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Abstract

Drugs are needed to protect against the neutrophil-derived histones responsible for endothelial 

injury in acute inflammatory conditions such as trauma and sepsis. Heparin and other polyanions 

can neutralize histones but challenges with dosing or side effects such as bleeding limit 

clinical application. Here, we demonstrate that suramin—a widely available polyanionic drug—

completely neutralizes the toxic effects of individual histones, but not citrullinated histones (citH3) 

from NETs. The sulfate groups on suramin form stable electrostatic interactions with hydrogen 

bonds in the histone octamer with a dissociation constant of 250 nM. In cultured endothelial 

cells (Ea.Hy926), histone-induced thrombin generation was significantly decreased by suramin. 

In isolated murine blood vessels, suramin abolished aberrant endothelial cell calcium signals and 

rescued impaired endothelial-dependent vasodilation caused by histones. Suramin significantly 

decreased pulmonary endothelial cell ICAM-1 expression and neutrophil recruitment caused by 

infusion of sub-lethal doses of histones in vivo. Suramin also prevented histone-induced lung 

endothelial cell cytotoxicity in vitro and lung edema, intra-alveolar hemorrhage and mortality 
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in mice receiving a lethal dose of histones. Protection of vascular endothelial function from 

histone-induced damage is a novel mechanism of action for suramin with therapeutic implications 

for conditions characterized by elevated histone levels.
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Introduction

Acute endotheliopathy is a clinical syndrome resulting from extensive tissue injury in 

trauma and sepsis, including that attributable to SARS-CoV-2 infection. Endotheliopathy 

is characterized by widespread disruption of endothelial-dependent vasodilatory function, 

barrier integrity, and hemostasis which all contributes to thromboinflammation, organ 

failure, and mortality (1, 2). Extracellular histones are major mediators of endotheliopathy, 

as shown by the efficacy of anti-histone antibodies in preventing systemic inflammation 

and mortality in animal models of sepsis and endotoxemia through lipopolysaccharide 

(LPS) infusion (3, 4). Histones enter the circulation when released by cellular apoptosis 

or necrosis (5–7), and in innate immunity, when activation of neutrophils leads to the 

release of chromatin in the form of neutrophil extracellular traps (NETs). These NETs 

contain granular enzymes and peptides which aid in clearing bacteria, and nuclear 

proteins, predominately histones (3, 4). Nucleosomes induce cytokine production at low 

concentrations, but high concentrations kill cells (8). Evidence of NET-induced endothelial 

damage has been reported in COVID-19 (9), atherosclerosis (10, 11), ischemia/reperfusion 

(12), and venous thrombosis (13, 14). Plasma nucleases act on DNA-histone complexes 

circulating in the blood to degrade the nucleic acids, exposing the highly cationic histones 

that function as damage-associated molecular pattern proteins, activating the immune system 

and causing additional toxicity (15–17). Free histones are found at low levels (2–5 μg/mL) 

in the circulation in uninjured humans, but levels can reach 20–100 μg/mL in COVID-19 

patients (18) and up to 250 μg/mL in the acute period following severe trauma before 

they are degraded over hours and days by the protease activated protein C (19). At 

high concentrations, histones can activate platelets and damage vascular cells, particularly 

pulmonary (19) and mesenteric endothelial cells (20), vascular smooth muscle cells (11) 

and erythrocytes (21, 22), but histones are not directly toxic to endothelial cells in the 

cerebral vasculature (23). Histones activate and injure endothelial cells through mechanisms 

including calcium overload (3, 20), pyroptosis through NLRP3 inflammasome and toll-like 

receptor activation (TLR) (6, 24–27), and disassembly of adherens junctions causing loss 

of barrier function (23, 28). Histones, like other cations can also bind directly to anionic 

membrane phospholipids in stoichiometric ratios (29, 30), with high concentrations leading 

to disruption of lipid bilayers (11, 31). Furthermore, histones deposited on the lumen of 

blood vessels can also attract monocytes in a surface-charge dependent fashion causing 

atherosclerosis (4). Elevated histone levels have been linked to widespread endothelial injury 

and organ damage in human patients after trauma (19, 32–38) and other conditions including 

ischemic stroke (39), sepsis (3), pancreatitis (40), and acute respiratory distress syndrome 

(ARDS) (41, 42).
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The critical unmet need for therapeutics that protect the vascular endothelium from histone-

mediated injury has become of immediate relevance in the context of the SARS-CoV-2 

pandemic (1, 9, 43). It was recently demonstrated that the polyanionic agent defibrotide can 

neutralize the pathological effects of extracellular histones (44). This is important, because 

it suggests a strategy to protect blood vessels from the products of NETosis. However, 

defibrotide is an expensive drug that typically requires dosing every 6 hours. Other synthetic 

polyanions can also block histone-induced toxicity (22), but these have not yet been FDA-

approved for human use. We hypothesized that suramin - a polyanionic drug, which is 

also safe, inexpensive, and widely available - would effectively prevent histone-induced 

endotheliopathy. First synthesized by Bayer in 1917 as part of a drug discovery program for 

trypanosomiasis (African sleeping sickness), suramin is a bis-polysulfonated naphthylurea 

hexaanion with activity against trypanosomes in both animal models and humans (45). 

Suramin has been used clinically for over 100 years and, importantly, is considered among 

the safest and most effective drugs for health care by the World Health Organization. Unlike 

heparan sulfate or heparin synthetic polyanions, which also bind histones, suramin dosing 

is infrequent (usually once per week), well-tolerated, and does not cause complications 

associated with anticoagulation.

The objective of this study was to test the hypothesis that suramin can protect against 

histone-induced endothelial dysfunction. We found that suramin binds individual histones 

in solution, but not citrullinated histones released from NETs, which is consistent with the 

lack of protection against citH3-induced cytotoxicity. Histones activated cultured human 

endothelial cells to promote rapid thrombin generation; we found that this reaction is 

abolished by suramin. In pressurized murine vascular preparations, we directly tested the 

efficacy of suramin for preventing histone-induced aberrant endothelial calcium signaling 

and vasodilatory dysfunction. In a histone infusion model, we measured the extent to 

which suramin prevented histone-induced lung injury, endothelial cell activation, adhesion 

molecule expression, and pulmonary barrier disruption. Importantly, we also found that 

suramin completely protects against lethal doses of histones. Thus, histone binding is a 

novel mechanism of action for suramin, and these experiments provide support for the use of 

suramin as a strategy to protect against histone-induced endotheliopathy.

