMH) levels when assessing the risk for a possible hyper-response
   I consider the antral follicular count (AFC) when assessing the risk for a possible hyper-response
   I consider the patient’s age when assessing the risk for a possible hyper-response
   I do not consider the ovarian volume when assessing the risk for a possible hyper-response
   In a patient without a previous ovarian stimulation, the most important risk factor for a hyper-response is the antral follicular count (AFC).
   In a patient without a previous ovarian stimulation, when AMH and AFC are discordant, with one suggesting a hyper-response and the other 

not, AFC is the more reliable marker
   Hyper-response can occur at any age
   The lowest serum AMH value that would put a woman at risk for a hyper-response is ≥2 ng/ml (14.3 pMol/L).
   The lowest AFC that would put a woman at risk for a hyper-response is ≥18
   A patient with a history of hyper-response in a previous stimulation cycle would be considered at high risk for another hyper-response if 

there was no significant change in the serum AMH levels and the AFC (±3 follicles).
   Women with polycystic ovarian syndrome (PCOS) as per Rotterdam criteria are at a higher risk of hyper-response than women without 

PCOS with equivalent follicle counts and gonadotropin doses used to stimulate
Risk factors for a hyper-response—risk factors for hyper-response during ovarian stimulation
   The lowest number of growing follicles ≥ 14 mm that would characterize a hyper-response to ovarian stimulation is ≥15 follicles
   The lowest peak estradiol level that would indicate a hyper-response to ovarian stimulation is ≥3000 pg/ml (11,013 pMol/l).



2683Journal of Assisted Reproduction and Genetics (2023) 40:2681–2695	

1 3

regarding the study’s purpose and methods. Twenty-nine 
experts (including the board members) agreed to partici-
pate as panelists, and each remained anonymous to the 
others throughout the process. This anonymity was nec-
essary to prevent the dominance of a specific member 
and enable a change in opinion in the following Delphi 
round. The geographic representation of the panelists is 
presented in Table 2. Overall, the panelists have published 
a total of 6522 peer-reviewed articles per Scopus, with a 

median publication of 193.5 documents per author (IQR 
114.75–261 documents, Table 1s).

The consensus process

The consensus process is depicted in Fig. 1. After selecting 
the final statements for voting, the scientific board deter-
mined that a consensus would be reached when at least 66% 
of experts agreed and that up to three rounds would be used 
to obtain this consensus.

In the first round, an online survey (created using 
“Google Forms”) consisting of 28 questions and state-
ments was circulated to the Delphi participants. The sur-
vey included seven statements on which the experts could 
agree or disagree and 21 multiple-choice questions, seven 
of which the experts could choose the option “other” and 
add an opinion in free text.

In the second and third rounds, panelists were given the 
results from the previous Delphi round. The survey started 
with questions for which a consensus was not reached. 
These questions were revised according to the feedback 
and results from the previous round. This part of the survey 
was followed by a second part where all panelists had the 
option to discuss a statement that reached a consensus. 
If two or more panelists opted to discuss a statement, the 
statement would be reintroduced in the following stage of 
the Delphi process. If no strong objection was raised to an 
achieved consensus, the agreed-upon statement would not 
be reintroduced in the subsequent round.

The definitions of a hyper-response and an anticipated 
hyper-response used in the consensus process were those 
from the previous HERA study (Table 1) acknowledging 

Table 2   Geographic representation of the Delphi participant

Continent Country of origin Number of 
panelists

Europe Italy 3
Europe Spain 3
Europe Belgium 1
Europe Denmark 1
Europe Greece 1
Europe Portugal 1
Europe UK 1
Europe Switzerland 1
Europe France 1
Asia Turkey 2
Asia Israel 2
Asia United Arab Emirates 2
North America USA 3
North America Canada 2
Oceania Australia 2
South America Brazil 2

Fig. 1   The Delphi process
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that there are limitations to these definitions as well (for 
example the lack of consensus on the number of growing 
follicles ≥ defining a hyper-response and that the number 
of follicles defining a hyper-response change as per stage 
of stimulation—from AFC, to growing follicles to the 
final oocytes collected).

Results

Overall, 97% (28/29) of experts completed all three 
rounds of the Delphi. A total of 26/28 statements 
reached a consensus. The consensus statements are pre-
sented in Table 3. No consensus was reached regarding 

Table 3   The consensus statements. IVF, in vitro fertilization; OHSS, 
ovarian hyperstimulation syndrome; PCOS, polycystic ovarian syn-
drome; GnRH, gonadotropin-releasing hormone; hCG, human chori-
onic gonadotropin; FET, frozen embryo transfer. No consensus was 

reached regarding the preferred starting dose in the first IVF stimula-
tion cycle of an anticipated hyper-responder, weighing above 80 kg. 
No consensus was reached regarding hospitalizing vs. management as 
an outpatient in the cases of a patient with significant ascites

