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Spermatid elongation is a crucial event in the late stage of spermatogenesis
in the Drosophila testis, eventually leading to the formation of mature sperm
after meiosis. During spermatogenesis, significant structural and morpho-
logical changes take place in a cluster of post-meiotic germ cells, which
are enclosed in a microenvironment surrounded by somatic cyst cells.
Microtubule-based axoneme assembly, formation of individualization
complexes and mitochondria maintenance are key processes involved in
the differentiation of elongated spermatids. They provide important struc-
tural foundations for accessing male fertility. How these structures are
constructed and maintained are basic questions in the Drosophila testis.
Although the roles of several genes in different structures during the devel-
opment of elongated spermatids have been elucidated, the relationships
between them have not been widely studied. In addition, the genetic basis
of spermatid elongation and the regulatory mechanisms involved have not
been thoroughly investigated. In the present review, we focus on current
knowledge with regard to spermatid axoneme assembly, individualization
complex and mitochondria maintenance. We also touch upon promising
directions for future research to unravel the underlying mechanisms of
spermatid elongation in the Drosophila testis.

1. Introduction

Drosophila provides an excellent model for the characterization of functional
genes contributing to male fertility [1,2]. More than 10% (approx. 1500 genes)
of mutations in the Drosophila genome are associated with male fertility [3,4].
Spermatogenesis is a complex and highly regulated cell differentiation process
in Drosophila and mammalian testes [5-7]. Starting with germline stem cells
(GSCs), it leads to the formation of cysts having germ cells at the same
developmental stage [8,9].

In Drosophila, spermatogenesis consists of three major stages: (1) pre-meiotic
(GSCs and spermatogonia); (2) meiotic (spermatocytes); and (3) post-meiotic
(round spermatids, elongated spermatids and sperm) [10,11]. At the apex of
the Drosophila testis, 10-15 non-dividing hub cells are surrounded by GSCs
and cyst stem cells (CySCs). Together, they form a specific testicular microenvir-
onment called the ‘stem cell niche’, which plays an essential role in the
maintenance and differentiation of stem cells [12]. Each GSC is enveloped by
two CySCs and produces a daughter stem cell and a gonialblast (GB) by asym-
metric cell division [13]. Each GB undergoes four rounds of transit-amplifying
(TA) divisions, resulting in a cluster of 16 spermatogonial cells which enter the
meiotic programme [6,8]. Ultimately, a cyst of germ cells is surrounded by two
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cyst cells connected by ring canals, leading to the production
of 64 haploid spermatids within a cyst after the meiosis-I and
meiosis-II divisions [8]. The post-meiotic spermatids undergo
a series of ultrastructural changes, including axoneme
assembly, mitochondrial morphogenesis and membrane
remodelling, that eventually transform the round spermatids
into mature motile sperm [7,14].

Previous research has already investigated in-depth the
various key factors involved in spermatogenesis in the Droso-
phila testis, especially in the stem cell niche regulation and
meiosis [15-21]. Recent studies have also thrown light on
the various aspects of spermatid elongation in Drosophila
[22-24]. The loss of function of several genes in Drosophila
and mammals leads to similar testicular phenotypes, thereby
indicating that their roles during spermatogenesis are con-
served [3,25]. Moreover, several genes have been shown to
play critical roles during spermatid deformation in the mam-
malian testis, including acrosome and flagellum formation,
nuclear condensation, and cytoplasmic exclusion, finally
transferring the round spermatids to the elongated sperma-
tids [26-29]. Kang et al. [30] reported that the RNA binding
protein FMR1 autosomal homologue 1 (FXR1) was required
for spermatid development. It was shown to undergo
liquid-liquid phase separation (LLPS), in order to link ribo-
nucleoprotein granules with the translation machinery to
promote translation initiation in mice [30]. Another recent
study identified X-linked terminal nucleotidyltransferase 5D
(TENTS5D) as an oligoasthenoteratozoospermia (OAT)-related
gene via whole-exome sequencing (WES) from Han Chinese
men with OAT, and with the help of a gene-edited mouse
model. TENT5D deficiency could cause defects in the sper-
matid maintenance by affecting the stability of mRNA
during spermatogenesis [31]. These studies have highlighted
the importance of spermatid differentiation in the final stage
of spermatogenesis, and its crucial role in male fertility.
Although several sources of information are available
regarding the genetic regulation during spermatid differen-
tiation, the structure and molecular basis of spermatid
elongation in Drosophila remain open for further discussion.
In this review, we discuss the major events and molecular
basis for spermatid elongation, which may provide a
theoretical basis for spermatogenesis and maintenance of
male fertility.

