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ABSTRACr

The volume flux, Jv, and the osmotic driving force, aA i, across excised
root systems of Zea mays were measued as a function of AP, the
hydrostatic pressure difference applied across the root, using the pressure
jump method previously described (Miller DM 1980 Can J Bot 58: 351-
360). J, varied from 5.3% to 142% of its value in intact transpiring plants
as a result of the application of pressure differences from -2A to 2A
bar. The calculated hydraulic conductivity was 5.9 x 10' cubic centi-
meters per second per bar per gram root and was independent of pressure.
A model of root function similar to those appearing in the literature failed
to provide quantitative accord with the data. A proposed model, which
includes the effect of volume flux on the distribution of solutes in the
symplasm, predicts accurately J1 Awr, and the xylem solute concentration
as a function of AP.

Several authors (2-5, 10) have devised models ofroot functions
in an attempt to predict Jv, the rate of exudation from excised
root systems as a function of AP, the hydrostatic pressure differ-
ence between the outside surface of the root, Po, and the xylem
vessels, Px, (AP = Po - Pr). These models were tested against
data obtained from the earlier literature as reveiwed by Fiscus
(3) together with more recent observations obtained by him (4).
In all this work, the applied pressures were positive, since Px was
held at atmospheric pressure, while J, was increased by raising
Po.
The present work extends these data in two ways. First, not

only were measurements of J, made as before by increasing P0,
the pressure outside the root, but in addition, by raising the
xylem pressure P, above Po, measurements of low values of J, at
negative AP were obtained. Second, with each measurement of
Jv, a corresponding measurement of the osmotic driving force
within the root was obtained. These observations were made
using an apparatus previously described (6), which allows the
recording against time ofeither J, under a fixed pressure gradient
AP, or the root pressure, Px, when the flow rate, Jv, is zero. In
addition, the apparatus has the ability to determine how great an
increase in P, is just necessary to bring about an instantaneous
termination of flow. The procedure was to establish a pressure
drop across the root system and then to record the volume flow
rate, Jv, once it had become steady. This should obey the well
known expression:

Jv = Lp(AP-fAir) = Lp(P,- Px- ar) (1)

where Lp is the hydraulic conductivity of the root system, a is
the reflection coefficient of transported ions, and Air is the sum

of all osmotic pressure gradients across the root. Next, the
pressure at the cut end of the root was increased by a series of
pressure jumps until one was found which rendered J, zero
momentarily. If this critical pressure jump is APX,, then expres-
sion 1 becomes

Jv = Lp(Po- (Px + APE") - a r) = 0

or

AP'= (Po- Px - aAr) (2)
and since PO and P. are known, the osmotic driving force aAr
can be obtained. Furthermore, it is unlikely that any changes in
concentration gradients within the root system will occur during
transition between the flowing and nonflowing states, since the
application of the pressure jump required a time interval of less
than 0.3 s. Thus, the driving force which APX' nullifies, must be
the same one which caused the volume flow, Jv, immediately
before its application, and it should therefore be valid to rewrite
expression 1 as J, = LpAPx0, and to calculate the hydraulic
conductivity as L4 = JV/APX0. The value of L4 can be found by
this method for each applied pressure and is furthermore inde-
pendent of the value of a.

It will be shown that the osmotic driving force across the root
becomes larger at high flow rates and thus opposes volume flow
through the root. Furthermore, since the magnitude of this force
is greater than the maximum which could be generated by
differences between the concentration of ions in the exudate and
the outside solution (even when the former is zero), further
concentration gradients must be present within the root. A model
in which such gradients are generated by the flow is described
and shown to predict Jv, Air, and the xylem solute concentration,
X, as a function of AP.

MATERIALS AND METHODS

Hybrid sweet corn (1 19 Seneca 60) was grown as before (9),
with roots supported by glass beads confined in growth tubes.
These were excised and sealed to the apparatus previously de-
scribed (6) which had been altered so as to allow both positive
and negative pressure differences to be applied across the root
(9).
Lower rates of volume flow were measured by the automatic