Stimulation goals in a hyper-responder
 1. The target number of oocytes to be collected in a stimulation cycle for IVF in an anticipated hyper-responder is 15–19.
 2. For a potential hyper-responder, I would rather achieve a hyper-response and freeze all than aim for a fresh transfer
Treatment protocol in an anticipated hyper-responder
 3. GnRH agonists should be avoided for pituitary suppression in anticipated hyper-responders performing IVF.
 4. I do not use any specific algorithm to estimate the starting dose for an IVF cycle
 5. The preferred starting dose in the first IVF stimulation cycle of an anticipated hyper-responder of average weight is 150 IU/day.
 6. Body weight should be considered to determine the daily gonadotropin dosage for an anticipated hyper-responder undergoing IVF.
 7. Increasing the starting gonadotropin dose in the first IVF cycle of an anticipated hyper-responder is recommended if her weight is above 80 

kg
Cycle modifications in response to a hyper-response
 8. I decrease gonadotropin dosage in the middle of an IVF cycle if the patient seems to hyper-respond based on serum estradiol levels and/or 

number of growing follicles > 10mm.
 9. Under the risk of hyper-response during stimulation, I would not trigger one to two days before the patient reaches my usual trigger criteria.
 10. I do not use coasting to decrease the risk of OHSS.
Use of adjuvants during the stimulation of a hyper-responder
 11. I add metformin before/during ovarian stimulation to anticipated hyper-responders only if the woman has PCOS and is insulin resistant.
 12. I do not add any adjuvants from the first day of stimulation to a potential hyper-responder.
 13. During ovarian stimulation, I do not add any adjuvant if the patient seems to hyper-respond based on serum estradiol levels and/or number 

of growing follicles > 10 mm.
Choice of trigger in a hyper-responder
 14. On the day of ovulation trigger, if the number of follicles > 10 mm and the estradiol levels are discordant, I would decide to use a GnRH 

agonist trigger alone based on the number of follicles > 10 mm.
 15. There is no minimal estradiol level on the day of trigger that would require agonist trigger alone
 16. On the day of ovulation trigger, the minimal number of follicles > 10 mm that would require agonist trigger alone (in an antagonist cycle) 

is 18
OHSS prevention and the use of dopaminergic agent
 17. In the case of a hyper-response, a dopaminergic agent should be used only if hCG will be used as a trigger (including dual/double trigger) 

with or without a fresh transfer.
 18. For maximal effectiveness, cabergoline 0.5 mg for OHSS prevention should be started on the day of trigger.
 19. For maximal effectiveness in OHSS prevention, cabergoline 0.5 mg should be continued for 7 days.
 20. In a woman with a hyper-response, triggered with hCG, the only interventions I would add to prevent OHSS are freeze all and the use of 

cabergoline.
 21. In a woman with a hyper-response, triggered with GnRH agonist the only interventions I would add to prevent OHSS is freeze all.
 22. If a hyper-response occurred after a trigger that included hCG I would always freeze all
 23. After using a GnRH agonist trigger due to a perceived risk of OHSS, I would not consider a luteal phase rescue with hCG and attempt a 

fresh transfer regardless of the number of oocytes collected.
FET protocol in a hyper-responder
 24. My choice of FET protocol is not influenced by the fact that the patient is a hyper-responder.
 25. In cases of freeze all due to an OHSS risk, I perform an FET cycle in the immediate first menstrual cycle.
OHSS management
 26. I would recommend admission following a hyper-response after the diagnosis of severe OHSS.
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the preferred starting dose in the first IVF stimulation 
cycle of an anticipated hyper-responder weighing above 
80 kg. No consensus was reached regarding hospitaliz-
ing vs. management as an outpatient in cases of a patient 
with significant ascites.