2. Spermatid axoneme

2.1. Axoneme structure and microtubule arrangement

The spermatid axoneme consists of a microtubule-based
cytoskeleton and is associated with sperm motility in Droso-
phila [7,32]. The axonemal structure of cilia and flagella is
evolutionarily conserved in eukaryotes. It has a highly
ordered microtubule-based ‘9+2’ arrangement, consisting
of nine outer microtubule doublets surrounded by a central
microtubule pair (figure 1a). Within the basic axoneme, the
nine outer doublet microtubules are connected by nexin
links and anchored by outer and inner dynein arms that med-
iate axoneme motility [4,33]. Outer doublet and central pair
microtubules are connected by radial spokes as linkers and
mechanochemical transducers, which transmit signals from
the central pair apparatus to the microtubule doublets for
local control of dynein activity [34-37].

2.2. Microtubule and tubulin modifications

Microtubules are assembled from tubulin heterodimers and
are essential for maintaining cell shape, cell division and cell
motility [38,39]. They are an important determinant of male
fertility due to their role in the post-mitotic germ cells and
some important tubulin subunits, such as a-tubulin at 84B
(0-Tub84B) and testis-specific f2-tubulin, have been shown
to function during spermatogenesis [39]. In particular, the
cytoskeletal proteins that are specifically expressed in the
testis play an important role in the microtubule structural com-
ponents, which are directly involved in the maintenance of
male fertility. Furthermore, post-translational modifications
(PTMs) including polyglycylation, polyglutamylation and
acetylation of tubulin proteins play a crucial role in the func-
tioning of the microtubules, and are involved in the stability
of centrioles and cilia [40]. The Basal body upregulated gene
22 (Bug?22) has a highly conserved function during spermatid
axoneme assembly via tubulin PTMs in both Drosophila and
humans [40]. In addition, one of the glycosylase genes, Tubulin
tyrosine ligase-like 3B (TTLL3B), is enriched in the testes of
Drosophila. Daughterless-GAL4 (Da-Gal4) is a commonly
used transgenic element that drives ubiquitous expression in
Drosophila embryos, larvae and adults. The da-Gal4 driven
loss of function of TTLL3B leads to axoneme disassembly
and individualization defects in the Drosophila testis, indicating
that polyglycylation plays an important role in the functioning
of microtubules during spermatid individualization and
axoneme assembly [41].

2.3. Axonemal dynein arm

A pair of dynein arms (outer and inner dynein arms) are an
integral part of the axoneme structure and are located on both
sides of the nine outer double-tubular microtubules [42].
Dynein motors consist of a large multi-subunit complex com-
prising heavy chains, intermediate chains and light chains.
They regulate the ATP hydrolysis, motor activity and com-
plex scaffold formation through these subunits [43]. Dynein
axonemal assembly factor 3 (Dnaaf3) is one of the dynein
assembly factors associated with primary ciliary dyskinesia
[44]. The Dnaaf3 mutants in Drosophila are male infertile
with immotile sperm due the disruption of dynein arms
and axoneme assembly in sperm bundles [45]. Dynein arms
play an important role in the generation of the force needed
for sperm motility [46]. A recent study has reported that
wampa (wam) was an essential component of the outer
dynein arm docking complex and required for attachment
of the outer dynein arms to the axoneme of the sperm flagel-
lum [47]. An increase in the proportion of abnormal
individualization complexes, faulty localization of mitochon-
dria, and malformation of the nucleus was observed in wam
mutants during spermatogenesis, leading to the postulation
that these mutants are male sterile [47]. The genes male ferti-
lity factor kI2 (kI-2), male fertility factor ki3 (ki-3), and male
fertility factor ki5 (klI-5) encode the outer dynein heavy
chains of the sperm axoneme [48]. Functional studies indicate
that mutations to kI-3 and kI-5 result in maintenance defects
of the outer dynein arms in the axoneme of the sperm flagel-
lum, while its effect on the spermatid individualization
process is not clear [33,49]. Moreover, the novel spermatogen-
esis regulator (nsr) mutant results in male infertility due to
its effect on the outer dynein arms in sperm axonemes and
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Figure 1. Schematic illustration of spermatid axoneme in Drosophila. (a) A schematic drawing illustrating the major structure of spermatid axoneme. Representative
genes are shown for microtubule doublets, dynein arms and radial spoke. (b,c) Immunostaining of Orb (b) and Orb2 (c) for W™ testes hatched at 2 days. DNA was

stained with Hoechst. W'™™ line is used as wild-type fly. Scale bar: 100 pm.