Materials and Methods

Animals.

Male C57BL/6 J mice (12 weeks old; ∼30 g) were purchased from The Jackson Laboratory 

(Bar Harbor, ME). All animals were maintained on 12-hour light/dark cycle and standard 

diet and water ad libitum in an AALAC-accredited facility. All animal experiments were 

approved by the University of Vermont’s Institutional Animal Care and Use Committee 

(IACUC 2020–000-175), in accordance with the recommendations in the Guide for the Care 

and Use of Laboratory Animals of the National Institutes of Health, and efforts were made 

to minimize suffering.
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In vivo histone exposure.

Mice were anesthetized with 2.5% isoflurane and administered purified histones (Roche® 

distributed by Sigma-Millipore; #10223565001) or sterile saline (control group) as a single 

dose via retroorbital sinus. Histones were diluted in sterile saline to yield doses of either 45 

mg/Kg or 75 mg/Kg.

Suramin trial in vivo.

We conducted a preclinical randomized trial to establish efficacy of suramin in histone 

exposure. Based on the recommended initial dose of suramin (1 g for adults and 10–

15 mg/Kg for children) (http://home.intekom.com/pharm/bayer/suramin.html), we used 20 

mg/Kg as the human reference dose. We planned to compare n=10 animals each in control 

(histone alone) and suramin (20 mg/Kg) groups based on sample size estimations for 

survival analysis in a two arm trial. For dose finding, we also included an additional 

arm o with higher dose of suramin (n=6, 50mg/kg). The fourth arm of the study was a 

control group that did not receive histones or suramin to establish baseline (n=6). Mice were 

randomly assigned to the 4 treatment groups. Suramin (Adipogen; #AG-CR1–3575) was 

administered intraperitoneally (20 mg/Kg; 50 mg/Kg) 1 hour prior to histone infusion in the 

suramin groups. Animals were then anesthetized to received either histones or controls. The 

primary outcome was the effect of suramin on survival in the face of a lethal dose of histones 

(75 mg/kg; intravenously) (1). Survival rates were determined every five minutes for 1 hour.

Secondary outcomes of inflammatory biomarkers, lung inflammation (histology of lavage 

fluid and parenchyma), pulmonary endothelial cell activation, and pulmonary vascular 

permeability, were studied to provide additional insight into suramin’s mechanism of action 

in vivo. These outcomes were assessed in additional experiments utilizing a survivable dose 

of histones (45 mg/kg; intravenously) in mice, randomized to receive either no treatment 

(histones alone) or suramin (50 mg/kg). Additional controls were included that did not 

receive histones or suramin to establish baseline for each outcome. All mice were terminally 

anesthetized and euthanized 24 hours after treatment.

To assess for markers of inflammation relevant to activated endothelium, blood was 

collected via cardiac puncture in BD Microtainer® blood collection tubes (BD Biosciences). 

Sera was obtained by centrifugation (1,300 x g, 10 min) and frozen. Thawed sera were 

diluted two-fold and cardiovascular markers were measured using a Milliplex mouse 

cardiovascular disease magnetic bead panel (Millipore-Sigma; #MCVD1MAG-77K). Data 

were acquired using the Bio-Plex suspension array system and Bio-Plex Manager software.

To assess inflammation in the lung, bronchoalveolar lavage (BAL) fluid was collected 

and analyzed for total number of leukocytes and total protein. Euthanized mice were 

tracheotomized with an 18-gauge cannula and lavaged with 1 mL Dulbecco’s phosphate-

buffered saline (Life Technologies, Carlsbad, CA). Lavage fluid was centrifuged (1,300 x 

g, 10 min) and cell-free supernatants were snap-frozen for total protein analysis using the 

Pierce™ BCA protein assay kit (Thermo Scientific; #23227). The pellet was resuspended 

with 400 μL of PBS and total leukocyte count was measured via a hemocytometer 

(Neubauer chamber).
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Intact lungs were also assessed for histological changes. Lungs were inflation-fixed at 20 

cm H2O pressure with buffered formalin for 24 hours, embedded in paraffin, sectioned, and 

stained with hematoxylin and eosin.

Pulmonary endothelial cell activation was studied in isolated cells by flow cytometry. 

Mice were euthanized using sodium pentobarbital. Lungs were inflated with an enzymatic 

digestion buffer (Dubecco’s modified Eagle’s medium [DMEM], 1 mg/mL collagenase type 

IV [Invitrogen], and 0.2 mg/mL DNase I [Sigma]), after which they were dissected away 

from the trachea and heart and incubated in 5 mL enzymatic digestion buffer in a 50 mL 

conical tube for 30 min at 37°C under agitation at 200 rpm. After the 30-min incubation, 

25 mL of PBS was added, and the samples were vortexed for 30 seconds. The resulting cell 

suspension was passed through a 70-μm filter and washed in PBS. Red blood cells were 

lysed using Gey’s solution and washed in PBS–2% fetal calf serum, after which cells were 

counted and resuspended for flow cytometry experiments.

For flow cytometry, nonspecific antibody binding was blocked by incubating 1×106 cells 

with FcBlock anti-CD16/32 (BD Biosciences; #553141). After washing, cells were stained 

at 4°C in PBS–2% FCS containing 0.1% sodium azide. Reagents and antibodies used 

in these experiments were as follows: Live/Dead™ (1:500; Invitrogen; #L23105), CD45-

FITC (1:400; eBioscience; #MCD4501), CD11c-PECy7 (1:200; BD Biosciences; clone 

HL3 #561022), CD11b-eFluor450 (1:800; eBioscience; cone M1/70 #48–0112-82), Ly6G-

Alexa Fluor700 (1:500; BD Biosciences; clone 1A8 #561236), CD45-BB700 (1:6400; BD 

Biosciences; #566440), CD326-BV605 (1:500; BD Biosciences; #740389), CD31-FITC 

(1:400; BD Biosciences; #558738), CD141-BV421 (1:800; BD Biosciences; #747647). Data 

were collected on a BD LSRII flow cytometer (BD Biosciences) and analyzed using FlowJo 

(TreeStar, Ashland, OR). Antibody titration experiments were performed to determine the 

antibody concentration resulting in the best separation of cell populations and minimize 

nonspecific binding under same experimental conditions.