Discussion

Choice of protocol and gonadotropin dose

Studies assessing the association between the number of 
oocytes collected and live birth differ with respect to the 
outcome measured. Studies focusing on live birth after fresh 
transfer found that the LBR increases with the number of 
oocytes collected; however, a plateau was reached when >15 
oocytes were collected [1, 10]; and a decline in LBR after 
fresh transfer was noted when more than 20 oocytes were 
collected [1]. When the outcome measured was cumulative 
LBR after the transfer of fresh and frozen embryos, the posi-
tive association between the number of oocytes collected 
and LBR continued [11, 12]; however, some studies found 
no plateau, and the cumulative live birth rates (CLBR) con-
tinued to rise with the increase in the number of oocytes col-
lected [11]. While these results may be biased by the overall 
better response expected from hyper-responders, it seems 
that for this group, at least in terms of CLBR, more may be 
better. Of course, one must balance the benefit of recruiting 
more oocytes with the risks associated with hyperstimula-
tion, of which OHSS is the most apparent. However, this 
risk is very low with GnRHa trigger and freeze-all cycles. 
It should be noted that while OHSS is probably the most 
significant risk of hyperstimulation, it is not the only adverse 
effect. Patient discomfort, risks associated with multiple 
ovarian punctures related to a collection of a large follicle 
cohort, and risk of thromboembolism associated with high 
estradiol levels [12] are all factors that need to be consid-
ered. Most studies focused on OHSS as the adverse event, 
and data are lacking on these aspects balancing efficacy and 
safety in hyper-responders. At the time being, the Delphi 
panel aims for a stimulation yielding a mild hyper-response 
(statement 1) while acknowledging that it is likely better 
to err to the side of a hyper-response than a hypo-response 
(statement 2). This is based on the freezing techniques cur-
rently available and the good prognosis for LBR in FET 
cycles in hyper-responders [3, 4, 13, 14]. Whether these 
results of improved LBR in frozen cycles are driven by 
patients with PCOS or could be generalized to the hyper-
responder group has not been studied. The consensus of 
15–19 collected oocytes as the target to aim for stems from 
an attempt to balance all of the above factors as well as other 
factors such as the cost of a stimulation cycle, the potential 
for a second child from the same stimulation cycle, the side 

effects from hyper-stimulation (not exclusively those related 
to OHSS), the ethics and costs related to storage of excess 
oocytes, and the pregnancy complications and neonatal out-
comes related to fresh vs. frozen embryo transfer.

Since hyper-responders are at an increased risk of devel-
oping OHSS, the choice of a protocol that minimizes this 
risk is preferable. The GnRH antagonist protocol is associ-
ated with a reduced risk for OHSS [15] and enables the use 
of a GnRHa trigger, further decreasing the risk to almost 
negligible [6, 7]. Indeed, the Delphi panel (statement 3), 
as do both the ASRM and the ESHRE guidelines, recom-
mends the GnRH antagonist protocol for predicted hyper-
responders [8, 16].

The optimal gonadotropin dose for ovarian stimulation is 
a result of the number of oocytes one aims to collect while 
trying to balance LBR and patient safety. Several studies 
have assessed the outcomes of a reduced gonadotropin 
dose (usually defined as lower than 150 units/day) in hyper-
responders. The OPTIMIST study group conducted a rand-
omized control trial in predicted hyper-responders (defined 
as women with an AFC > 15) and found that CLBR and 
rates of severe OHSS were comparable between a gon-
adotropin dose of 150 IU/day and a 100 IU/day dose[17]. 
“Any grade” of OHSS was higher with the 150 IU/day 
dose whereas cancellation rates (for poorer response than 
expected) were higher in the 100 IU/day dose. Of note, only 
26% of the study population were treated with the GnRH 
antagonist protocol, and all women were triggered with hCG 
making conclusions regarding OHSS less relevant to the cur-
rent practice of GnRH antagonist protocols as the first-line 
treatment for predicted hyper-responders. Regarding cost 
analysis, no significant difference was noted between the 
groups. It is also worth noting that women with PCOS were 
excluded from the study and that the mean BMI in the study 
group was 23.8 making generalizability of the findings dif-
ficult. In a sub-analysis on individualized dosing vs. standard 
dosing in IVF in anticipated hyper-responders, a Cochrane 
review came to similar conclusions [18]. Overall, the cancel-
lation rate was higher with the individualized (lower dose), 
and fewer women in the individualized dose had at least one 
embryo to transfer. The fact that these differences did not 
translate into a lower LBR might be secondary to the studies 
being underpowered to detect smaller differences which may 
still be clinically important. In an RCT comparing individu-
alized vs. standard gonadotropin dose in women treated with 
the GnRH antagonist protocol, 38% of anticipated hyper-
responders treated with 100 IU/day of gonadotropins had a 
low oocyte yield (<5 oocytes) compared to 6% in the group 
of women treated with 150 IU/day of gonadotropins [19]. 
These results suggest that in some women, a threshold for 
follicular recruitment exists. Seeing the lower risk of cycle 
cancellation secondary to OHSS risk with the GnRH antago-
nist protocol, it seems reasonable not to use gonadotropin 
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doses lower than 150 IU/day even for hyper-responders, and 
the Delphi panel believes that the recommended starting 
dose for expected hyper-responders should be 150 IU/day 
(statement 5). Data are lacking regarding the a priori use 
of higher gonadotropin doses in expected hyper-responders, 
and it is plausible that in the future, further fine-tuning of 
the dose according to patient age and AFC would be pos-
sible. It is important to emphasize that the Delpho recom-
mended starting dose of 150 IU/day is related to treatment 
naïve patients without a previous history of gonadotropin 
treatment and that information from previous insemination 
cycles for example is invaluable in assigning the starting 
dose for IVF. It is also worth emphasizing that specific 
patient populations, such as those with hypogonadotropic 
hypogonadism, may deserve different considerations; how-
ever, this was beyond the scope of this Delphi consensus.

