Regulation of NO₃⁻ Influx in Barley¹

STUDIES USING ¹³NO₃⁻

Received for publication July 18, 1984 and in revised form October 15, 1984

ANTHONY D. M. GLASS^{*}, ROBERT G. THOMPSON, AND LUCIEN BORDELEAU University of British Columbia, Department of Botany, No. 3529 at 6270 University Boulevard, Vancouver, British Columbia, V6T 2B1 (A.D.M.G.), Biology Department, Mount Allison University, Sackville, New Brunswick, E0A 3C0 (R.G.T.); and Agriculture Canada Station de Recherches, 2560 Boul. Hochelaga, Ste. Foy, Québec, G1V 2J3 (L.B.); Canada

ABSTRACT

Short-term (10 minutes) measurements of plasmalemma NO₃⁻ influx (ϕ_{ec}) into roots of intact barley plants were obtained using ¹³NO₃⁻. In plants grown for 4 days at various NO₃⁻ levels (0.1, 0.2, 0.5 millimolar), ϕ_{ec} was found to be independent of the level of NO₃⁻ pretreatment. Similarly, pretreatment with Cl⁻ had no effect upon plasmalemma ¹³NO₃⁻ influx. Plants grown in the complete absence of ¹³NO₃⁻ (in CaSO₄ solutions) subsequently revealed influx values which were more than 50% lower than for plants grown in NO₃⁻. Based upon the documented effects of NO₃⁻ or Cl⁻ pretreatments on net uptake of NO₃⁻, these observations suggest that negative feedback from vacuolar NO₃⁻ and/or Cl⁻ acts at the tonoplast but not at the plasmalemma. When included in the influx medium, 0.5 millimolar Cl⁻ was without effect upon ¹³NO₃⁻ influx, but NH₄⁺ caused approximately 50% reduction of influx at this concentration.

Short-term studies of NO₃⁻ influx into plant roots have been severely hampered by the lack of a convenient radioactive tracer for NO₃⁻. Attempts to use ³⁶ClO₃⁻ as an analog for NO₃⁻ have met with some success, but there can be difficulties associated with the use of this tracer (8). Investigations using ¹⁵NO₃⁻ have tended to involve uptake periods which appear to be relatively long by comparison with available estimates of the cytoplasmic half-life for NO₃⁻ exchange (12). As a consequence, such studies have tended to estimate the ϕ_{ov}^2 rather than ϕ_{oc} . Despite the possibility of using ¹³NO₃⁻ as a tracer for NO₃⁻ in ion transport studies, it is only quite recently (14) that this tracer has been used to measure NO₃⁻ influx into roots of higher plants.

Previous studies of the net uptake of NO_3^- by barley roots and carrot slices have been interpreted to suggest that negative feedback is exerted upon the uptake process by a common feedback signal from vacuolar [Cl⁻ + NO_3^-] (2, 5, 7, 19). Using ³⁶ClO₃⁻ as a tracer for NO_3^- (³⁶ClO₃⁻), influx was insensitive to levels of NO_3^- pretreatment which caused substantial reductions of net NO_3^- uptake (5). These and more direct observations of $NO_3^$ efflux as a function of tissue [NO_3^-] (8) were interpreted to suggest that NO_3^- influx was largely insensitive to vacuolar $NO_3^$ concentration and that the control of uptake at the plasmalemma was based upon a form of 'pump and leak' system. Previous studies, particularly those of Jackson and his associates (13, 15, 16), have established that net NO_3^- efflux can be considerable under appropriate conditions.

Through the use of ${}^{13}NO_3^-$, it is possible to test the above hypothesis directly and to investigate the effect of NO_3^- or Cl⁻ accumulation upon plasmalemma NO_3^- influx. Using barley plants pretreated for 4 d at various NO_3^- levels and at a single Cl⁻ level, plasmalemma ${}^{13}NO_3^-$ influx values were found to be independent of pretreatment. While preliminary, the results of these experiments confirm the original conclusions regarding the insensitivity of influx to vacuolar [NO_3^-]. Likewise, it is evident that ${}^{13}NO_3^-$ influx is insensitive to prior loading with Cl⁻, a condition which has been clearly demonstrated to reduce net NO_3^- uptake (3, 7, 19). These results are discussed in the context of current perceptions of the regulation of NO_3^- uptake in roots.

MATERIALS AND METHODS

Growth of Plants. Seeds of barley (Hordeum vulgare cv Bonanza) were germinated in sand on plastic gauze glued to Plexiglas discs, as described previously (18). Roots grow down through the gauze, upon which the plants become anchored, making it possible to transfer the discs between solutions with minimal disturbance of the plants. Seedlings were maintained in temperature-controlled greenhouses ($22 \pm 2^{\circ}$ C) at the Station de Recherches, Agriculture Canada, Ste-Foy, Québec, in February 1983. Natural sunlight was supplemented by banks of fluorescent lamps which extended the short February days to give a standard 16 h day/8 h night. When 3 d old, the seedlings were transferred to hydroponic tanks in the same greenhouses. All solutions contained 0.5 mM CaSO₄ plus various concentrations of KNO₃ or KCl as specified, together with MgSO4, micronutrients, and Fe at a concentration equivalent to 1/100 Johnson's modified medium (18). Solutions were replaced daily and, on the evening prior to the influx experiments, the tanks were transported to the control room of the Van de Graaff generator in the Physics department at Université Laval. Room temperature was held at 25°C and at the time corresponding to the beginning of the photoperiod, plants were illuminated from above by a pair of mercury vapor lamps through a heat filter of ice-cold water. At plant level, irradiance was 300 μ E m⁻² s⁻¹. Plants were 8 d old at the time of influx measurement.