spermatid individualization [33]. The data suggest that nsr
might control male fertility by regulating the Y-linked
genes kI-3 and kI-5.

The flagellar wave form requires radial spokes and central
tubules, and defects in these structures can lead to the bending
of axonemes [4]. The central microtubule pair begins to nucleate
a singlet microtubule within the basal body of a small cilium
prior to meiotic divisions, and the second microtubule of the
pair is assembled much later during flagella formation [50].
Fragile X syndrome (FraX) is the most common form of congeni-
tal mental retardation caused by the transcriptional silencing of
the Fragile X mental retardation 1 (Fmrl) gene. In Fmrl mutants,
axonemes gradually lose the central microtubule pair [51]. The
Estrogen-related receptor (ERR) is involved in the main pathway
of cellular energy homeostasis, and ERR mutants die as larvae
due to low levels of ATP and elevated levels of circulating
sugars [52]. The ERR knockdown males are observed to have

disrupted microtubule function and a significant reduction in
the major mitochondrial derivatives [2]. Sox100B is an orthologue
of vertebrate group E genes and is essential for testis develop-
ment in Drosophila [53,54]. Interestingly, the nicked spermatid
axoneme lacks the complete circular shape of the microtubular
spoke after Sox100B knockdown [2]. It has been found that the
radial spokes in Dynein intermediate chain at 61B (Dic61B)
mutant testes were not uniformly organized, and more than
two tubules could be visualized in the central pair, apparently
due to the enlargement of some of the secondary fibres [4].
Drosophila 0018 RNA-binding protein (Orb) and Orb2
are two highly conserved RNA-binding proteins belonging
to the cytoplasmic polyadenylation element binding (CPEB)
protein family, which plays a critical role in mRNA transport
and local translation [55]. Both Orb and Orb2 are highly
enriched in elongated spermatids and regulate spermatogen-
esis [22,56]. Immunofluorescence staining in the Drosophila
testis shows that Orb and Orb2 proteins have low levels of
expression in mitotic spermatogonia and extremely high
levels in elongated spermatids. The Orb2 protein is also



present at an intermediate level of expression throughout the
spermatocyte cytoplasm (figure 1b,c). Moreover, orb2 mutants
are male sterile, which can result from underlying defects in
the assembly or localization of axonemal proteins, abnormal
elongation of flagellar axonemes, insufficiently compact cyst
bundles, and rough internal morphologies in elongated sper-
matid bundles [57]. By contrast, orb mutant males show
weaker effects on male infertility than orb2, although Orb
plays a critical role during oogenesis and orb mRNAs could
be repressed by Orb2 [57]. These findings, in combination
with the specific expression patterns of Orb during spermatid
elongation, demonstrate that Orb has a certain role during
spermatogenesis, which warrants further investigation.

Radial spoke proteins are functionally conserved in mul-
tiple species and show high similarities and identities with
human homologues [58-60]. The radial spoke binding
protein 15 (Rsbp15) is localized in the sperm flagellum and
individualization complex (IC). The loss of Rsbp15 results in
male sterility, asynchronous IC, and defective axonemal
structure in flagella. It resembles the phenotype of mutants
of radial spoke-related genes, such as Radial spoke head protein
3 (Rsph3), Radial spoke head protein 1 (Rsphl), Radial spoke head
protein 4a (Rsph4a), and Radial spoke head protein 9 (Rsph9). The
finding demonstrates that the structural integrity of the fla-
gella is essential for the stability of IC [34]. Interestingly,
Rsbpl5 can interact with and stabilize Rsph3 through the
DD_R PKA superfamily domain [34].