It is known that the pharmacodynamics of gonadotropins 
are affected by body weight through the volume of distri-
bution and drug clearance [20–23], which raises the ques-
tion of dose adjustment in a predicted hyper-responder with 
high body weight. In a secondary analysis of data from the 
OPTIMIST trial described above, a reduction of the gonado-
tropin dose resulted in a reduction in LBR in young women 
and possibly in women with a relatively high body weight 
[24]. Increasing the dose above 150 IU/day in women with 
higher body weight was not studied in the OPTIMIST trial. 
A prospective observational cohort study comparing women 
below and above a BMI of 25 kg/m2, triggered with 0.2 mg 
triptorelin due to a hyper-response, found that women in the 
higher BMI category required higher doses of gonadotropins 
and had fewer mature oocytes [25]. There are no studies 
focusing on gonadotropin dose adjustment based on body 
weight in anticipated hyper responders. The Delphi partici-
pants recommend increasing the dose when the woman’s 
weight is above 80 kg (statements 6 and 7). No consensus 
was reached regarding the preferred starting dose in women 
weighing above 80 kg, perhaps because this too depends on 
the magnitude of increased body weight. Whether the dose 
of GnRHa trigger should be adjusted in women with higher 
weight was not addressed by the Delphi panel and requires 
further study.

While there are some algorithms taking into account dif-
ferent patient factors, such as AMH, when choosing the ini-
tial gonadotropin dose, there are no studies on the efficacy 
of such algorithms in hyper-responder patients. As such, at 
the moment, the panel does not recommend the use of a spe-
cific algorithm to estimate the starting dose of gonadotropin 
stimulation (statement 4).

OHSS prevention and management

There is limited data on dose adjustment during ovar-
ian stimulation of a hyper-responder. While the ESHRE 

guidelines on ovarian stimulation state that adjustment 
(increase or decrease) of the gonadotropin dose in the mid-
stimulation phase during OS is probably not recommended, 
this statement is based mainly on studies on dose increments 
in poor responders [16], and on one study in hyper-respond-
ers where a midcycle decrease in the dose of gonadotropins 
was associated with a shorter duration of coasting and cycle 
cancellation [26]. Indeed, dose adjustments during stimula-
tion are rather common. A systematic review of studies pub-
lished between 2007 and 2017 that allowed dose adjustment 
within the study protocol found that the pooled point esti-
mated for unspecified dose adjustments was 45.3% and for 
dose decrease was 9.5% [27]. Dose adjustments were more 
frequent in protocols using the GnRHa than those using the 
GnRH antagonist. In a retrospective analysis of data from 
medical records of 39 clinics in the USA, dose adjustments 
during stimulation occurred in 40.7% of cycles; of them, 
62.4% were dose decreases [28]. This higher incidence com-
ing from real-world data as compared to those in clinical 
trials likely represents the limitations on dose adjustments 
in controlled trials. To the best of our knowledge, there are 
no studies assessing a fixed dose vs. dose adjustment in 
hyper-responders undergoing the GnRH antagonist protocol. 
Potential benefits of adjusting the dose midcycle are avoid-
ing a hyper-response or at least decreasing its magnitude, 
decreasing patient discomfort associated with enlargement 
of the ovaries, reducing complications, and avoiding cycle 
cancellation and financial aspects related to gonadotropin 
costs. How these potential benefits translate into clini-
cal practice and their effect on LBR is a matter of further 
study. At this time, the Delphi panel believes that when a 
hyper-response occurs during treatment, gonadotropin dose 
decrease could be attempted and acknowledges the need for 
further study on the matter (statement 8).

Another possible intervention to decrease complications 
related to hyper-response and patient discomfort is earlier 
triggering and collection. In a hyper-responder, earlier trig-
gering could potentially still allow for a sufficient number 
of oocytes to be collected to achieve a live birth. While this 
approach has potential merits, there are no studies on its effi-
cacy, and considering the low likelihood of OHSS with the 
GnRHa trigger and the overall good prognosis with FET of 
thawed vitrified embryos, the Delphi panel does not support 
earlier triggering in cases of a hyper-response (statement 9).

The ASRM guidelines on the prevention and treatment 
of OHSS state that “there is insufficient evidence to recom-
mend coasting for the prevention of OHSS” [8]. This recom-
mendation is based mainly on a Cochrane review from 2011 
that found no evidence for the benefit of coasting to prevent 
OHSS [29]. This Cochrane review has since been updated 
and states that there is low-quality evidence that coasting 
reduces the rates of mild and severe OHSS, with too few 
data to determine the effect on other treatment outcomes 
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[30]. With that in mind, most studies on coasting included an 
hCG trigger. The value of coasting with the use of a GnRHa 
trigger (in a GnRH antagonist cycle) has not been studied 
sufficiently, but considering the low likelihood of developing 
severe OHSS, it is unlikely to be beneficial. Indeed, the Del-
phi panel also does not support coasting to prevent OHSS 
(statement 10). The ESHRE guidelines too support GnRHa 
trigger over coasting in patients at risk for OHSS [16].