Preparation of ¹³NO₃⁻. ¹³NO₃⁻ was prepared by deuteron bombardment of a Li₂CO₃ pellet as outlined by Caldwell *et al.* (1). The pellet was subsequently dissolved in HNO₃ which served to drive off unreacted CO_3^{2-} . The pH of the solution was adjusted to 7 using 1 N KOH and the solution passed through ion exchange columns to remove Li and contaminating ¹⁸F⁻. The eluate,

¹Supported by Natural Sciences and Engineering Research Council (of Canada) operating grants to A.D.M.G. and R.G.T. and through Agriculture Canada support to L.B.

² Abbreviations: ϕ_{ov} , quasi-steady flux to the vacuole; ϕ_{oc} , plasma-lemma influx.

consisting of 2 to 3 ml of a solution of ${}^{14}NO_3^{-}$ labeled with ~50 μ Ci of ${}^{13}NO_3^{-}$, was used to label the uptake solutions. Since complete recovery of carrier NO₃⁻ (HNO₃) added to the Li₂CO₃ pellet was not always achieved, actual NO₃⁻ concentrations of the uptake media deviated from planned. However, samples of these solutions were set aside for subsequent NO₃⁻ analysis by means of an Orion NO₃⁻ electrode (8). Thus (Table I and elsewhere), the apparent choice of uptake solution containing [NO₃⁻] such as 0.422 mM was unavoidable. In this case, 0.5 mM NO₃⁻ had been anticipated.

Influx Experiments. Solutions containing 0.5 mM CaSO_4 plus various concentrations of ${}^{14}\text{NO}_3^-$ labeled with ${}^{13}\text{NO}_3^-$ and other ions (as specified) were contained in 1-L Plexiglas vessels, designed to accommodate the discs on which seedlings were supported. The solutions were aerated and stirred by means of a 4 place magnetic stirring device. Roots of intact plants were pretreated for 5 min in media which were identical to those to be used for the influx experiment except that they contained no ${}^{13}\text{NO}_3^-$. Discs were transferred to labeled solutions and exposed to tracer for 10 min. Following this, roots (still intact) were exposed for 5 min to desorption medium (identical to pretreatment solutions) at 2 to 4°C.

Isotope Counting. After desorption, roots were excised and gently blotted dry with paper towels. Each treatment was replicated four times and small (~0.5 g) samples were introduced, without weighing, into preweighed glass scintillation vials. Oneml samples of the influx solutions were transferred to scintillation vials in order to estimate the specific activity of these solutions. Radioactivities of the root samples were obtained by scintillation counting (L.K.B. Liquid Scintillation Counter). In the absence of a prescribed method for counting such samples, it was necessary to undertake some brief investigations of counting methods adopting a somewhat ad hoc approach. The positron (β^+) emission from ¹³NO₃⁻, which is accompanied by gamma radiation, appeared to be counted rather like a Cerenkov radiation, without the need for chemical fluors. Using distilled H_2O additions (10) ml) as we generally employ for Cerenkov counting of ⁸⁶Rb (9), it was found that the positron emission was efficiently counted in the range employed for tritium counting. However, the counting efficiency appeared to be unaffected by these 10 ml additions of water, so they were subsequently omitted. To check that there was no contamination by other radioisotope product, samples of the uptake solution were counted at each run and then recounted at intervals of 2.5 min. Using the initial cpm and the appropriate half-life for ¹³N (9.96 min), the cpm values were predicted at 2.5, 5, and 7.5 min (Table I). To correct for quenching due to variation in root mass, a uniform sample of radioactively labeled root material was weighed into 0.2, 0.4, 0.6, 0.8, and 1.0 g portions which were dispensed into scintillation vials. The resulting figures for cpm g^{-1} were used to obtain an exponential regression of cpm g^{-1} against root fresh weight. The regression was employed to estimate the efficiency of counting. Clearly, although there may have been minor inaccuracies with respect to the calculation of absolute ¹³NO₃⁻ fluxes into roots, the relative values for various treatments are quite reliable. Using γ -ray detectors and correcting for root free space, McNaughton and Presland (14) obtained values for ¹³NO₃⁻ influx in corn roots which are quite close to the values reported here for barley. From completion of the deuteron bombardment of the Li₂CO₃ pellet to arrival at the L.K.B. scintillation counter took approximately 35 min. Each sample was counted for 60 s and a careful note of elapsed time enabled corrections to be made for isotopic decay. All values of cpm g⁻¹ fresh weight of roots were corrected for the isotopic decay using a microcomputer program written for the purpose.