Pulmonary vascular barrier permeability to solutes was assessed by measuring extravasation 

of FITC-labelled 70-kDa dextran. For these studies, mice were re-anesthetized 24 hours 

after experimental treatment, and then given a retroorbital injection of 70-kDa FITC-dextran 

(100 μL of 3 mg/mL). After 30 minutes, they were euthanized with transcardial perfusion 

with PBS to eliminate any remaining FITC-dextran in circulation. Lungs were isolated and 

homogenized in 1 mL RIPA buffer and centrifuged at 12,000 x g for 20 minutes. The 

concentration of 70-kDa FITC-dextran in the supernatant was detected via fluorescence 

measurement (excitation 490 nm, emission 520) and interpolation from a standard curve of 

known concentrations of FITC-dextran. Results are presented as ng of FITC-dextran per mg 

of protein in the supernatant.

Calcium imaging in pulmonary arteries ex vivo.

Calcium imaging in the native endothelium of mouse pulmonary arteries was performed 

as previously described (46). Briefly, 4th-order (~50 μm) pulmonary arteries were pinned 

down en face on a Sylgard block and loaded with Fluo-4-AM (10 μM) in the presence 

of pluronic acid (0.04 %) at 30° C for 30 minutes. Fluo-4 was excited at 488 nm with a 

solid-state laser and emitted fluorescence was captured using a 525/36-nm band-pass filter. 
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Images were acquired at 30 frames per second with Andor Revolution WD (with Borealis) 

spinning-disk confocal imaging system (Oxford Instruments, Abingdon, UK) comprised of 

an upright Nikon microscope with a 60X water dipping objective (numerical aperture 1.0) 

and an electron multiplying charge coupled device camera (iXon 888, Oxford Instruments, 

Abingdon, UK). Ca2+ signals were analyzed using the custom-designed SparkAn software 

(46, 47). A region of interest defined by a 1.7-μm2 (5×5 pixels) box was placed at a point 

corresponding to peak event amplitude to generate a fractional fluorescence (F/F0) trace. 

F/F0 traces were filtered using a Gaussian filter and a cutoff corner frequency of 4 Hz. The 

number of Ca2+ events was auto-detected using a detection threshold of 0.3 F/F0 in SparkAn 

(custom software, Dr. Adrian Bonev, Burlington, VT). Each data point indicates one field of 

view from one pulmonary artery. Calf thymus histones containing H1, H2a, H3, H4 histones 

(unfractionated histones) were used for these experimental series.

Histone-mediated cytotoxicity assay in cultured cells.

The cytotoxicity of calf-thymus histones and citrullinated histones H3 was determined on 

mouse lung microvascular endothelial cells (Cell Biologics; #C57–6011) using propidium 

iodide (PI). Cells were treated with various concentrations of histones or citrullinated 

Histone H3 and then incubated with PI (2 μg/mL) for 20 min at 37 °C. Then, PI fluorescence 

was quantified using a microplate reader and dead cells were visualized under a confocal 

microscope.

Calibrated automated thrombinography in cultured cells.

Human endothelial cells (EA.hy926; ATCC® CRL-2922™) were incubated with histones 

(50 μg/mL), suramin (50 μM), histones + suramin, or Dulbecco’s Modified Eagle Medium 

alone for 4 hr at 37°C, 5% CO2. Calf thymus histones containing H1, H2a, H3, H4 histones 

(unfractionated histones) were used for these experimental series. The cells were released 

from the tissue culture wells with trypsin and subjected to centrifugation (170 x g, 7 min). 

Cell pellets were washed one time by resuspension in 20 mM HEPES, 0.15 M NaCl (pH 

7.4) (HBS) followed by centrifugation. The final cell pellets were resuspended in HBS and 

adjusted to a final concentration of 1×107/mL.

Thrombin generation was assessed using a modified calibrated automated thrombogram. 

Plasma was thawed at 37°C in the presence of corn trypsin inhibitor (0.1 mg/mL 

final concentration) and incubated with the thrombin substrate Z-Gly-Gly-Arg 7-amido-4-

methylcoumarin hydrochloride (0.42 mM) (Bachem AG, Switzerland) and CaCl2 (15 mM) 

(3 min, 37°C). The reactions were initiated by the addition of relipidated tissue factor1–242 

(6.5 pM) (a gift from Dr. R. Lunblad, Baxter Healthcare Corp.) and synthetic vesicles 

consisting of 80% phosphatidylcholine and 20% phosphatidylserine (PCPS) (20 μM), or 

EA.hy926 cells (2×105). Fluorescence was measured (ex = 370 nm/em = 460 nm) for 1 

hour with a Cytation 3 imaging reader (BioTek, Winooski, VT). Changes in fluorescence 

were converted to thrombin concentrations using a calibration curve created from sequential 

dilutions of human thrombin. If no change in fluorescence was noted after 60 min, the lag 

time for the sample was defined as >60 min.
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Fluorescence spectroscopy.

Fluorescence spectroscopy was used to determine the equilibrium dissociation constant 

(Kd) values for the histone-suramin complex. Calf thymus histones containing H1, H2a, 

H3, H4 histones (unfractionated histones) or citrullinated histone H3 (Cayman chemicals; 

#17926) were used for binding experiments. The changes in intrinsic suramin fluorescence 

emission were measured with a microplate reader (BioTek; Winooski, VT) at 25 °C. 

The samples were excited at 315 nm and the emission spectrum was measured between 

370–480 nm. Histones did not show spectral overlap in that range (Supplemental Fig. 