Male-specific RNA 84Da (Mst84Da), Male-specific RNA 84Db
(Mst84Db), Male-specific RNA 84Dc (Mst84Dc), Male-specific
RNA 84Dd (Mst84Dd), and Male-specific RNA 87F (Mst87F)
belong to a cluster of Mst(3)CGP gene family containing the
repetitive Cys-Gly-Pro motif. These genes are male-specific
and are exclusively transcribed in the primary spermatocytes
in Drosophila testes [61]. Mst84D family genes are highly
enriched in spermatids, as shown by single-cell RNA sequen-
cing (scRNA-seq) [62,63], and can be used as potential
markers for testicular spermatids in Drosophila. Importantly,
the deletion of the Mst84D gene family results in various aber-
rations, including abnormal axoneme assembly, malformed
nebenkern derivatives and reduction of motile sperms [61].

During spermatogenesis, the centrioles of the spermatids
transform into basal bodies and form a template for the
sperm flagellar axoneme [7,64]. Centrosomal protein
135 kDa (Cep135, also called Bld10) is an evolutionarily con-
served centriole protein, which is a part of both the somatic
centriole and the basal body. It plays a role in the proper for-
mation of the axoneme and is associated with sperm motility,
highlighting the importance of centriolar function in male fer-
tility [7,65]. Moreover, Drosophila polo and Sak kinase (SAK),
mitotic serine-threonine protein kinases, have been impli-
cated in centrosome functions. Polo has been shown to be
involved in centrosome maturation and mitotic progression
while SAK is required for centriole identify and sperm
axoneme formation [64].

3. Spermatid individualization

3.1. Individualization complex formation

Drosophila provides an excellent system for visualizing the
spermatogenic cyst, which could lead to a better understand-
ing of sperm individualization [66]. During the late stage of

spermatogenesis, fascicular elongated spermatids in clusters
are separated from each other through the spermatid indivi-
dualization process (figure 2a) [6,8]. The individualization
process begins with an actin-based structure (also known as
IC-investment cone) forming round the elongated nuclei
[40]. Subsequently, the IC structure moves along the sperm
tail, remodelling membrane and forming a voluminous struc-
ture called cystic bulge (CB) as a result of the continuous
accumulation of extruded cellular material [40]. When the
complex reaches the end of the spermatid tails, the CB
turns into a waste bag (WB). It includes the excess cytoplasm
and the minor mitochondrial derivatives, and is eventually
shed into the lumen of the testis [8,40]. In the final step, indi-
vidual sperms are coiled into the seminal vesicle and are
ready for transfer to the female during copulation [8].

Spermatid individualization starts with the IC assembly,
which consists of F-actin cones [40]. Individualization is a
highly complicated process, and many factors are involved
in the formation of IC. In the absence of Bug22 in individua-
lizing cysts, the IC is dispersed and lagged along the
spermatid tails, while the CB and WB are smaller and contain
less material [40]. The data suggest the occurrence of normal
assembly of IC in the spermatid nuclei, but impair migration
to individualized sperm tails in Bug22 mutant testes. This is
not a unique phenomenon, and has a counterpart wherein
a Clathrin heavy chain (Chc) mutant fails to undergo indivi-
dualization process and displays an altered IC distribution
and morphology [66]. Other similar cases have been observed
where scattered (scat), Ecdysone receptor (EcR) and pendolino
(peo) mutants exhibit similar phenotypes of IC disruptions
and nuclear scattering [66]. Another key factor, Gudu,
shows high accumulation in adult testes. Its reduced
expression leads to IC formation defects in spermatids,
thereby causing a reduction in normal sperm production
and resulting in low fertility [67].

3.2. Individualization complex movement

The successful movement of IC, in addition to its correct
assembly, is an important factor affecting the process of indi-
viduation. There is relatively little information regarding the
microtubule properties that enable the movement of actin
cones along the axoneme. However, tubulin polyglycylation
has been identified as a widely distributed PTM in ciliary
microtubules and occurs in the early stage of the spermatid
individualization [40,41]. In da-Gal4 driven TTLL3B RNAi
testes, the spermatids are observed to be similar to the control
in the early stage, with essentially normal axonemes as well
as mitochondrial derivates. However, in the later stage of
spermatid individualization, a large number of disorganized
axoneme structures and reduced number of mitochondria are
observed [41]. These studies demonstrate that polyglycyla-
tion is important for the axoneme assembly and plays a
direct role in IC migration.