Use of adjuvants during stimulation

Metformin is an insulin-sensitizing agent that both reduces 
hyperinsulinemia and suppresses the production of andro-
gens in the ovary [31]. This reduction of ovarian hyperan-
drogenism possibly reduces the number of preovulatory 
follicles and, thus, the risk of OHSS [8]. In a Cochrane 
review on the subject, metformin treatment before and 
during ART in women with PCOS was associated with a 
reduction in OHSS but only in the long GnRHa protocols 
[32]. When addressing clinical pregnancy rate (CPR) and 
LBR, the meta-analysis found that metformin use in the 
long GnRHa protocol was possibly associated with a higher 
CPR (RR 1.32, CI 1.08–1.63) but not LBR. Metformin use 
in the GnRH antagonist protocol was not associated with a 
difference in CPR; however, a reduction in LBR was found 
(RR 0.48, CI 0.29–0.79). In another meta-analysis on the 
role of metformin in women with PCOS undergoing IVF, 
metformin was associated with a decrease in OHSS rates 
but with no difference in CPR [33]. In a subgroup analysis, 
the reduction in OHSS was found to be significant only in 
women with a BMI > 26 [33]. This subgroup of women 
also had a higher CPR when taking metformin (OR 1.71, 
CI 1.12–2.60). A trend towards a higher LBR was also 
found in women with a BMI > 26, but this did not reach 
statistical significance (OR 1.55 CI 0.96–2.49). Consider-
ing the negligible likelihood of OHSS with a GnRHa trig-
ger, the role of metformin in ovarian stimulation cycles in 
hyper-responders needs to be revisited. Indeed, the ESHRE 
guidelines state that routine use of metformin during ovar-
ian stimulation is not recommended in the GnRH antago-
nist protocol for women with PCOS [16]. Whether there is 
a subset of women who do benefit from metformin is a mat-
ter of further study. Currently, the Delphi panels believe 
that metformin should be reserved for patients with PCOS 
and insulin resistance (statement 11).

There is only limited data on the role of other adjuvants 
during ovarian stimulation in hyper-responders. Most 
studies on the use of adjuvants prior to or during stimula-
tion focus on the low-responder group. A Cochrane on the 
use of Aspirin in women undergoing ART found no benefit 
for its use in the general IVF population [34]. While aspi-
rin may be useful for decreasing the rate of OHSS [8], it 
is likely unnecessary for reducing OHSS when using the 

GnRH antagonist protocols, tGnRHa trigger, and freeze-
all. Similarly, the ESHRE guidelines do not support the 
use of any adjuvant during ovarian stimulation [16]. Con-
sidering the overall good prognosis hyper-responders have, 
the Delphi panel believes that no adjuvant treatment is 
needed during the stimulation of a hyper-responder patient 
(statements 12 and 13).

Choice of trigger in a hyper‑responder

Only a few studies compare the predictive value of estradiol 
versus the number of developing follicles as a risk factor for 
OHSS. However, there are some factors that favor the num-
ber of follicles. Estradiol levels many times overlap between 
women undergoing IVF with and without OHSS [35]. While 
increased capillary permeability, the hallmark of OHSS, 
is many times associated with high levels of estradiol, it is 
likely mediated by a systemic inflammatory response [36, 37], 
including excessive vascular endothelial growth factor (VEGF) 
production, which does not correlate with estradiol levels [36]. 
One such example is women with defective estradiol synthesis 
(e.g., 17,20 desmolase deficiency) or very low estradiol lev-
els, which can still have OHSS [38, 39]. Lastly, in a prospec-
tive study, the number of follicles ≥ 11 mm was superior to 
estradiol levels in predicting OHSS [40], and in a retrospective 
study on data from 2982 women undergoing 5493 cycles, the 
number of follicles ≥ 10 mm in diameter was the best predictor 
for OHSS when compared to estradiol levels [41].

In a prospective cohort study, the optimal threshold for 
predicting the risk for OHSS was ≥ 13 follicles ≥ 11 mm, 
and for predicting severe OHSS, the optimal threshold was 
≥ 18 follicles [40]. Another prospective study found that 
the number of medium (10–15 mm) and large (>15 mm) 
follicles was the only independent predictor of OHSS prior 
to hCG trigger, with the optimal threshold, again, being 18 
[42]. In a retrospective analysis of participants’ response to 
OS from 3 large phase III trials, the optimal threshold for 
prediction of OHSS was ≥19 follicles ≥ 11 mm [43]. While 
the positive predictive value of 18 follicles is relatively low 
(around 15.8% on one study [42]), its high sensitivity (~82%) 
and specificity (~79%), combined with the low risk (no 
reduction in LBR) when using a GnRHa trigger and freeze 
all policy, makes it a useful threshold. The above findings 
support the Delphi consensus to base the decision regarding 
the GnRHa trigger on the number of growing follicles rather 
than on estradiol levels (statements 14 and 15) and to use 18 
growing follicles as the threshold (statement 16) for favor-
ing a GnRHa trigger. Tailoring according to other patient 
characteristics and desires can and should be done on an 
individual basis. While in the HERA consensus, 15 follicles 
≥ 14 mm, was used to characterize a hyper-response, the 
Delphi panel chose to use the number of follicles ≥ 10 mm 
to guide the choice of trigger, acknowledging the importance 
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of smaller follicles in the occurrence of OHSS and, at the 
same time, enabling flexibility in the choice of trigger.