1 A). The titration was performed stepwise with a suramin stock concentration (1 μM) 

in assay buffer containing 50 mM HEPES, 100 mM NaCl and 2 mM CaCl2 (pH 7.4); 

fluorescent measurements were performed after each titration with histones (0 to 8 μM). 

After normalization of the fluorescence emission signal, Kd for each suramin-histones 

complex was estimated by nonlinear curve fitting with a sigmoidal dose–response function 

using GraphPad 7 software (GraphPad, San Diego, CA). The percentage of bound suramin-

histones was plotted against the concentration of free histones.

Molecular modeling.

Model Preparation.—All the models were constructed using the Desmond/Maestro 

program (v2016–3 Schrödinger, Inc.) using the System Builder in Maestro. Each model 

contained a complete histone octamer (PDB: 5XF3) with or without DNA and six suramin 

molecules that were arbitrarily placed at a minimum distance of 15 Å from the proteins. The 

SPC water model was employed to solvate the complexes, with counter ions and 0.12 M 

NaCl, 0.047 M KCl, 0.025 M CaCl2, and 0.012 M MgCl2. The construct with a DNA-bound 

histone has a total of 197,122 atoms in a periodic box of ~123×128×127 Å3, while the one 

with a DNA-free histone has 180,860 atoms in a box of ~ 120×122×124 Å3.

Simulation setup.—All simulations were performed in the Desmond program with the 

OPLS3 force field in the NPT ensemble (1.01325 bar, 310 K, Martyna-Tobias-Klein 

coupling scheme) with a time step of 2 fs(48, 49). The particle mesh Ewald technique 

was used for the electrostatic calculations. The Van der Waals and short-range electrostatics 

were cut off at 9.0 Å. Hydrogen atoms were constrained using the SHAKE algorithm. Each 

simulation has two 700-ns replicas.

Visualization and Analysis.—PyMOL (v2.5, Schrödinger, Inc.) and Visual Molecular 

Dynamics (VMD, http://www.ks.uiuc.edu/Research/vmd/) were used for the structure 

visualization of the simulations; the simulation analysis panel was carried out in Maestro.

Statistics.

Data sets were first tested for normal distribution using the Kolmogorov-Smirnov method 

to determine the appropriate parametric or non-parametric test with which to proceed. Data 

were analyzed by two-tailed unpaired or paired Student’s T-test, Mann-Whitney U-test, 

Wilcoxon rank text, one-way or two-way ANOVA and Bonferroni post-hoc test, or the 

Mantel-Cox test for survival, using GraphPad Prism 7.04 (GraphPad Software, Inc, La Jolla, 

CA). A P value less than 0.05 was considered statistically significant.
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Results

Suramin binds to individual histones in solution and decreases histone-mediated 
cytotoxicity.

Based on its molecular structure, we hypothesized that suramin, a highly charged 

polysulfonated napthylurea, would bind avidly to cationic histone complexes (Fig. 1 A). 

When NETs or nucleosomes enter the bloodstream, they are exposed to endogenous 

nucleases that rapidly digest DNA, leaving free histone proteins (15). Therefore, we focused 

on testing the interactions between suramin and histones. First, fluorescent spectroscopy 

studies were used to biochemically establish the dissociation constant (Kd) and number of 

high-affinity binding sites for interactions between the two molecules. We established the 

absorbance and emission spectra for histones and suramin in solution, and then measured 

suramin sodium salt intrinsic fluorescence using an excess of suramin in the presence 

of increasing concentrations of histones (Fig. 1 B; Supplemental Fig. 1). The resulting 

interactions are represented using a binding curve (Fig. 1 C). Scatchard analysis of the 

binding curve demonstrates a single high-affinity binding site with a dissociation constant 

(Kd) of 250 nM (Fig. 1 C). These results confirm that suramin readily binds histones in 

solution. We then used all-atom molecular dynamics (MD) simulations to determine likely 

interactions between suramin molecules and the histone octamer in solution (Fig. 1 D and 

Supplemental Video 1). Suramin quickly formed electrostatic contacts between its SO3
− and 

arginines (Arg) on the protein surface such as Arg53 and Arg69 of H3, Arg23 and Arg45 

in H4, Arg17 in H2A and Arg30 in H2B. Hydrogen bonding between suramin and several 

threonines (Thr) was also observed, such as Thr80 of H3, Thr16 and Thr76 in H2A, and 

Thr116 in H2B. These interactions remained stable toward the end of our simulations and 

enabled steady binding for five of the suramin molecules to histones. Additionally, we tested 

the interaction between citrullinated H3 and suramin. Binding experiments by fluorescence 

spectroscopy revealed no changes of the citrullinated H3 fluorescence peak in the presence 

of suramin, indicating a lack of binding (Supplemental Fig. 2 A). We next studied whether 

suramin affects cytotoxicity induced by either individual histones or citrullinated H3 by PI 

staining. Suramin significantly decreased cell death induced by 100 ug/mL histones, while 

treatment with suramin did not protect against citrullinated H3 (Supplemental Fig. 2 B 

and C). These results further suggest that suramin binds to individual histones preventing 

endothelial cell cytotoxicity but does not bind as effectively to NET-derived histones.

Histones induce rapid thrombin generation on human endothelial cells that is blocked by 
suramin.

Thrombin is the ultimate protease in the clotting cascade, catalyzing fibrin formation. 

The formation of thrombin following cleavage of prothrombin is the rate limiting to 

the coagulation process (50). Phosphatidylserine-dependent prothrombin activation on the 

endothelial surface leads to the formation of microthrombi, shedding of extracellular 

vesicles and glycocalyx, neutrophil migration, and efflux of water into damaged 

interstitial tissues (10, 50). Extracellular vesicles, enriched with histones, have procoagulant 

membranes and carry microRNAs into the bloodstream (51). To test whether histones 

promote thrombin generation, we used calibrated automated thrombograms in recalcified 

pooled healthy human plasma, in the absence of exogenous tissue factor and phospholipid 
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membrane, to measure the ability of cultured human endothelial cells (Ea.hy926) to support 

thrombin production. Under these conditions, thrombin formation occurred slowly (lag time 

>15 minutes), but when histones were applied, thrombin generation was accelerated, with a 

lag time of <5 minutes (Fig. 2 A and B). Histone treatment also had prothrombotic effects 

on other measures of thrombin generation including peak thrombin, endogenous thrombin 

potential, time to peak thrombin, and the rate of thrombin generation (Fig. 2 C–F). In the 

presence of suramin, measures of histone-induced thrombin generation were significantly 

ameliorated to levels observed in untreated cells.