syringe described earlier (6). This consisted of a tube leading
exudate from the root which terminated in a mercury filled U-
tube manometer. As exudate entered the tube, the mercury was
forced up one arm of the manometer and, in so doing, activated
a commercial level-sensor attached to it. This in turn energized
a motor driven syringe, which withdrew exudate from the tube
(to which it was connected), thus lowering the mercury level
until the sensor (and motor) was deactivated. By a continuous
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repetition of these events, the volume of exudate entering the
tube was exactly compensated for by an increase in syringe
volume. The syringe motor, while operating, rotated the shaft of
a potentiometer whose sliding contact potential was, as a conse-
quence, directly proportional to the syringe volume. Thus, a
recording of this potential provided a plot of the exudation
volume against time, the slope of which equalled the exudation
flow rate. An example of one such recording is shown in Figure
1.
At higher external pressures, however, the syringe motor was

too slow to match the rate of exudation, and volume rates had
to be measured manually. For this procedure, valve C (Ref. 6;
Fig. 2) was closed and a timer started when the level sensor
indicated that the mercury in the U-tube had reached the control
point. The syringe volume was increased manually by a prede-
termined amount causing the mercury to drop below the control
point and the timer stopped when it again reached this point.
The volume increase divided by the measured time equals the
flow rate. Examples of this type of measurement are plotted in
Figure 2.
As was shown previously (6), the exudation rate was constant,

only briefly following excision, and then declined to about 90%
ofthe original value after 1 h. Since the rate of decline increased
after this, measurements were confined to the 1st h. Furthermore,
all readings at pressure differences other than zero were bracketed
by readings made at zero pressure before and after it, as shown
for the flow rate in Figures 1 and 2. Thus, by dividing the value
of each reading obtained under pressure, by the average of the
zero pressure readings obtained immediately before and after it,
all measurements were normalized to those at zero applied
pressure. Each root system was used to obtain readings at two or
three different non-zero pressures and a sufficient number of
root systems was employed to provide 10 to 12 replicates at each
pressure.
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FIG. 1. Example of the measurement of a normalized flow rate at
lower applied pressures. The solid line is a photograph of a recording-
made by the automatic syringe-of the exudate volume as a function of
time. A pressure of 2.0 bar was applied to the cut end of the root at B
(i.e. AP = -2.0 bar) and reduced to zero again at D. The broken lines
are extensions of the linear portions of the curve. The normalized flow
rate is the slope of CD divided by the average of the slopes of AB and
EF.
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FIG. 2. Example of the measurements of normalized flow rates at
higher applied pressures. The points are plots of flow rates measured
manually as a function of time. Pressures PO, applied to the external
solution was 0 at A, D, E, and H; 2.4 bar from B to C and 1.6 bar from
F to G. The broken lines are drawn through points whose measurements
appear to have stabilized following a change in pressure. The normalized
flow rate is (B + C)/(A + D) at 2.4 and (F + G)/(E + H) at 1.6 bar.

The transpiration rate ofwhole plants was measured by deter-
mining the water lost from a reservoir supplying six plants, during
the last half of the 16-h light period. Correction for evaporation
was made by subtracting the water lost under similar conditions,
but without plants. This measurement was made, both under
normal growing conditions in a controlled environment room
(C.E.R. [6]) and in a greenhouse under full mid-June sunlight,
using solution grown plants raised under these conditions.
Root weights were obtained following centrifugation (6). Os-

motic pressures were obtained using an Advanced Instruments
(Newton Highlands, MA) freezing point depression osmometer.
Both standards supplied by the manufacturer and those made by
weighing oven-dried NaCl were employed.

All experiments were performed on roots held at 30C.

RESULTS
The volume flux, Jv, is usually found by dividing the rate of

volume flowing through a barrier, by the area of the barrier. The
root system is a highly branched complex structure however,
making it difficult to assign an unambiguous area to it, even
though its dimensions are well known (7). To avoid this difficulty
here, the flow rates obtained were divided by the root weight,
providing the flux with units of volume time-' mass-'. Since the
root density (mass volume-') is close to one (7), the flux could
also have been expressed as time-', but the former convention,
used in the previous papers in this series, will be used here.

Seventy-two root systems were employed in this work. For
each, the first measurements were made under zero pressure
difference as soon as possible after excision (within 5-10 min).
Averaging these results provided the following absolute values at
zero pressure difference (together with standard deviations): flow
rate, Jv = 0.236 ± 0.065 gl s-'(g root)-'; pressure jump, APx°
0.402 ± 0.102 bar and the initial rate of pressure increase
following the pressure jump (6), (dPx/dt)o = 0.122 + 0.035 bar
y-1.