OHSS prevention and the use of a dopaminergic 
agent

It is hypothesized that dopamine agonists given around the 
time of triggering or oocyte collection reduce the rate of 
OHSS by reducing VEGF production and VEGF receptor 
2-dependent vascular permeability [8, 44]. A meta-analysis 
on the role of cabergoline in the prevention of OHSS and 
a Cochrane review on interventions to reduce OHSS found 
cabergoline to be useful [45–47]. The ASRM guidelines too 
state that “there is good evidence that dopamine agonists 
starting at the time of hCG trigger for several days reduces 
the incidence of OHSS” [8]. However, the above meta-anal-
ysis and guidelines are based on studies that used an hCG 
trigger for final oocyte maturation. The role of dopamine 
agonists after the GnRHa trigger is less studied. While the 
mechanism of OHSS reduction should not be different, the 
cost-effectiveness of such an intervention with the lower 
rates of OHSS associated with GnRHa trigger deserves 
further study. In a retrospective study comparing no treat-
ment vs. dopamine agonist alone vs. dopamine agonist and 
luteal phase GnRH antagonist in patients at risk for OHSS 
after GnRHa trigger, dopamine agonist reduced patient dis-
comfort and bloating. However, the rates of severe OHSS 
were comparable between the groups [48]. The Delphi panel 
agrees that after the GnRHa trigger, there is no need for the 
addition of a dopamine agonist (statement 17), which is in 
line with the ESHRE guidelines which state that the addition 
of cabergoline as a preventive measure for OHSS is not rec-
ommended when GnRHa is used for triggering acknowledg-
ing the lack of evidence regarding its cost-effectiveness [16].

Dopamine agonist treatment can be initiated with an 
ovulation trigger or on the day of oocyte pickup, poten-
tially reducing its efficacy in OHSS prevention. In an RCT 
comparing dopamine agonist administration on the day of 
the hCG trigger to the administration on the day of oocyte 
pickup (OPU), no difference was found in oocyte matura-
tion rates, fertilization rates, implantation rates, or CPR 
[49]. Severe OHSS rates were also comparable between 
the groups; however, the study was underpowered to draw 
a conclusion in this regard. A retrospective study compar-
ing dopamine antagonist administration beginning on the 
day of the GnRHa trigger (in a GnRH antagonist cycle) to 
the administration on the day of OPU found lower rates 
of mild and moderate OHSS in the former group; how-
ever, neither group developed severe OHSS as expected in 
GnRH antagonist cycles using GnRHa trigger. The studies 
assessing dopamine agonists for OHSS prevention differ 
in their length of treatment and in the time of dopamine 
agonist initiation. To the best of our knowledge, no study 

comparing different durations of dopamine agonist admin-
istration was done; however, most studies did so for 7–8 
days. The Delphi panel recommends administering dopa-
mine agonists on the day of the hCG trigger for 7 days 
(statements 18 and 19). It is worth emphasizing that dopa-
mine agonist treatment is less effective in preventing late, 
pregnancy associated, OHSS. Further, prospective trials 
should ideally be done to better clarify the length of treat-
ment needed and the optimal time to initiate treatment. 
With that in mind, considering the lower incidence of 
OHSS with the increased use of GnRH antagonist cycles 
in anticipated hyper-responders, it is unlikely that studies 
of sufficient power would be conducted.