Suramin prevents disruption of endothelial-dependent vasodilation and endothelial cell 
calcium overload caused by histones.

Endothelial-dependent vasodilation of small arteries in response to nitric oxide and other 

hyperpolarizing stimuli is essential for the regulation of regional blood flow to meet 

metabolic demands. Disruption of endothelial-dependent vasodilation is considered the 

hallmark of endothelial dysfunction. We previously demonstrated that histones induce 

aberrant endothelial cell calcium responses that disrupt normal vasodilatory signals in small 

mesenteric arteries (10, 47). Here, we used video-edge detection to record the vasodilatory 

responses of pressurized, resistance-sized arteries from the mouse mesenteric circulation to 

the exposure of the endothelial-dependent vasodilator NS309 (0.1 μM to 1 μM) before and 

after intraluminally perfusing histones (10 μg/mL) through the vessel in the presence and 

absence of suramin (50 μM) (Fig. 3 A and B). Vasodilation to 1 μM NS309 after 30 minutes 

of histone exposure was reduced to 33 % of the pre-histone control dilation. Vasodilatory 

function was completely preserved during this same experiment while in the presence of 

suramin (50 μM). Because lung injury is a significant concern in conditions characterized 

by high levels of histones such as ARDS (19), we also studied vascular preparations from 

small mouse pulmonary arteries. These blood vessels were surgically opened on one side to 

expose the endothelial cell layer for direct measurement of a fluorescent calcium indicator 

using confocal microscopy (Fig. 3 C and D). Similar to our prior findings in human and 

mouse mesenteric arteries (20), we found that histones (10 μg/mL) significantly increased 

the number of detectable calcium events compared to baseline. The presence of suramin 

(50 μM) during histone application significantly decreased the number of calcium events; 

however, the activity was still elevated when compared to the baseline control (Fig. 3 

D). Together, pre-treatment with suramin completely prevents histone-induced endothelial 

vasodilatory dysfunction in pressurized arteries and significantly decreases aberrant calcium 

signaling caused by exposure to histones.

Suramin prevents adhesion molecule expression, neutrophil recruitment, and pulmonary 
endothelial barrier disruption caused by histones.

The results of our biochemical and in vitro work provided a rationale for an in vivo 
model of histone toxicity. Circulating histones can injure platelets, erythrocytes and vascular 

endothelial cells from multiple tissue beds. However, in humans and animal models of 

trauma, lung tissue is particularly vulnerable to circulating damage associated molecular 

pattern proteins (19). Therefore, we next tested the hypothesis that suramin would prevent 

the increase in circulating biomarkers, endothelial cell activation, and influx of inflammatory 

cells into the lungs caused by histone infusion (45 mg/Kg). To specifically assess the 
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endothelial effects of suramin after histone exposure, we freshly isolated mouse pulmonary 

endothelial cells and measured their adhesion molecules using flow cytometry. The extent 

of neutrophil migration into the lungs after histone exposure was also quantified. After 

24 hours, lung tissue was dissociated, and the frequency of neutrophils determined by 

expression of CD11b and Ly6G by flow cytometry. Treatment with histones resulted in a 

statistically significant increase in the frequency of neutrophils in the lung (Supplemental 

Fig. 3 A and B). Lung endothelial cell Intracellular Adhesion Molecule-1 (ICAM-1) 

expression was also significantly increased by histones (Supplemental Fig. 3 C and D). 

Suramin ameliorated these histone-induced effects, causing a significant reduction in the 

frequency of neutrophils and expression of endothelial cell ICAM-1.

Suramin prevents lung injury and improves survival after exposure to histones.

To assess clinically relevant outcomes, we next tested whether suramin would prevent 

death and lung injury in vivo after histone exposure. We randomized mice to one of 4 

experimental groups: saline; saline and histones (75 mg/Kg); suramin (20 mg/Kg) and 

histones; or suramin (50 mg/Kg) and histones (Fig. 4 A). Survival was monitored and 

updated every minute for the 35-minute duration of the study. Groups were compared 

using a Mantel-Cox analysis and Mantel-Haenszel for the Hazard Ratio. Seventy percent 

(70 %) of animals receiving 75 mg/Kg of histones alone died abruptly within 10 minutes 

and showed symptoms such as bleeding from the nose, pink frothy sputum and signs of 

respiratory distress, and only 20 % survived the 35-minute period. In contrast, 100 % of 

animals receiving suramin at the higher dose of 50 mg/Kg with the lethal dose of histones 

survived when compared to the histone group (1.959 to 35.09 95 % CI; 8.29 Hazard Ratio; 

P<0.05; *). The lower dose of suramin (20 mg/Kg) also provided a modest survival benefit 

(36 %) when compared to the high dose (1.359 to 28.71 95 % CI; 6.25 Hazard Ratio; 

P<0.05; *) but not to the histone only group (0.9702 to 9.410 95 % CI; 2.49 Hazard Ratio; 

n.s.). In a separate set of mice exposed to histone infusion (45 mg/Kg) in the presence 

or absence of the higher dose of suramin (50 mg/Kg), we found that suramin reversed 

intra-alveolar hemorrhage visible on histology, and elevation in cell counts and protein 

measured in broncho-alveolar lavage fluid (Fig. 4 B and C). As an additional control, we 

also examined lung sections from mice receiving suramin alone (50 mg/Kg). These were 

indistinguishable from mice treated with saline (Supplemental Fig. 4 A). Pulmonary barrier 

breakdown induced by histones, quantified as the extravasation of 70-kDa FITC-labeled 

dextran, was significantly decreased by suramin. Suramin also blocked extravasation of the 

labeled dextran in renal tissue caused by histones (Supplemental Fig. 4 B).