With each root, the initial zero pressure measurements were
followed by two or three further measurements under pressure,
alternating, of course, with readings at zero pressure. These were
converted to relative values, as mentioned above, by dividing
them by the mean ofthe two zero pressure readings made before
and after them. Ten to twelve such readings, each made on a
different root, were combined to give each ofthe average relative
values listed in Table I. Finally, multiplying these latter values
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Table L. Normalized Values of Volume Flow, J,, Pressure Jump, AP,, and Initial Rate ofPressure Increase,
(dPIdt)i Measured at Various Pressures

PO, the pressure applied to the outside solution, and P., the pressure applied to the cut end of the root, are
in bars above atmospheric (which is taken as zero). The values of Jv, APF0 and (dP/dt)0 are relative to those
measured at P, = P0 = 0 (for the same root) and are thus unitless. Numbers in brackets, SD.

P0 P, J, AUPI (dPIdt)o
bar relative units

0 2.4 0.114(0.043) 0.122 (0.061) 0.241 (0.074)
0 2.0 0.173 (0.072) 0.153 (0.072) 0.285 (0.122)
0 1.6 0.315 (0.047) 0.324 (0.086) 0.427 (0.131)
0 1.2 0.420(0.068) 0.400(0.068) 0.551 (0.150)
0 0.8 0.582 (0.034) 0.623 (0.101) 0.663 (0.164)
0 0.4 0.754 (0.047) 0.746 (0.130) 0.842 (0.142)
0 0 1.000 1.000 1.000

0.4 0 1.259 (0.039) 1.326 (0.128) 1.226 (0.133)
0.8 0 1.625 (0.106) 1.685 (0.170) 1.593 (0.315)
1.2 0 1.904 (0.121) 1.777 (0.385) 2.144 (0.385)
1.6 0 2.341 (0.427) 2.450 (0.413) 2.621 (0.335)
2.0 0 2.669 (0.248) 2.967 (0.801) 3.245 (0.896)
2.4 0 3.060 (0.498) 3.165 (0.572) 3.403 (0.782)

Table II. Root Parameters as a Function ofthe Applied Pressure
AP = PeP where P0 is the pressure at the outer surface of the root and Px that in the xylem. The AP = 0

values of the volume flow, J., the pressure jump, AU, and the initial rate of pressure rise dPj/dt)0 (all
underlined) were absolute values found by averaging measurements made on 72 roots immediately following
excision. The remaining values were calculated by multiplying the latter figures by the ratios in Table I. The
hydraulic conductivities were calculated from the ratio Lp = J/APx, for each applied pressure. The osmotic
pressure gradient found by freezing point depression was Arf= wr0 - -rfwhere wr0 is the osmotic pressure of the
outer solution (0.5 bar) and rf is that of the xylem exudate reported previously (9). The osmotic pressure
gradient found by direct pressure measurement was A,rp = (AP - APx,)/a (from equation 2).

AP J, APU° (dP/dt)o Lp AWf Ars
bar l s-' g' bar bar s' ul s' bar' g' bar
-2.4 0.027 0.049 0.026 0.551 -2.81 -2.88
-2.0 0.041 0.062 0.035 0.661 -2.62 -2.43
-1.6 0.074 0.130 0.052 0.569 -2.23 -2.03
-1.2 0.099 0.161 0.067 0.615 -1.84 -1.60
-0.8 0.137 0.250 0.081 0.548 -1.56 -1.24
-0.4 0.178 0.300 0.130 0.593 -1.20 -0.82
0.0 0.236 0.402 0.122 0.587 -1.12 -0.473
0.4 0.297 0.533 0.150 0.557 -0.76 -0.156
0.8 0.384 0.677 0.194 0.567 -0.68 0.145
1.2 0.449 0.714 0.262 0.629 -0.453 0.572
1.6 0.552 0.985 0.320 0.560 -0.475 0.724
2.0 0.630 1.193 0.396 0.528 -0.337 0.949
2.4 0.722 1.272 0.415 0.568 -0.266 1.327

by the absolute values found at zero pressure (previous para-
graph) gave the absolute values for each applied pressure listed
in Table II. This procedure was followed in the hope ofobtaining
results which are relatively free from effects due to aging of the
excised roots.
The pressure jump, APX, reported here is somewhat smaller

than that reported earlier (6). This difference probably arises
from the change in medium, since NH4', a rapidly penetrating
ion, was present in the first medium but not in the one used
here.
The root weights averaged 2.4 ± 0.4 g. The correlation coeffi-

cient between weight and initial J, at zero pressure was -0.08
showing that the volume flux was virtually independent of root
size. This is important since it justifies the comparison of flow
rates measured with roots of different sizes on a 'per weight'
basis.
The transpiration rate was found to be 0.51 ± 0.4 ,ul s' (g

root)-' in the C.E.R. and 1.2 ± 0.1 ,l s-' (g root)-' under direct
sunlight.