A freeze-all strategy prevents late OHSS [8, 50, 51] and 
is thus recommended by both the ASRM and the ESHRE 
guidelines. The use of other interventions depends on the 
trigger being used. When the trigger is a GnRHa, the risk 
of severe OHSS is almost negligible, and the Delphi panel 
believes that no other intervention is warranted (statement 
21). On the other hand, as discussed above, when the trig-
ger used includes hCG, a dopamine agonist reduces the risk 
of early OHSS. Aspirin, when initiated from the start of 
OS, has been found to reduce the incidence of OHSS [52, 
53]; however, the effectiveness of aspirin when administered 
from the time of trigger has not been studied and thus can-
not be recommended. GnRH antagonists have been shown 
to decrease the secretion of VEGF from human granulosa 
luteinized cells [54] and as such reinitiating GnRH antago-
nist in the luteal phase has been studied as an intervention 
to reduce the rates of OHSS. In a case report, Lainas et al. 
first described successful outpatient management of early 
severe OHSS with the reinitiation of GnRH antagonist 
[55]. In a larger prospective observational study including 
40 women, Lainas et al. described how early severe OHSS 
can be managed with the use of luteal GnRH antagonist 
[56]. Similar findings were reported in a retrospective study 
on the matter [57]. Data on the role of reinitiating GnRH 
antagonists in patients triggered with GnRHa is limited. In a 
retrospective study, Shrem et al. found that the rates of mild 
and moderate OHSS were lower in high-risk women trig-
gered with GnRHa who received GnRH antagonists on top 
of cabergoline for OHSS prevention [48]. With that in mind, 
no patient in the cohort suffered from severe OHSS ques-
tioning the cost-effectiveness of this intervention. To date, 
evidence regarding the use of luteal phase GnRH antagonists 
is limited to observational studies and, as such, is not recom-
mended by the Delphi panel (statement 20).

OHSS is a risk factor for thromboembolism, and as such, 
guidelines recommend thromboprophylaxis in cases of 
severe OHSS [8, 58]. Since not all cases of OHSS are severe, 
the Delphi panel believes that thromboprophylaxis should be 
tailored per case severity and concomitant risk factors such 
as pregnancy, age, and existing thrombophilia.
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A supplemental bolus of hCG at ovum pick up, or later, 
can “rescue” the corpus luteum and thus preserve implanta-
tion and ongoing pregnancy rates, which are reduced with 
GnRHa trigger only [59–62]. In a prospective randomized 
trial comparing hCG to GnRHa trigger with 1500 IU sup-
plement of hCG on the day of ovum pick up, no statistical 
difference in delivery rates was found between the groups, 
and no cases of OHSS occurred in the GnRHa trigger group 
[61]. Of note, the average number of oocytes collected in 
each group was 9. Another prospective RCT on 118 patients 
at risk for OHSS (15–25 oocytes retrieved) found similar 
reproductive outcomes between hCG trigger versus GnRHa 
trigger with supplemental hCG, and no cases of OHSS in the 
latter group [63]. On the other hand, a RCT on 212 patients 
with an excessive response to ovarian stimulation (defined 
as ≥ 18 follicles ≥ 11 mm) triggered with GnRHa found 
that while pregnancy rates after fresh embryo transfer with 
intensified luteal support using low-dose hCG were compa-
rable to pregnancy rates following the freeze-all strategy, 
moderate-severe OHSS occurred more frequently in women 
who attempted fresh transfer [64]. Two retrospective studies 
also described severe OHSS as a complication of low-dose 
hCG support albeit at low rates 0.72–1.4% [65, 66], and 
another retrospective study described 26% rate of severe 
OHSS with the hCG luteal support [67]. Lastly, a study of 
low-dose hCG luteal support (three boluses of hCG of 250, 
500, or 1000 IU) observed 4.2% cases of moderate OHSS 
and 3.6% cases of severe OHSS [59]. Of note, 85.7% of the 
severe OHSS cases were late OHSS related to pregnancy. 
This highlights the risk of a fresh transfer, being related not 
only to the luteal support with hCG rescue but also to hCG 
from the pregnancy itself and the ensuing late OHSS. This, 
coupled with data described above, of a decrease in LBR 
when more than 15–20 oocytes are collected (which the tri-
als on luteal rescue may have been underpowered to detect), 
and the high success rates of a freeze-all policy in hyper-
responders [14] support the Delphi consensus of not adding 
hCG and attempt a fresh transfer in women perceived to be 
at high risk for OHSS prior to trigger (statement 23).

FET protocols in a hyper‑responder

The optimal endometrial preparation protocol for FET is 
under debate [68]. A Cochrane review on the matter stated 
that there is insufficient evidence for the use of any specific 
preparation protocol for FET [69]. A recent multicenter 
retrospective cohort study found a lower LBR and a higher 
pregnancy loss rate in programmed endometrial preparation 
cycles as compared to natural or stimulated cycles [70]. Two 
meta-analyses on the matter also found higher rates of LBR in 
natural or stimulated cycles compared to programmed endo-
metrial preparation [71, 72]. When addressing obstetrical 
and neonatal outcomes, a meta-analysis found programmed 

endometrial preparation to be associated with increased rates 
of large for gestational age neonates and macrosomia [73], 
and a register-based cohort study found higher rates of hyper-
tensive disorders of pregnancy, postpartum hemorrhage, 
and cesarian section in programmed endometrial prepara-
tion cycles [74]. Finally, a meta-analysis on the subject also 
found a higher risk for hypertensive disorders of pregnancy, 
preeclampsia, post-partum hemorrhage, and cesarian section 
in programmed cycles [75]. Data specific to hyper-responders 
is limited, and, at this time, the Delphi panel does not believe 
that the hyper-response itself necessitates a specific adjust-
ment of the FET protocol (statement 24).