During spermatid individualization, cytoplasm and orga-
nelles are extruded between the sperm tails and pushed in
front of the IC, forming a visible CB structure [68]. Interest-
ingly, the movement of the actin cone away from the
spermatid nuclei can be detected by co-staining of phalloidin
(F-actin) and cleaved-Caspase-3 (figure 2b). Most of the cyto-
plasmic and cell organelles in CBs are degraded via a
Caspase-3-mediated non-apoptotic pathway and deposited
in WBs, which are eventually expelled [40,69,70].
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Figure 2. Schematic illustration of spermatid individualization in Drosophila. (a) A schematic drawing that illustrates the major structures in elongated spermatids.
(ritical genes for the formation and movement of IC and cytoplasmic extrusion are listed in the boxes. (b) Fluorescence images of the tail of the testis visualized by
staining with F-actin (green) and cleaved Caspase-3 (red). DNA was stained with Hoechst. W''™® line is used as wild-type fly. Scale bar: 100 pm.

Drosophila Death-associated APAF1-related killer (Dark) pro-
motes the activation of the Death regulator Nedd2-like
caspase (Dronc), which activates the downstream caspase pro-
teins Death caspase-1 (Dcp-1) and Death related ICE-like
caspase (Drice) [68]. Among the signalling pathways, the inhi-
bition of Dronc function led to the formation of a large
number of individualized spermatid cysts, which still contained
large fingers with excess cytoplasm in individual spermatid
units [68]. Fas-associated death domain (Fadd), the Drosophila
homologue of mammalian FADD, is an adapter that mediates
the recruitment of apical caspases to ligand-bound death recep-
tors, which also requires the presence of its target caspase
Death-related ced-3/Nedd2-like caspase (Dredd). Importantly,
spermatids with Fadd mutant fail to individualize [68]. Further-
more, the Death-associated inhibitor of apoptosis 1 (Diap1) encodes
an E3 ubiquitin ligase, which is essential for preventing the
inappropriate activation of caspase and apoptosis [70]. More-
over, loss of function of inhibitor of apoptosis protein (IAP)

results in increased sensitivity of Fas-mediated cell death for
germ cells [71]. Cullins are major components of another type
of E3 ubiquitin ligase that serve as scaffolds for a catalytic
module and a substrate recognition module [70]. Previous
studies have shown that cullin 3 (Cul3) was required for the acti-
vation of effector caspases in spermatids, thereby revealing the
key role of ubiquitin signalling pathway in spermatid decellu-
larization [70]. Moreover, PFTAIRE-interacting factor 1A
(Pif1A) is highly enriched in spermatids and may localize to
the front of actin cones. The loss of Pifl A leads to defects in
actin cone movement, failed spermatid individualization and
complete sterility [72,73].

Membrane remodelling is another major biological event
that occurs along with IC movement [74,75]. During sperma-
tid elongation, IC forms and progresses caudally along the
spermatid cyst, remodelling the syncytial membrane to
remove excess cytosol [76]. Plasma membrane remodelling
defects can affect F-actin-based IC movement, therefore



resulting in the individualization failure [77-79]. Several mol-
ecules have been elucidated to be associated with
remodelling of the membrane during individualization.
Jaguar (also known as myosin VI), a conserved myosin, is
known to be involved in membrane dynamics. During sper-
matogenesis, dysfunctions in both dynamin and myosin VI
can result in serious defects in the structure of actin, revealing
the involvement of myosin VI and dynamin in regulating
actin dynamics [80]. Niemann-Pick Type C (NPC) disease is
an early childhood neurodegenerative disorder associated
with mutations in NPC intracellular cholesterol transporter 1
(NPC1) or NPC intracellular cholesterol transporter 2 (NPC2).
The Drosophila Niemann-Pick type C-la (Npcla) encodes a
cholesterol-binding transmembrane protein, and its mutation
leads to larval lethality, male infertility, and membrane remo-
delling defects during the individualization process [76].
Oxysterol-binding protein (Osbp) is involved in the non-ves-
icular transport, and distribution of intracellular sterols is also
essential for spermatogenesis. Farinelli (Fan), a VAMP-related
ER protein, regulates Osbp-mediated steroid transport and
interacts with Osbp. Interestingly, both fan and Osbp mutants
exhibit individualization defects in spermatids, which is simi-
lar to NPC1 mutants, revealing the crucial role of cholesterol
during individualization process [81]. Additionally, CDP-
diacylglycerol synthase (CDS) is a highly important enzyme
for lipid biosynthesis, and Cds mutations lead to multiple
abnormalities in individualization, mitochondria and axone-
mal sheath [69].