DISCUSSION

Equation 1 is basic to any discussion of the flow of water
through roots. It contains the coefficients a and Lp, however,
which must first be evaluated. In the previous publication (9), it
was shown that, for the roots used in this work, the reflection
coefficient, a, is equal to 0.85. The hydraulic conductivity was
calculated using the present data, and the results listed in Table
II. These show that L4 has only a slight dependency on AP
(correlation coefficient = -0.3). Thus, Lp will be assumed to be
constant at all pressures and will be assigned that value found
for it at zero pressure (where there was the largest number of
determinations) of 0.59 ± 0.16 ,l s-' bar' (g root)-'. Column 6
of Table II is a list of the osmotic pressure (o.p.) differences at
each applied pressure, AWrf= 1 - lrf, where w0 is the o.p. of the
outside solution (0.5 bar) and irf is the o.p. for the exudates
collected at the various applied pressures (determined previously
[9] by freezing point depression). Finally, in column 7, Arp, the
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o.p. differences as calculated from the pressure jump data using
equation 2 are given.
The goal of previous workers (2-5, 10) was to devise a model

of root function which would accurately predict the volume flow
for any positive value of the applied pressure. The model which
emerged considered the root symplasm to act essentially as a
single membrane separating the xylem compartment from the
outside solution. In this model, flow results not only from the
application of a hydraulic pressure across the root but also from
a concentration difference generated by active pumping ofsolutes
across the membrane at a rate J,. These workers assumed a
constant value for J, which is valid when the volume flow rate
is high (as was the case for their data) but as J, approaches zero,
as in the present work, this assumption predicts that the root
pressure will become infinite. Actual measurements have shown,
however, that with zero flow rate the root pressure rises rapidly
at first but more slowly with time, finally approaching a limiting
value of 4.21 bar above the outside solution (6, 8, 9).
Net transport in any biological system is the difference between

the fluxes Fin and Fo,.u These unidirectional fluxes are frequently
seen to obey Michaelis-Menten kinetics so that the transport
equation can be written as

=dn,. - Fo.
C0_ ,f C (3)

dt K°m + CO KlmK,,+C
where dn/dt is the number of solute molecules passing through
a unit area of membrane per unit time, Fi, and Fo0 are the
individual fluxes, Vo%, Kgm, and Co are maximum rate constant
inward, affinity constant, and concentration at the outer mem-
brane surface and Vma, Km,, and Cl are their counterparts at the
inner membrane surface. Since the volume of solution surround-
ing the root was much larger than the root itself, CO, and hence
Fi,, was constant for all experiments reported here. The values
ofKm and Vm,, have been determined for a number of facilitated
transport systems which are not active. In active systems, how-
ever, it is usually found that Km is so large as to exceed any value
of Cl attainable and therefore Fo., kC1 where k = VI ,1,/KIm.
Equation 3 thus reduces to

dn Fi -kC (4)
dt

from which we can conclude that transport will occur into the
root (i.e. dn/dt will be positive) as long as kCI << Fi,n and
furthermore Cl will tend to rise until F,0 = kG,. That this happens
in the root is demonstrated by the recordings of the rise in
osmotic pressure of the xylem which results when exudation is
prevented (6, 8, 9). This pressure is proportional to the concen-
tration of solutes transported to the xylem, which can be seen to
approach a maximum value with time. Thus, if the value of the
xylem concentration for which transport ultimately becomes zero
(at infinite time) is X., equation 4 can be written

dn
J5 = dn = k(X. - X) (5)

where X is the total concentration of solute in the xylem at any
time t. This expression states that active transport will operate in
such a direction as to make X = X. and further predicts that a
plot of J, against X should be a straight line of slope = -k and
intercept kX. Plots of this type have been shown to be linear
for individual ions (9) and should therefore be valid for the total
concentration (X).
Another prediction which previous theories make is that, since

they are based on a two compartment model, the total osmotic
pressure drop across the membrane A7rf should simply be the
difference between the xylem o.p., 7rf, and the outside o.p., K,,,
and this should therefore be equal to Air,. It can readily be seen

