
Plant Physiol. (1985) 77, 309-312
0032-0889/85/77/0309/04/$01.00/0

Osmoregulation in Cotton in Response to Water Stress'
III. EFFECTS OF PHOSPHORUS FERTILITY
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ABSTRACr

Cotton (Gossypium hirsutum) (L.) was grown in a sand and nutrient
solution system at two levels of phosphorus (0.5 and 5.0 millimolar).
Within each phosphorus treatment, plants were either watered daily or
acclimated to water stress by subjection to several water stress cycles.

Stress acclimation increased leaf starch at the low phosphorus level,
but not at the high phosphorus level. High phosphorus increased leaf
sucrose and glucose concentration in both acclimated and nonacclimated
plants, but had little effect on osmotic adjustment or the relationship
between turgor and water potential.

In nonacclimated plants, high phosphorus increased both leaf con-
ductance and photosynthesis at high water potentials. In acclimated
plants, high phosphorus increased photosynthesis but decreased con-
ductance, thus increasing water use efficiency at the single leaf level.

Recent evidence suggests that the partitioning of photosyn-
thetically fixed carbon between sucrose and starch may be regu-
lated by cellular Pi levels (6, 8, 9, 1 1). Cotton leaves accumulate
starch as a consequence of water stress acclimation (2, 3). More-
over, water stress significantly depresses phosphorus uptake (5,
7, 16) and low cellular Pi levels lead to starch accumulation in
isolated chloroplasts and leaves (6, 8, 9, 11). Consequently,
phosphorus fertility may play a role in altering the response of
plants to water stress by changing the ratio of starch to soluble
sugars in leaf cells.
The influence of phosphorus fertility on internal water rela-

tions, leaf conductance, photosynthesis, and cellular carbohy-
drates in cotton is reported in this study.

MATERIALS AND METHODS
Plant Culture. Cotton (Gossypium hirsutum L. Tamcot SP37)

was grown in 2 1-cm diameter plastic pots containing sand. Plants
were thinned to two per pot after emergence. Conditions in the
controlled environment chamber used for plant growth were as
previously described (2, 3). Plants were watered twice daily; once
with Hoagland complete nutrient solution and once with deion-
ized H20.

After expansion of the second leaf, two phosphorus fertility
regimes were started. One set of plants received a modified
Hoagland solution containing 0.5 mm phosphorus as NaH2PO4.

' Contribution 3533 from the Central Research and Development
Department, E. I. du Pont de Nemours & Co., Inc.

2Present address: Agricultural Chemicals, E. I. du Pont de Nemours
& Co., Stine-Haskell Laboratory, Newark, DE 19714.

A second set received the same nutrient solution containing 5.0
mm phosphate. Other nutrients were adjusted to maintain the
standard Hoagland solution concentrations. Plants were watered
with nutrient solution in the morning and deionized H20 at
night.

Beginning 1 month after emergence (5th leaf expanded), a
series of water stress-recovery cycles was imposed on one-half of
the plants in each phosphorus treatment. These plants were
allowed to dehydrate until midday leaf water potentials ap-
proached -16 to -18 bars. Dehydration required 24 to 48 h,
depending on plant age. Plants were then fully watered with
nutrient solution and deionized H20 for 4 d prior to a subsequent
stress period. Five cycles of stress and recovery were imposed
(acclimated plants). Control plants were fully watered twice daily.

Five days after the last stress cycle, all plants were subjected to
dehydration. During this dehydration period, data were obtained
from leaves at nodes 6 and 7.
Water Potential Leaf Conductance, Photosynthesis, and Leaf

Carbohydrates. Water potentials and osmotic potentials were
determined with isopiestic thermocouple psychrometers (4) as
previously described (1-3). Procedures for diffusion porometry
and for measurement of photosynthesis, and determination of
glucose, sucrose, and starch levels in the leaves were described
earlier (1-3).
The data reported represent the combined results of three

experiments. Based on plant height measurements, the two phos-
phorus fertility regimes did not differentially affect growth. Ac-
climated plants were shorter than the appropriate controls fol-
lowing cessation of the stress cycles as previously noted (3).

RESULTS
Phosphorus (P) fertility level did not significantly alter the

relationship between leaf turgor and leafwater potential (Fig. 1).
At any given water potential, plants grown on 5.0 mM P main-
tained leaf pressure potentials 0.5 to 1.0 bars higher than plants
grown on 0.5 mM P. Although these differences were not statis-
tically significant, the trends were consistent and quite reproduc-
ible.
Leaf conductances and photosynthetic rates of control plants

grown on 5.0 mM P were higher than those of plants grown on
0.5 mM P (Fig. 2). The differences were maintained until leaf
turgor approached zero. In acclimated plants, leaf conductances
tended to be lower at the higher P level (Fig. 3). In spite of this,
photosynthetic rates of plants grown on 5.0 mM P were consis-
tently higher than those of plants grown on 0.5 mm P (Fig. 3).
These data suggest that P level influences water use efficiency at
the single leaf level, at least in stress-acclimated plants.
Phosphorus level had a significant impact on the concentration

of sucrose, glucose and starch in both control and acclimated
plants (Figs. 4 and 5). Leaf sucrose and glucose concentrations
were higher in control plants grown on the higher P level (Fig.
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FIG. 1. Relationship between leaf water potential and leaf pressure
potential in control and stress-acclimated cotton leaves. Each point is
the mean of six to seven measurements obtained from three separate
experiments. SE ranged from 0.5 to 1.1 bars.
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FiG. 2. Photosynthesis and leaf conductance of control cotton leaves
in relation to leaf water potential. Each point is the mean of nine
measurements obtained from three separate experiments. SE ranged from
0.08 to 0.22 cm s-' for conductance measurements and 0.06 to 0.14
nmol cm-2 s' for photosynthesis measurements.