The theoretical basis for the need for a washout period 
between a stimulation cycle and a FET cycle stems from the 
notion that the negative effects supraphysiological estradiol 
levels may have caused on endometrial receptivity continues 
in the immediately following cycle. Indeed, an online survey 
on the matter showed that most ART clinics worldwide defer 
the frozen embryo transfer in lieu of immediate transfer in the 
following menstrual cycle [76]. However, recent trials chal-
lenge the assumption of a lower LBR following transfer in the 
immediately following cycle both when analyzing a FET fol-
lowing a fresh failed embryo transfer [77–79] and when analyz-
ing freeze-all cycles [80–86]. A meta-analysis of retrospective 
studies comparing immediate to delayed embryo transfer found 
improved LBR (aOR 1.2 CI 1.01–1.44) and improved CPR 
(aOR 1.22 CI 1.07–1.39) in favor of immediate FET [87]. In a 
subgroup analysis of FET after freeze-all cycles, the CPR was 
in favor of immediate transfer (aOR 1.27 CI 1.02–1.59) whereas 
the LBR did not differ significantly (aOR 1.15 CI 0.92–1.44). 
Of note, freeze-all cycles had several indications and were not 
limited to hyper-response and OHSS prevention only. Recently, 
two prospective RCTs found higher ongoing pregnancy rates 
and LBR following embryo transfer in the immediately fol-
lowing cycle [88, 89]; however, these trials were not limited to 
freeze-all cycles and consisted of programmed cycles. When 
studying obstetrical and neonatal outcomes, immediate embryo 
transfer seems comparable to deferred transfer [82, 90].

Considering the data above suggesting at least compa-
rable outcomes and the possible added emotional stress 
related to postponing the frozen embryo transfer, the Del-
phi panel supports FET in the immediately following cycle 
(statement 25). With that in mind, further prospective RCT 
comparing immediate to delayed FET, following freeze all 
for the indication of a hyper-response, are needed to better 
consult women belonging to this specific population.

OHSS management

OHSS is classified into 4 stages based on clinical and labora-
tory features [8]. Data on the admission threshold for OHSS 
management is sparse and likely related to outpatient resources 
and capabilities which vary geographically. The Delphi panel 
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recommends patient admission following the diagnosis of 
severe OHSS (statement 26) as recommended by other guide-
lines [91]. Although clinically apparent ascites classifies OHSS 
as severe, there is no consensus among the Delphi panelists 
whether this clinical feature alone requires patient admission/
continued inpatient care. Indeed, outpatient paracentesis and 
culdocentesis is a viable option [8], and the lack of a Delphi 
consensus on this matter is too likely related to geographic 
variation in outpatient management capabilities. Moreso, other 
factors such as hydration status, renal function, and ability to 
tolerate oral intake are likely more important in the decision 
regarding inpatient and outpatient management; however these 
were not addressed by the Delphi panel and are likely also 
influenced by the varying outpatient management capabilities.

Our study is not without limitations. While we aimed to 
form a diverse and geographically representative panel, the 
lack of representation from countries such as China and India 
and the whole African continent is a limitation in our study 
design. The panel focus was on stimulation protocols for IVF 
with the aim of conception. The answers might differ when 
treating a hyper-responder interested in oocyte cryopreserva-
tion. An important aspect of treatment is patients’ comfort, 
financial and emotional costs, and compliance. As such, 
including patient representatives in at least part of the ques-
tions could have added helpful information to the treating 
physician when choosing a stimulation protocol and its goals. 
Lastly, when attempting to reach a consensus that, on the one 
hand, would include the expertise of a diverse panel and, on the 
other hand, could serve as a guideline, some arbitrary cutoff 
values (such as 80 kg as the cutoff for higher gonadotropin 
doses or 18 or more as the AFC that would put a patient at risk 
of a hyper-response) are needed. Similarly, and with the aim 
of simplifying the consensus, the statements could not discuss 
all possible distributions of follicle size and number or the 
contribution of different estradiol levels on decision-making. 
Notwithstanding the above-mentioned limitations, our study 
provides for the first-time guidelines regarding the manage-
ment of a hyper-responder patient taking into consideration the 
more frequent use of the GnRH antagonist protocol with ago-
nist trigger and freeze all in such patients and outcomes other 
than OHSS. Hopefully, with further research and experience, 
these guidelines could be fine-tuned in the future.

In conclusion, this Delphi consensus utilized a systematic 
compilation of experts’ opinions to generate a guideline for 
the management of a hyper-responder patient. It is worth 
emphasizing that the Delphi process is a form of expert 
opinion not meant to replace evidence-based medicine but 
rather to provide a guideline where such evidence is lacking. 
We believe that these guidelines can and should be used in 
the design of future studies on the matter.
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