CoIf/M 0

FIG. 3. Top, Simplified cross section of a root branch. Bottom, Con-
centration (left) and pressure profiles predicted by the model for flow
under a positive applied pressure. The shaded areas represent the sym-
plasm which is bounded on each side by a membrane. CO is the concen-
tration of solutes in the outer solution, SO and SI are the concentrations
on the symplasmic side of the outer and inner membranes, and X is that
in the xylem. P0 to P., are pressures at the locations indicated, and LI to
L3 are the hydraulic conductivities as specified in the text.

by comparing the last two columns in Table II that this is only
true at the lowest flow rates, beyond which increasing J, brings
increasing discrepancies, to as high as -1.6 bar. This would seem
to indicate that as a result of flow, other osmotic pressure
gradients which oppose the flow must be present somewhere in
the system. These probably arise as a result of the flow sweeping
solutes away from the membranes separating the symplasm from
the outer solution and piling them up against the membranes
separating the symplasm from the xylem (1). The result of this
phenomenon acting in a simplified model of the root would be
to establish the concentration and pressure profiles shown in
Figure 3. To test the validity of this model, equations relating J,
andXto APmust be derived and their predicted values compared
to those observed. To do this, expressions describing transport
of water and solute across the outer membrane, the symplast,
the inner membrane, and the xylem will be derived separately
and then combined. First, however, certain generalizations con-
cerning transport must be made.

In the preceding report (9), the six major inorganic ions present
in the outer solution were found at higher concentration in the
cell sap than in the outer solution and must therefore have been
actively transported across the outer membrane. The nitrate ion
was then partially converted by metabolism to other species
(mainly NH4' and amino acids) which were transferred together
with unchanged N03- and the other inorganic ions into the
xylem. The final equilibrium concentration of many of these
species in the xylem was different from that in the symplasm,
showing that active forces are at work during transport through
the inner membrane as well. Their total concentration on the
other hand, proved to be roughly the same in both compart-
ments. This was due to the fact that many of the actively
transported ions, such as H+ and the amino acids, were at low
concentration, while those showing a deficit such as K+, were
partially replaced by other ions (NH4I). Thus, ifwe consider only
the total number of moles of solute passing through the root, or
in other words treat all chemical species as a single solute,
transport through the outer membrane can be considered active
and that through the inner membrane nonactive, but facilitated.
We may now proceed to the derivation of the flux equation

region by region as follows.
The Outer Membrane. Letting S0 be the solute concentration
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and PI the pressure at the symplasmic (inner) surface ofthe outer
membrane (see Fig. 3), the osmotic pressure difference across
the outer membrane can be written as Air = cRT(Co - So) and
expression 1 becomes

Jv = L[Po - PI -aRT(C, - Se)]
where Li is the membrane hydraulic conductivity (per g root).
Following the same arguments used to derive equation 5, the
active solute transport should then be given by

J. = K,(S. - S,)
where K, is the transport rate constant (per g root), and S., is the
highest level of concentration to which the active transport
system can raise the solute. In addition there will be transport
due to solvent drag which has the form ( I ) (1 - a)C Jv where C
is the mean concentration of solute in the membrane, = (CO +
S0)/2. Adding this to Ja gives the total solute flux.

Js = K1(S. - S,) + #(Co + So)Jv
where ,B = (1 - a)/2.
The Symplasm. Solutes in this region will be carried inward

by the flow at the rate S. Jv, where S is the solute concentration
at a distance r from the center of the root, and by diffusion at
the rate AfD(OS/Or) where A is the wall area of a cylinder of
radius r, f is the fraction of this area open to diffusion (i.e. as
plasmodesmata or cell walls), and D is the diffusion coefficient.
(Note that the diffusion term is positive since flow is defined as
positive in the direction ofdecreasing r). If the total length ofthe
root is L, so that A = 27r rL, the total solute transport at r will
be the sum of the mass flow and diffusion processes, or

Js = S-.Jv + 27rrLfD(-a)
which is similar to Dainty's "convection-opposed-by-diffusion"
equation (1). Since mass must be conserved, Js and Jv must be
constant for all values of r. Thus, by rearranging and integrating
this equation between the limits S = S, and S, and r = r0 and r1
(the outer and inner radius of the symplasm), the solute flux is
found to be