4). Thus, during dehydration, when photosynthetic rates of the
high P plants exceeded those of low P plants (Fig. 2), soluble
sugars accumulated to a greater extent in the high P plants (Fig.
4). No detectable differences in leaf starch concentration existed
in control plants as a consequence of P fertility level (Fig. 4).
Glucose and sucrose concentrations in leaves of acclimated
plants were higher when plants were grown on 5.0 mm P (Fig.
5). Starch levels were generally 2-fold lower in high P plants as
compared with plants grown on 0.5 mm P. Thus, high P levels
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FIG. 3. Photosynthesis and leaf conductance of stress-acclimated
leaves of cotton in relation to leaf water potential. Each point is the
mean of nine measurements obtained from three separate experiments.
SE ranged from 0.06 to 0.19 cm sg' for conductance measurements and
0.05 to 0.16 nmol cm-2 s-' for photosynthesis measurements.
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FIG. 4. Sucrose, glucose, and starch levels in control cotton leaves
during dehydration. Data were pooled from three experiments with
duplicate measurements at each time point in each experiment. SE were
12% or less of the mean values reported. The photoperiod started at
0730 and was terminated at 2200 h. Leafwater potentials were 4.6 + 1.2
bars at the start of the photoperiod and 14.1 ± 0.8 bars by 1800 h.
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FIG. 5. Sucrose, glucose, and starch levels in stress-acclimated cotton
leaves during dehydration. Data were pooled from three experiments
with duplicate measurements at each time point in each experiment. SE

were 1 I% or less of the mean values reported. Leaf water potentials
were 6.4+ 1.0 bars at the start of the photoperiod and 22.5 ± 1.1 bars
by 2100 h.

prevent the buildup of starch that occurs in stress-acclimated
cotton leaves (2, 3).

DISCUSSION

The effects of P fertility on partitioning of carbon between
sugars and starch in cotton are in accordance with prior data
obtained from isolated chloroplasts (8), leaf discs (9), and whole
plants (6). High P resulted in higher concentrations of glucose
and sucrose (Figs. 4 and 5), but did not significantly alter the leaf
turgor-leaf water potential relationships (Fig. 1). The increased
sugar levels could contribute only about 0.4 bar to the leaf
osmotic potential, based on calculations of cellular volumes and
the attendant sugar concentrations (2, 3). This 'osmotic adjust-
ment' due to high P is similar to the amount shown in Figure 1.

Radin (12) recently reached a similar conclusion with regard to
suboptimal levels of P.
Phosphorus fertility influenced water use efficiency on a single

leaf basis in acclimated plants (Fig. 3). Lower leaf conductances
and higher photosynthetic rates were characteristic of plants
grown on 5.0 mM P. Radin (12) demonstrated that P deficiency
causes stomata of cotton to begin closing at higher leaf water
potentials when compared to the stomatal response of plants
grown on more typical P levels (0.05 versus 0.5 mM). The present
experiments along with those of Radin (12) clearly demonstrate
that P fertility level exerts an effect on stomatal response to stress.

Phosphorus-induced changes in water use efficiency were also
mediated through increased photosynthetic capacity (Figs. 2 and
3). In acclimated plants, high P levels resulted in higher photo-
synthetic rates and lower leaf conductances at most leaf water
potentials. The inhibition of photosynthesis at high leaf water

potentials as a consequence of stress acclimation was not as great
in these experiments as was previously observed (2, 3). This
disparity may be due to differences in the growing media used
in the experiments.
High P did inhibit the accumulation of starch normally asso-

ciated with stress acclimation in cotton (Fig. 5; Refs. 2, 3).
Because high P reversed the effects of stress acclimation on starch
accumulation, the data indicate that intracellular Pi levels may
have mediated responses to acclimation. In this regard, P uptake
by plants is severely depressed by water stress (5, 7, 16), which
could have a marked effect on carbon partitioning, and perhaps
photosynthesis, in plants subjected to periods of water deficit.
Based on the present experiments and those reported earlier (2,
3), the following explanation can be offered to account for the
large accumulation of starch in stress-acclimated cotton leaves.
During periods of water stress, P uptake is suppressed resulting
in lower cellular Pi levels which lead to starch accumulation (6,
8, 9, 1 1). Use of high P fertility levels mitigates the effects of
stress on P uptake resulting in more 'normal' intracellularPi
levels, thus accounting for the inhibition of starch accumulation
in the acclimated leaves (Fig. 5).

Regulation of carbon partitioning between sucrose and starch
is mediated by cellularPi levels (8, 9, 1 1). Species differ with
respect to cytoplasmic sucrose-P-synthase activity in relation to

intracellularPi concentration(10). Consequently, partitioning of
carbon into soluble and insoluble fractions in response to water
stress may be different among species, thus accounting for dif-
ferences in the acclimation response to water stress. Although no

well-defined interspecific variation in P uptake during stress

appears to exist, this could also have a bearing on stress accli-
mation by virtue of the P effects on carbon partitioning as

observed in these experiments.
In summary, stress acclimation in cotton greatly increases leaf

starch levels. This change can be prevented if nutrient P is
maintained at very high levels. It is suggested that water stress

cycles which induce acclimation interfere with P uptake or

maintenance of adequate tissue P levels. Thus, P fertility as well
as N fertility (13-15) can alter plant responses to stress.
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