4. Spermatid mitochondria

4.1. Mitochondrial functions in the Drosophila testis

As an important functional organelle in both the somatic as
well as germ cells, the mitochondrion plays a critical role in
signal transduction, proliferation, differentiation, and cell
death. This is in addition to its central role as the main
source of energy and reactive oxygen species [82]. Mitochon-
drial morphology undergoes dynamic changes in shape and
localization [83]. In mammals, the axoneme is surrounded by
a sheath of ring-shaped mitochondria in post-meiotic sper-
matids [84]. By contrast to mammals, in the early post-
meiotic Drosophila spermatids, mitochondria aggregate and
fuse into two giant mitochondrial derivatives. These are
interleaved by the onion stage to make a nebenkern [85]. Sub-
sequently, the spermatids begin to elongate and the
mitochondria detach from each other. The two mitochondrial
derivatives can be seen elongating alongside the flagellar axo-
neme at the comet stage in the Drosophila testis (figure 3a)
[8,86]. Several classic mitochondrial markers can be used to
label mitochondria in Drosophila gonads [84,87]. In particular,
our group uses Translocase of outer membrane 20 (Tom20)
and ATP5A (also known as Bellwether (Blw)) to label mito-
chondria at different stages of germ cells in the Drosophila
testis (figure 3b,c), which is helpful in understanding the
regulatory mechanism of mitochondrial-related genes.

4.2. Mitochondrial dynamics

In Drosophila, the balance of mitochondrial dynamics between
fusion and fission is essential for germ cell differentiation [88].
For example, fuzzy onions (fzo) was identified as a mitochondrial

fusion gene encoding a transmembrane GTPase, and its dys-
function led to mitochondrial fusion defects and male
infertility [89]. Porin is another important factor affecting mito-
chondrial fusion and fission, and its impaired expression
adversely affects spermatid individualization, resulting in steri-
lity [90]. PTEN-induced putative kinase 1 (pinkl) contains a
mitochondrial-targeting motif and a serine/threonine kinase
domain that are highly conserved in Drosophila as well as
human [86,91]. Similar to the phenotype observed in parkin
mutant testes, testicular spermatids lacking pink1 display vacuo-
lated onion-stage nebenkerns, and only a mitochondrial
derivative is observed in the subsequent stage [86]. This finding
indicates that pinkl and parkin may play key roles in spermatids
by reducing mitochondrial fission or increasing mitochondrial
fusion. Overexpression of parkin rescues male sterility and mito-
chondrial morphology defects caused by the pinkl mutation,
thereby suggesting that pinkl genetically interacts with parkin
in Drosophila [92]. The mitochondrial protease subunit HtrA2
exhibits proapoptotic and cytoprotective properties, and its
mutation leads to mild mitochondrial defects and male inferti-
lity. The parkin and pinkl mutants share some phenotypic
similarities, suggesting their involvement in maintaining mito-
chondrial integrity [93]. The gene refractory to sigma P (ref(2)P)
is orthologous to the mammalian autophagy adapter gene p62
and is a crucial downstream effector required for selective autop-
hagy activation via multiple ubiquitinated proteins [94]. A
previous study shows that ref(2)P is responsible for maintaining
cellular mitochondria by promoting their aggregation and
autophagic clearance [32]. Meanwhile, the loss of function of
ref(2)P leads to several pathological phenotypes reminiscent
of the pinkl or parkin mutants, including mitochondrial abnorm-
alittes and mitochondrial DNA accumulation with
heteroplasmic mutations, which may lead to defective loco-
motor activity in spermatid cells [32]. In addition, ref(2)P has
been found to be involved in mitochondrial functions via the
Pink1/Pakin pathway.