(S1 - ESo)Jv
(I -E)

where E = EXP(K2J,) and K2 = [ln(r,,/rI)]/27rLfD. The volume
flow expression may be found by integrating

J= 27rrLfL, aOr)
where Ls is the local hydraulic conductivity of the symplasm, (or
apoplasm, depending on the route taken by the water) between
the limits Pi and P2 and r0 and r,, to give

Jv = L2(P - P2)
where L2 = 27rLfL,/ln(r,,/r1), the overall hydraulic conductivity
of the symplasm.
The Inner Membrane. Since this membrane is not considered

to be active, transport will operate in such a way as to equilibrate
the concentrations on both sides ofthe membrane, so that (again
including the solvent drag term)

Js = K3(SI- X) + #(S, + X)JV
with K3 being the transport rate constant. If L3 is the hydraulic
conductivity of this membrane, the volume flow will be

Jv = L4P2 - PA- aRT(SI - X)]
The Xylem. Here, since the volume flow isJ^ , solutes will be

carried along at the rate J, = X. Jv.
The General Flux Equations. Since in this study we are con-

sidering steady state or time-independent fluxes and since matter
must be conserved, the volume and amount of solute flowing
through all regions must be equal. Thus, by equating the J, and
Jv terms for all regions, the following expressions are obtained:

50 = Al - A2X, SI = A3X,
X= EA/(EA2+ A3+ E-1) (6)

where AI = (K1S. + #C0Jv)/(Ki - #Jv), A2 = Jv/(K1 - Jv)
A3 = (K3 + (1 - )J)/(K3+ #Jv) and

Jv = L[Po- Px -aRT(C, - S0 + SI - X)J (7)
with /Lp = 1/L, + 1/L2 + 1iL3. These expressions, which are
implicit in Jv, can be further combined to a single equation in
the form of a polynomial. Such an equation, however, is too
complex to provide any information about the fluxes by inspec-
tion and furthermore, still being implicit in Jv, must be solved
by a successive approximation method. Since this method can
as readily be applied to equations 6 and 7 (see "Appendix"), no
further algebraic reduction is warranted.

Solution of these equations requires values for the rate con-
stants K1, K2, and K3 as well as the concentration S.. The latter
can be obtained by the following argument. When exudate flow
is stopped, or J, = 0, solute continues to move until a steady
state is reached as indicated by the fact that the pressure becomes
constant at its highest value. At this point, the xylem concentra-
tion has reached its maximum value X. and equation 6 (which
applies only to the steady state) predicts that when J. = 0, X =
S1 = S, = S. = X.. According to previous work (Ref. 9; Table
II), the maximum osmotic pressure of the xylem sap was 5.45
bar which is equivalent to a concentration X. = 216 ideal Aosmol
cm-3
The three rate constants can next be evaluated by fitting the

J, versus AP data listed in Table II to equations 6 and 7 by a
least squares method. This was accomplished by introducing
various values for K1, K2, and K3 into the equations, solving for
J, at each of the applied pressures, then determining the root
mean square differences between the calculated and observed
volume flux. The values of the rate constants resulting in the
lowest errors are those considered to be closest to the true values.
These are listed in Table III together with the observed and
calculated volume fluxes. The excellent fit which results (Fig.
4A) is hardly surprising when considering the degree of freedom
afforded by adjusting the three coefficients K1, K2, and K3.
A real test ofthe model, however, is provided by a comparison

of the total concentration gradient across the root derived from
the above calculations and listed in Table III as AC (CALC) to
that measured more directly by the pressurejump technique. AC
is not simply CO - X as in the model of Fiscus and others, but is
the sum of the gradients across the outer membrane (C0 - S,)
and the inner membrane (S, - X), and it is just this that the
pressure jump technique measures, as the following argument
shows. Consider the volume flux through a root under an applied
pressure AP = PO - PX as described by equation 7. If APX0 is the
sudden increased in the xylem pressure P, necessary to reduce J,
to zero momentarily (the pressure jump), it follows, from equa-
tion 7, that AC = CO- So, + S, - X= (AP - APx0)/cRRT. Values
for AC calculated from the data in Table II in this way are listed
in Table III as observed values and plotted in Figure 4B. These
show good agreement with values calculated from the equations
and provide strong support for the model. It should be stressed
furthermore, that the values for ACand J. found at each applied
pressure, were derived from totally independent measurements,
those of APX, (from which AC (OBS) were calculated) being
made immediately after the flux measurements, Jv, but com-
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Table III. Comparison ofCalculated (CALC) and Observed (OBS)
Values