Discussion

Histones, released from injured cells or in NETs extruded from activated neutrophils, can 

activate and damage vascular cells through several mechanisms that are not fully understood. 

Histones can activate ion channels, observed by membrane potential and current recordings 

in endothelial cells and other cells (19, 52, 53). With prolonged exposure (minutes to hours), 

or at high concentrations, histones – and histone H4 in particular – can also damage lipid 

bilayers in any cell type, including endothelial cells, and act as cell-penetrating proteins 

(11, 22, 31). Histones can also engage innate immune responses leading to prothrombotic 
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activation of endothelial cells (27, 54, 55) or pyroptosis (6, 24–26). All these mechanisms 

can contribute to acute endotheliopathy. Here, we looked at the interaction between 

extracellular histones and suramin and demonstrated that not only does suramin form a 

stable complex with histone proteins, but also, this neutralizing effect completely prevents 

histone-induced endothelial dysfunction and mortality. Furthermore, we also explored the 

interaction between NET-derived histones (i.e. citrullinated histones) and suramin. We found 

that citrullination, an important post-translational modification on histones essential for the 

formation of NETs, prevents the interaction between citH3 and suramin. The loss of charge 

on NET-derived histones most likely decreases the binding force between citrullinated 

histones and suramin, and therefore suramin’s chelating (protecting) effect. Suramin has 

been used for over 100 years as an anti-parasite and anti-cancer agent, and, importantly, is 

considered among the safest and most effective drugs for health care by the World health 

organization. This discovery of a new mechanism of action for a widely available and 

easily administered drug, as a blocker of deleterious histone effects, provides a tantalizing 

target for the potential clinical therapeutic use of suramin in acute immuno-vascular and 

thrombo-inflammatory conditions.

Our results provide new insight into the pathophysiological outcomes of histone-induced 

organ injury. We provide the first demonstration that in native, pulmonary artery 

preparations, histones elicit calcium-mediated events like those we previously observed in 

mesenteric resistance arteries from human and mouse. We also found that histone infusion 

caused endothelial barrier breakdown of small blood vessels in both kidney and lung, with 

increased extravasation of the 70-kDa dextran, but not brain. This is consistent with other 

evidence that pulmonary and renal (6, 17, 19) tissue beds are highly sensitive to histone-

induced injury. It was recently shown that histones increased paracellular permeability in 

the hippocampus but not cortical brain regions (23). It is possible that we missed these 

regional cerebrovascular effects because we quantified vascular leak for the entire brain and 

not specific regions, or because we used a 70-kDa tracer rather than a smaller sized dextran 

which would more specifically target blood-brain barrier permeability. Here, our focus was 

on lung injury, with results in freshly harvested lung cells, isolated vascular preparations, 

and in vivo models uniformly supporting model in which histones activate endothelial cells 

to increase cellular adhesion molecule expression, in conjunction with increased release of 

circulating adhesion molecules. These changes in the pulmonary vascular endothelium result 

in increased neutrophil recruitment to the lungs.

Importantly, we also demonstrate a new, endothelial-dependent mechanism by which 

histones increase thrombosis. Prior studies have shown that histones can increase plasma 

thrombin generation in purified systems by reducing thrombomodulin-dependent protein C 

activation (56). Here, we provide new evidence that histones can rapidly activate endothelial 

cells directly to promote thrombin generation. We show that on endothelial cells, in the 

absence of added tissue factor (TF) or phospholipids, thrombin formation occurs slowly, but 

when histones are applied, thrombin generation is accelerated, with a lag time of <5 minutes. 

This reaction was blocked by suramin. The time course of this reaction, occurring minutes 

after histone exposure, is not consistent with known pro-coagulant responses of endothelial 

cells to histones, such as release of VWF (54), upregulation of TF (27), or downregulation of 

thrombomodulin mRNA and surface antigens (55) which occur 1 to 8 hours after exposure. 
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Thus, rapid phosphatidylserine translocation, possibly due to TMEM16f activation (57, 

58), coupled with mobilization of “cryptic” TF in the endothelial cell membrane, likely 

drive the rapid reactions we observe. Understanding the effectors of rapid procoagulant 

responses to histones may improve targeted therapies to protect against excessive thrombosis 

in inflammatory conditions.

Suramin offers several advantages over other therapeutic strategies to prevent histone-

medicated vascular injury. Polyanions such as heparin can neutralize histones and prevent 

histone-mediated cytotoxicity (42, 59–61). Heparin improves outcomes in some patients 

with sepsis (59) or COVID-19 (62, 63), but the mechanisms are not fully understood. 

Furthermore, heparin cannot be safely used in all patients, such as those requiring surgical 

procedures, because of the risk of hemorrhagic bleeding. Unlike heparin which requires 

continuous infusion, suramin dosing for acute inflammatory conditions is infrequent (once 

per week), and extensive experience with this drug has shown that it has an excellent safety 

profile. Anticoagulant effects have been demonstrated in trials of continuous infusions of 

suramin after 14 days, but single injections of suramin do not impact blood clotting(64). 

It is also readily available world-wide, at a low cost. Other naturally-occurring substances, 

such as pentraxin 3 (65), activated protein C (APC) (35), C1 esterase inhibitor (66), and 

inter-α-inhibitor proteins (39); anti-histone antibodies (3, 4, 42) and synthetic polyanions 

(22, 44), can also neutralize excessive histones to prevent toxicity, but these drugs are either 

not approved or not available for human use. Albumin or fresh frozen plasma may have 

benefits in trauma and sepsis, in part due to histone binding (67), but blood products are 

limited resources with high costs compared to suramin.