In addition, Dynamin related protein 1 (Drp1) is well known
to govern mitochondrial morphology in cells which play a
central role in mitochondrial fission, such as neurons and
lymph gland progenitors [95,96]. On the other hand, the
milton (milt) gene encodes an adapter protein that connects
mitochondria to kinesin, which is required for mitochondrial
transport in Drosophila neurons [97]. Although both Drpl and
milton are essential for mitochondrial dynamics, there are
phenotypic differences in the mutant testes. The absence of
Drp1 leads to aberrant unfurling of the mitochondrial deriva-
tives in early spermatids undergoing axonemal elongation,
while the nebenkern is not strongly anchored to the nucleus
and the mitochondrial derivatives do not properly elongate
in milt mutant spermatids [97].

4.3. Mitochondrial derivative development

During spermatid elongation, the two mitochondrial deriva-
tives behave differently: the major derivatives are filled
with electron-dense paracrystalline array, while the minor
derivative has a smaller volume and no paracrystalline
accumulation [84,98]. Multiple factors can mediate the mor-
phological abnormalities in the mitochondrial derivatives
during spermatogenesis. Recently, Bauerly ef al. identified
three cilia-related genes, which include missing minor mito-
chondria (mmm), sterile affecting ciliogenesis (sac), and
testes of unusual size (tous). The loss of function of these
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mitochondrial derivatives. (b) Immunostaining of Tom20 (red) at the apex, midpiece and tail of W' testes to exhibit the distribution and morphology of mito-
chondria at different stages of spermatogenesis. At the apex of the testis, Tom20 labelled mitochondria display both aggregated and dispersed morphologies and are
widely distributed in somatic and germline cells. At the midpiece of the testis, round spermatids can be clearly distinguished by onion-stage nebenkerns. At the tail
of the testis, mitochondrial derivatives elongate along with spermatid axoneme, and can be labelled by multiple mitochondrial markers. () Immunostaining of
ATP5A (green) for the whole mount of W'"'® testes, which is similar to the result of Tom20 for mitochondrial distribution. DNA was stained with Hoechst. W''™® line

is used as wild-type fly. Scale bar: 100 pm.

genes led to sperm flagellum immotility with the intact axo-
neme morphology [99]. As evidenced by mutations, mmm,
sac and tous homozygotes resulted in the incorrect localiz-
ation of mitochondria along the meiotic spindle, and
plasma membrane defects due to cytokinetic errors [99].
The evidence indicates that mmm, sac and tous contribute to
the maintenance of mitochondrial derivatives during or
immediately after meiosis.

A previous study showed that emmenthal (emm) did not
affect mitochondrial fusion or mitochondrial agglomeration
in the meiosis and onion stage [100]. The study demonstrated
that emm is required for the formation and maintenance of

inner mitochondrial structure, starting from the stage of sper-
matocytes [100]. Furthermore, don juan (dj) and don juan like
(djl) encode closely related proteins that localize in the cyto-
plasm of spermatocytes and the mitochondrial derivatives of
elongated spermatids, revealing their functions associated
with the mitochondria along with the flagella during sperma-
tid elongation [101,102]. Paracrystalline array is thought to be
associated with sperm tail elasticity and undulation, sperm-
Leucylaminopeptidase (S-Lap) family proteins are identified
from purified paracrystalline materials by mass spectrometry.
Their mutants are male sterile, with defects in paracrystalline

material accumulation and abnormal structure of the



elongated major mitochondrial derivatives [103]. Vedelek et al.
[84] showed that testis-specific expression of Big bubble 8 (Bb8)
was highly enriched in the post-meiotic stages and localized in
the mitochondria [84]. Interestingly, male flies lacking bb8
became completely infertile and showed megamitochondria
and the abnormal distribution of paracrystalline array in
both mitochondrial derivatives during spermatid develop-
ment in the Drosophila testis [84]. Another key factor is
concentrative nucleoside transporter 1 (CNT1), which is
required for the maintenance of major and minor mitochon-
drial derivatives in testis-specific manner. Loss of CNTI
expression leads to defects in spermatid maturation [104].
These findings suggest that mitochondrial dysfunction
during spermatid elongation can cause damage by inducing
multiple signalling pathways, the regulatory mechanisms of
which need to be investigated further.