AP = (PJ' - PX) is the applied pressure in bars. S, Si, X, and AC are
concentrations in ideal Aosmol cm-3. J, is the volume flux in 4l s-' (g
root)' (10-3 cm3 s-' (g root)-'). The calculated values arise from the
solution of equations 6 and 7 with CO = 20 Aosmol cm-3, RT = 0.0252
cm3 bar gmol-', S.. = 216 ,uosmol cm-3, Lp = 5.9 x 10' s-' bar-' (g
root)-', K, = 4.2 x 104 cm' s-' (g root)-', K2 = 590 cm-3 s (g root) and
K3 = 5.8 x 10-1 cm3 s-' (g root)-'. J, (OBS) values are from Table II; X
(OBS) values are the osmotic pressures reported previously (Table I, 9)
expressed as concentrations (7rf/RT ideal Uosmol cm'3), while AC (OBS)
- Airp/RT (see Table II). AC (CALC) = CO - S + S, - X.

AP 50 S, X X J, J, AC AC
(CALC) (CALC) (CALC) (OBS) (CALC) (OBS) (CALC) (OBS)
205.8
203.5
201.3
199.1
197.0
194.8
192.7
190.4
187.9
185.3
182.3
179.1
175.5

207.4
206.2
205.5
205.6
206.7
209.0
212.6
217.3
222.9
229.1
235.6
242.2
248.7

136.5
120.1
104.5
90.2
77.6
66.9
58.4
52.0
47.3
43.9
41.5
39.7
38.4

131.3
123.9
108.2
93.0
81.9
67.5
64.4
50.0
46.7
37.8
38.7
33.2
30.4

0.037
0.052
0.072
0.098
0.133
0.178
0.234
0.301
0.376
0.457
0.543
0.632
0.724

0.027
0.041
0.074
0.099
0.137
0.178
0.236
0.297
0.384
0.449
0.552
0.630
0.722

-114.9 -114.3
-97.5 -96.3
-80.3 -80.8
-63.7 -63.5
-47.8 -49.0
-32.7 -32.7
-18.5 -18.8
-5.1 -6.2
7.7 5.7

19.9 22.7
31.8 28.7
43.4 37.7
54.8 52.7

pletely separate from them.
A third set of data for comparison is provided by the xylem

concentrations X (CALC) and X (OBS) = irf/aRT in Table III.

Again, an excellent fit is obtained to a completely separate set of
measurements (the freezing point depression data) which were
made on a different set of roots and reported earlier (9).
The coefficients K, and K3 are, in fact, permeability constants

for the inner and outer membranes and may be expressed in
more familiar units by dividing by the area of the membrane
concerned. Thus, dividing by the epidermal surface area of 276
cm' (g root)-' (7), K, becomes 1.5 x 10-6 cm s-'. Similarly, if it
is assumed that transport into the stelar apoplast occurs through
the surface of all cells in this region, whose area is 670 cm' (g
root)-' (7), K3 becomes 8.7 x 10-8 cm s-'. Tyree (13) has
summarzied the values reported in the literature for the perme-
ability of the plasmalemma of various cells to individual ions.
These values (converted to the units used here by multiplying by
RT) range from 2.5 x I0- to 5 x 10-"' cm s-' showing that K,
and K3 are of reasonable magnitude. That they are at the top of
the range might be expected, since K, and K3 represent the total
permeability of a number of ions, and furthermore, excised corn
roots are noted for their high exudation rate relative to other
species, many of which show no exudation without the applica-
tion of pressure.
The apparent diffusion coefficient in the symplast can be

shown (by rearranging the expression defining K2 above) to be
JD = [ln(r,/r, )]/27rLK2. If r,, and r, are taken as the radius of the
root and the stele, respectively, then, since the volume of the
cortex is 0.80 times that of the root, and the root length L =

4600 cm (g root)-' (7), fD = 5 x 10-8 cm2 s-'. This means that
if the open portion of the plasmodesmata is water filled, then D
for solutes is 10-5 cm2 s-1, andf the fraction of the area of the
cell walls occupied by this open portion will be 0.005. This is
somewhat less than the value 0.009 estimated by Tyree (13) but
greater than the 0.0001 to 0.0005 range given by Robards and
Clarkson (I 1).
The plot of the Jv versus AP data in Table II approaches a

straight line at high flow rates as it does for most excised roots

50

aP (BAR)