Taken together, these results provide evidence supporting the use of suramin in trauma 

and sepsis. This is particularly important in the context of the unprecedented global public 

health crisis caused by the novel SARS-CoV-2 virus, because histone levels are elevated 

in individuals with COVID-19 (18, 68), and endotheliopathy and thromboinflammation 

secondary to NETs drives progression from systemic inflammation to organ failure and 

death (1, 2). Of note, suramin may have other mechanisms of therapeutic action in viral 

illness. Polyanion inhibitors have been used to block viruses that require cell surface 

sugars such as heparan sulfate (HS) to infect humans, which include HIV, Ebola, Zika, and 

SARS. These inhibitors include naturally occurring therapeutic polyanions such as heparin, 

synthetic polyanions, such as suramin, or modified cyclodextrins (69). Heparin is the subject 

of over a dozen registered clinical trials for SARS-CoV-2 (clinicaltrials.gov) and has efficacy 

in COVID-19 (63). Most of these trials are testing injectable unfractionated heparin or low 

molecular weight heparin at prophylactic or therapeutic anticoagulant doses. Other trials are 

using intranasal or nebulized heparin in an attempt to block viral entry, because heparin can 

serve as a decoy for the target cell heparan sulfate needed for optimal interaction between 

viral spike protein and ACE2. Heparin is also believed to have immunomodulatory and 

endothelial protective effects, based on evidence of prior benefit in sepsis from other causes, 

and histone binding may be an important therapeutic mechanism of action for heparin (59, 

70). Suramin is a competitive inhibitor of heparin, and it has been suggested – but not 

established – that suramin shares a mechanism of action against SARS-CoV-2 by acting as a 

decoy for heparan sulfate that can block spike protein and ACE2 interactions (71). Suramin 
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also inhibits the main protease needed for SARS-CoV-2 infection (72), and it is the subject 

of at least one COVID-19 clinical trial at the time of this submission (clinicaltrials.gov).

While our data demonstrate that direct interaction and neutralization of histone proteins is a 

mechanism of action for suramin, we did not rule out the possibility that the drug has other 

mechanisms which might contribute to endothelial protection. For example, previous studies 

have demonstrated mechanisms of action for suramin, including known effects on several 

many enzymes and receptors. Published studies show that suramin exhibits activity blocking 

downstream G protein mediated signaling of various GPCR proteins including A1 adenosine 

receptor, D2 receptor, P2 receptor, rhodopsin and ryanodine receptors(73–76). Suramin was 

also reported to inhibit human sirtuins (SIRT1/T)(77). Additionally, at high concentrations, 

suramin has cell-independent effects on blood coagulation and clot formation(64). Whether 

these mechanisms involved in endothelial cell protection and improved mice survival and/or 

improved acute lung injury caused by histones was not studied here. Because our study was 

focused on histone-induced microvascular damage and the protective effect of suramin in 

this context, we did not include mice receiving suramin alone in all experiments. Although 

this is a limitation to our work, the literature already contains several studies examining 

the effects of suramin alone. For example, an experimental group receiving suramin alone 

at a similar dose (60 mg/Kg) was included in a previous study that examined effects 

of suramin on the lung in the context of bleomycin induced lung injury (78). The mice 

receiving suramin had no difference in survival from those receiving saline. Furthermore, 

suramin alone had no impact on total and differential cell count in BAL fluid. This 

contrasts with the effects of toxic doses of suramin (250–500 mg/Kg), which produces 

abnormal enlargement of lungs and evidence of lung pathology like the lysosomal storage 

disorder, mucopolysaccharidosis (79, 80). Of note, the combination of histone and suramin 

produced an ICAM-1 response that appears even lower than histones alone (Supplemental 

Fig. 3 D). This suggested that the protective effects of suramin in the context of histone 

exposure may be explained not only by binding histones in solution, but also through 

other mechanisms of action. In support of this, prior work has shown that suramin alone 

can decrease immunogenicity of renal endothelial cells by reduction in their expression of 

ICAM-1 (81). In another study, suramin suppressed cell membrane permeability in cultured 

kidney cells via inhibitory actions on connexin 43 hemichannels (82). Thus, other known 

mechanisms of action which are independent of histone exposure, including decreases in 

ICAM-1 expression and suppression of membrane permeability, may also contribute to 

salutary benefits of suramin we observed.

In summary, we demonstrate a new and previously unreported mechanism of action 

for suramin. Suramin blocks cytotoxic effects of histones and prevents histone-induced 

vasodilatory dysfunction, endothelial cell activation, thrombin generation, lung injury, and 

mortality in mice. Our results provide a mechanistic basis and rationale for clinical trials of 

suramin as a repurposed treatment that can be rapidly deployed to prevent endothelial injury 

and excessive blood clotting in conditions associated with high circulating histone levels 

such as trauma and sepsis.
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Key Points

Histones produce acute thrombo-inflammatory responses of vascular endothelium

Suramin protects small blood vessels from histone-induced damage
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Figure 1. 
Suramin binds histones in solution. (A) The chemical structure of suramin. (B) In vitro 
fluorescent spectroscopy studies were used to biochemically establish the interaction 

between suramin and histones. We established the absorbance and emission spectra for 

histones and suramin in solution (Supplemental Fig. 1 A), and then measured suramin 

sodium salt intrinsic fluorescence using increasing concentrations of suramin to determine 

the saturation range of the detector (Supplemental Fig. 1 B). (C) Scatchard plot analysis 

of the binding curve demonstrates a single high-affinity binding site with a dissociation 

constant (Kd) of 250 nM. (n=3 replicates for binding studies). (D) Molecular dynamics 

Villalba et al. Page 22

J Immunol. Author manuscript; available in PMC 2024 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



simulations showing interactions between suramin molecules and the histone octamer in 

solution. Several exposed amino acid residues including arginine, asparagine, lysine, and 

threonine form hydrogen bonds with the sulfate groups on suramin (Lys118, Thr76, Arg71, 

Lys77, Thr116, Arg45, Asn108, Arg23, Arg63, Lys91, Arg83, Arg28). These include 

residues on H2A, H2B, H3, and H4, which are predicted to form stable electrostatic 

interactions with the sulfate groups on suramin.
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Figure 2. 
Histones drive rapid thrombin generation on human endothelial cells which is blocked by 

suramin. (A) Calibrated automated thrombogram (CAT) tracings of thrombin generation 