4.4. Mitochondrial nucleoid elimination

Mitochondria are specific organelles that contain their own
genome, and most eukaryotes show a maternal inheritance of
mitochondrial DNA (mtDNA) [105]. In Drosophila, mitochon-
drial nucleoid is normally eliminated by Endonuclease G
(EndoG)-mediated process before spermatid individualization,
while the mitochondria remain intact [106]. In fact, mtDNA
removal from spermatid mitochondria is a special autophagy
event that is evolutionarily conserved to prevent both the trans-
mission of paternal mitochondrial DNA to the offspring and the
establishment of heteroplasmy [107]. Mutation of mitochondria
endonuclease EndoG results in retarded mitochondrial nucleoid
elimination, whereas knockdown of Drosophila tamas (tam), the
catalytic subunit of the mtDNA polymerase, has a much stron-
ger effect on mitochondrial genome elimination [108]. The
findings suggest that EndoG is dependent on Tam for the
elimination of mitochondrial genomes.

5. Concluding remarks and future
perspectives

In this review, we have conducted an in-depth analysis of sper-
matid elongation in Drosophila, which comprises a series of
highly complicated and conserved biological events that
have been historically underestimated. Drosophila has emerged
as an excellent model system for the study of genetic functions
and signalling pathways required for the late stage of sperma-
togenesis. Given the complexity of the process involved, it is
clear that further studies are needed to elucidate the intrinsic
organization and
morphological changes during spermatid elongation.

When comparing expression of specific genes and the phe-
notypes resulting from their mutation, delays between the
timing of expression and the phenotype are widely observed.
For example, the RNA binding protein Maca is expressed
specifically in spermatocyte nuclei, while the maca mutation
exhibits IC defects during spermatid elongation, eventually
leading to complete sterility [109]. On the other hand, many
genes that are essential for the early stage of germ cells will
also affect the late stage of spermatogenesis, particularly
during axoneme assembly and spermatid individualization.
Further investigations are needed to elucidate the exact mech-
anism. Our previous work has shown that changes in the
expression levels of CG6015 during spermatogonia transit-

molecular connections for structural

amplifying (TA) divisions inhibited the differentiation of germ
cells. This led to the accumulation of GSC-like cell populations,
and concomitantly reduced the number of elongated spermatid
clusters in Drosophila testes [24]. Our recent study has also
identified another key factor, eukaryotic disruption translation
initiation factor 5 (eIF5), required for CySCs to promote germ
cell differentiation via non-autonomous cellular effects. The dis-
ruption of elF5 expression driven by tj-Gal4 in CySC lineage
also led to severe defects in the F-actin labelled IC [56].

Although details of the interplay between spermatid axo-
neme, individualization and mitochondria remain largely
unknown, it is observed that many of the genes participate in
multiple regulatory roles. In addition to axonemal dynein
arm, wam also plays a critical role in mitochondrial localization
and nuclear head formation in spermatids [39]. Since lipid
metabolism is an important factor in membrane curvature
and function, spermatid elongation is involved in extensive
membrane biosynthesis and remodelling [69,110]. The mutation
of CDP-diacylglycerol synthase (Cds), which encodes an
important enzyme in lipid biosynthetic pathway, leads to
defects in both spermatid individualization and mitochondrial
derivatives associated with the axonemes by affecting phospha-
tidylinositol synthase (dPIS) in Drosophila [69]. These findings
suggest that many genes may play interlinked roles between
microtubule based skeleton structure and mitochondrial
derivatives, which may be elucidated in future studies.

Meanwhile, long noncoding RNAs (IncRNAs) are another
cluster of cellular RNAs with functional roles in the regu-
lation of many cellular developmental processes and
diseases [111,112]. Although transcriptome profiling in mul-
tiple species has revealed the largest repertoire of IncRNAs
in the testis [113-115], their functions and regulatory mechan-
isms in spermatogenesis remain largely unexplored. Using an
optimized CRISPR/Cas9 system, Wen et al. [116] identified 33
out of 105 testis-specific IncRNAs required for male fertility
and late development of spermatogenesis. The study pro-
vides a resource pool to further underline the specific
regulatory mechanisms during spermatid elongation in the
Drosophila testis [116].

In summary, this review explores the various structures
involved in spermatid elongation and their genetic regulation
in the Drosophila testis. Given the highly conserved nature of
Drosophila and mammalian spermatogenesis, further study of
spermatid elongation in Drosophila may provide a better
understanding of the molecular basis and pathogenic
phenotypes. This can, in turn, provide effective guidance
for the clinical treatment of male infertility.
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