-2 -1 0 1 2

FIG. 4. Comparison of the data (0) to the computed values (curve).
A, Volume flux versus applied pressure. B. Total concentration gradient
(AC(OBS), Table III) versus applied pressure. C, the xylem concentration
(X) versus applied pressure. The calculations in A have been extrapolated
to 5 bar to show that they are linear over the range of pressures used by
Fiscus (5) in his measurement of LP.
(Fig. 4A). According to Fiscus (4), the slope of this line should
equal L.. This follows from equation 1 if it is assumed that, as
the xylem concentration is reduced (diluted by an increasing
water flux), Air approaches a constant value (aRTC0). The
measurements reported here have shown, however, that Ar does
not approach a limiting value but continues to increase in a
roughly linear manner (Fig. 4B). As a result, the driving force
which brings about the flux (AP - aAr) is over-estimated in the
method of Fiscus, producing a value for LP which is too low (by
about 50% in the present case).
The present value of L, (0.59 ,l s-' bar-' (g root)-') is some-

what higher than that previously obtained by the same method
(0.41 ,l s-' bar-' (g root)-' [6]). This is probably due to the
different growth media used in the two studies. Both these values
are, however, within the range of the estimates obtained by the
pressure relaxation technique (0.3-0.6 ul s-' bar-' (g root)-'
[9]). To compare these values with other methods necessitates a
conversion of units, which in turn, requires that the location and
area of the main barrier to water entry be known. Usually the
plasmalemma of the outer surface of the epidermis is assigned
this function and since its area is known to be 276 cm' (g root)-'
(7), L, = 2.1 x 10' cm s-' bar'. This is higher than the values
reported by other workers but agrees with those found for indi-
vidual root cells (12).

Steudle and Jeschke ( 12) have objected to the use ofthe present
apparatus because, as they claim, its high compressibility makes
the pressure jump measurements difficult. The standard devia-
tion for the value of API° found in the present study at AP = 0
was ±25%. This is similar to that found for J, (±28%), but since

-2.4
-2.0
-1.6
-1.2
-0.8
-0.4
0.0
0.4
0.8
1.2
1.6
2.0
2.4
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J. can be measured with considerable accuracy, must be ascribed
mainly to biological variation. This conclusion is born out by
the fact that the values of Lp listed at the different pressures in
Table II, each of which is calculated as the ratio of the average
values of J, and AP., and should therefore not be as subject to
biological variations, show only a 6.4% SD from their overall
average (0.580 ± 0.037). Thus in spite of these authors' misgiv-
ings, the pressure jump measurements appear to be a consistent
body of data.

Steudle and Jeschke ( 12) also suggest that the root must supply
a large amount of exudate to reach the maximum root pressure.
This amount can be estimated from the data already reported.
Using 0.78 Al bar' for A V/AP, the compressibility of the root-
apparatus system (6) and 100 Al for V. the xylem volume (0.040
cm3 g-' [7] for a 2.5 g root), the apparent elastic modulus
= Vx AP/AV = 130 bar. As this is about the same as the average
for the cells they used, the roots employed here should not have
been taxed any more than were the cells of these workers. The
root pressures measured by Steudle and Jeschke (12) were lower
and much more variable (0.9-2.9 bar) than those reported in
this work (4.21 ± 0.34 bar [9]), suggesting that their roots, for
which no special support during handling appears to have been
provided, may have suffered slight but significant injuries. (See
discussion of this point in the previous publication [9].) This
would also explain their rather high water exchange half times
(100-700 s) which are typical of a pump-and-leak system.
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APPENDIX
Simultaneous Solution of Equations 6 and 7. A successive

approximation method, consisting of the following steps, was
used:
An initial estimate of the volume flow, termed JO, was made

(the observed value of Jv was usually satisfactory) and employed
in the solution of equation 6. This provided values for the
concentrations which were substituted into equation 7 to give a
new value, J1, for the flux. The initial estimate was increased by
the factor i (usually set at 0.001) to give a new starting value J2
= (1 + i)Jo! and this in turn used as before to provide new
estimates of the concentrations leading to a second value, J3, for
the flux as calculated from equation 7. An improved value for J,
is now

J=J- iJo(Jo - J)/(J + J2 - J3 - J.)
Letting J, now equal this improved value, the above steps were
repeated to provide a further correction. This procedure was
repeated until the corrections became insignificant.
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