(nM) vs time (min) by cultured human endothelial cells (Ea.hy926) in re-calcified, pooled, 

healthy human plasma. Histones (50 μg/mL), suramin (50 μM) or a combination of both 

were exogenously added to the cell culture and plasma samples as needed. (B) Summary 

data for lag time (min) in control (9 ± 0.8 min; n=6), suramin (8 ± 0.7 min; n=6), suramin 

and histones (67 ± 0.9 min; n=6) and histones (1 ± 0.1 min; n=6) samples. (C) Summary 
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data for peak thrombin (nM) in control (96 nM; n=6), suramin (94 ± 4 nM; n=6), suramin 

and histones (106 ± 2 nM; n=6) and histones (127 ± 2 nM; n=6) samples. (D) Summary 

data for area under the curve (AUC; nM thrombin) in control (143732 ± 2498 nM; n=6), 

suramin (139915 ± 2355 nM; n=6), suramin and histones (147896 ± 02968 nM; n=6) and 

histone (180248 ± 3977 nM; n=6) samples. (E) Summary data for time to peak (min) in 

control (31 ± 0.8 min; n=6), suramin (29 ± 0.8 min; n=6), suramin and histones (28 ± 

0.6 min; n=6) and histone samples (10 ± 0.3 min; n=6). (F) Summary data for velocity 

(nM thrombin/min) in control (3.0 ± 0.1 nM thrombin/min; n=6), suramin (3.2 ± 0.1 nM 

thrombin/min; n=6), suramin and histones (3.8 ± 0.04 nM thrombin/min; n=6) and histone 

(13 ± 0.3 nM thrombin/min; n=6) samples. Data are expressed as mean ± SEM. Ordinary 

one-way ANOVA with Bonferroni’s correction for multiple comparisons; P<0.05. A new 

biological replicate culture well was used for each group.
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Figure 3. 
Suramin prevents endothelial dysfunction and calcium overload caused by histones. (A) 

Representative tracings of pressurized (80 mm Hg), third-order, mouse mesenteric arteries. 

Histones (10 μg/mL) or saline (control) was flowed through the lumen at 2 μL/min (<5 

dynes/cm2) for 30 minutes. Dilations to the endothelial-dependent vasodilator NS309 (0.1; 

0.3; 1 μM) pre-flow and post-flow were recorded. In one subset of experiments suramin 

(50 μM) was superfused abluminally for 10 minutes prior to and then continuously during 

histones flow. Maximal dilations were elicited at the end of the experiments using 0-Ca2+ 
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PSS. (B) Representative images from en face mouse pulmonary arteries loaded with Fluo-4 

(10 μM) on a spinning disk confocal microscope. All images are from the same field of 

view recorded over 2 minutes. Arrows indicate large histone-induced calcium event F/F0 

ROIs. (C) Paired summary data of percent dilation to 1 μM NS309 pre-flow and post-flow 

of saline (pre-sal 99 ± 1 vs. post-sal 97 ± 3 %; n=5; n.s.), histones (10 μg/mL) (pre-his 97 ± 

2 vs. post-his 33 ± 2 %; n=5; * P<0.05; Paired Student’s T-test), and suramin (50 μM) with 

histones (pre-sur+his 99 ± 1 vs. post-sur-his 98 ± 1 %; n=5; n.s.). (D) Summary data of the 

paired total number of events per field after saline (control; 19 ± 5 events; n=4), histones 

(His; 10 μg/mL; 41 ± 6 events; n=4), and suramin (50 μM) and histones (Sur+His; 27 ± 6 

events; n=4) application. Significant differences were determined using a repeated measures 

one-way ANOVA test with a Holm-Sidak correction for multiple comparisons for all three 

groups; P<0.05. Data are represented as mean ± SEM. Scale bar = 10 μm. A new biological 

replicate was used for each arteriography and calcium imaging experiment.
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Figure 4. 
Suramin improves survival and prevents lung injury and edema caused by histones. (A) 

Saline injected (control; n=6), a lethal dose of histones (His; 75 mg/Kg; n=10), and a 

lethal dose of histones with suramin (Sur+His; 20 mg/Kg n=11 or 50 mg/Kg n=6) was 

injected into mice and survival was recorded over the course of 35 minutes. Suramin was 

injected intraperitoneally. Mantel-Cox test; P<0.05; *, for each group compared to saline. 

(B) Representative images of hematoxylin and eosin stain (H&E) of a histological section 

of paraffin-embedded fixed lung tissue from a mouse from saline, histone, and suramin + 

histone treated groups (n=3). The dark blue color denotes cell nuclei, light pink extracellular 

matrix, and the red erythrocytes. Scale bar = 200 μm. (C) Summary data of the total, 

non-differentiated cell counts in the bronchial-alveolar lavage fluid (BALF) at 4 hours 

after saline (control; 43333 ± 4410 cells/mL; n=3), histones (His; 45 mg/Kg; 167847 ± 
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22008 cells/mL; n=7), or suramin (50 mg/Kg and histone injection (Sur+His; 41667 ± 5725 

cells/mL; n=6) and 24 hours after saline (control; 48000 ± 3742 cells/mL; n=5), histones 

(His; 45 mg/Kg; 120000 ± 12649 cells/mL; n=6), or suramin (50 mg/Kg) and histone 

injection (Sur+His; 45000 ± 10247 cells/mL; n=6). Summary data for the total protein 

leakage into the BALF at 4 hours after saline (control; 188 ± 19 μg/mL; n=5), histones (His; 

45 mg/Kg; 1215 ± 186 μg/mL; n=9), or suramin (50 mg/Kg) and histone injection (Sur+His; 

507 ± 66 μg/mL; n=5) and 24 hours after saline (control; 239 ± 21 μg/mL; n=5), histones 

(His; 45 mg/Kg; 901 ± 249 μg/mL; n=9), or suramin (50 mg/Kg) and histone injection 

(Sur+His; 225 ± 39 μg/mL; n=7). Data are expressed as mean ± SEM. Two-way ANOVA 

with Bonferroni’s correction for multiple comparisons; P<0.05. A new biological replicate 

was used for each survival study experimental group, H&E staining (n=3 for each group), 

cell counts and total protein in BALF measurements.
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