RESULTS AND DISCUSSION

Validation of the Identity of the Isotope. In the first experiment the ¹³NO₃⁻ was found to be contaminated by a longer-lived isotope which, based upon the half-life for decay, may have been ¹⁸F. However, in all subsequent experiments the predicted values for cpm, based upon $t_{v_1} = 9.96$ min, corresponded to within a few per cent of actual values. Table I shows a representative sample of such data.

Influence of Prior Nitrate Provision on ¹³NO₃⁻ Influx. Based upon previous studies, it is known that provision of NO₃⁻ in the range from 0.01 to 0.25 mm causes substantial reduction of net NO₃⁻ uptake (5). For example, Deane-Drummond (5) showed that barley plants grown in 0.25 mM NO₃⁻ gave net NO₃⁻ uptake values which were about one-fifth of the values obtained with plants grown in 0.01 mM NO₃⁻. Nitrate was therefore provided at four levels during the 4 d prior to ¹³NO₃⁻ influx, namely, 0 (CaSO₄-grown plants), 0.1 mm, 0.2 mm, and 0.5 mm (as the K salt). It was intended that the influx medium contain 0.5 mm NO_3^{-} but, due to the failure to recover all of the carrier ¹⁴ NO_3^{-} which had been applied to the column, the actual concentration of NO_3^- was found to be 0.422 mm. Table II shows the outcome of this experiment. It is immediately apparent that ${}^{13}NO_3^{-}$ influx is significantly lower in CaSO₄-grown plants which have received no prior NO₃⁻ exposure (other than during the 5 min pretreatment). This observation is consistent with the well documented requirement for 'induction' of net nitrate absorption in CaSO₄grown plants by exposure, on a time scale of 3 to 4 h, to NO₃ (11). However, more interestingly, prior exposure to NO_3^{-1} in the range from 0.1 to 0.5 mm apparently caused no reduction of $^{13}NO_3^{-}$ influx. This confirms the observations reported using $^{36}\text{ClO}_3^-$ as a tracer for NO_3^- (7, 8). Absolute values of NO_3^- influxes based upon the use of $^{13}\text{NO}_3^-$ or $^{36}\text{ClO}_3^-$ as tracers compare reasonably well considering the uncontrollable variations in growth and influx conditions between our laboratory in Vancouver and facilities at Quebec. In a previous communication, which comes closest to the conditions used for the ¹³NO₃⁻ studies, we quoted an influx value of 12.5 μ mol g⁻¹ h⁻¹ based upon ³⁶ClO₃⁻. In the present study (Table II), values ranging from 8 to 10 μ mol g⁻¹ h⁻¹ were obtained using ¹³NO₃⁻. The

 Table I. Repeated Counts of 1 ml of ¹³NO₃⁻ Labeled Uptake Medium at 2.5 Minute Intervals, Together with Predicted Radioactivity Based upon the 9.96 Minute Half-Life for Decay of ¹³N

Time	Radioactivity		
	Actual ^a	Predicted ^b	
min	cpr	n	
0-1	$71,152 \pm 39$	71,152	
2.5-3.5	$59,120 \pm 37$	59,726	
5.0-6.0	$48,803 \pm 35$	49,653	
7.5-8.5	$40,054 \pm 22$	40,959	

* Mean of two samples \pm SE.

^b Predicted on the basis of the mean value at 0 to 1 min.

Table II. Influence of Prior NO₃⁻ Provision upon ¹³NO₃⁻ Influx

All plants recieved 0.5 mM CaSO₄ for 5 d. Where NO_3^- was provided, it was added for the 3 d prior to the influx determination. Uptake medium contained 0.5 mM CaSO₄ plus 0.422 mM KNO₃. Values for influx are the means ± sE of four replicates.

Pretreatment Condition	¹³ NO ₃ ⁻ Influx	
	μ mol g ⁻¹ fresh wt h ⁻¹	
CaSO ₄	3.41 ± 0.75	
0.1 mм KNO ₃	7.88 ± 0.86	
0.2 mм KNO ₃	7.19 ± 0.57	
0.5 mм KNO ₃	9.98 ± 0.95	

reduction of net NO_3^- uptake associated with NO_3^- or Clpreloading must therefore act at the tonoplast, leading to increased cytoplasmic NO_3^- levels and to increased net efflux of NO_3^- across the plasmalemma.

In many respects, this situation appears to be similar to that proposed, on the basis of compartmental analysis, for SO_4^{2-} accumulation (3). This similarity has been noted previously (10).

Influence of Cl⁻ on ¹³NO₃⁻ Influx. Previous studies by Cram (2) and Smith (19) have established that the accumulation of Clresults in a substantial reduction of both plasmalemma Cl⁻ influx and net NO_3^- uptake. Based upon these findings, it has been suggested (2) that Cl⁻ and NO₃⁻ uptakes respond to a common feedback signal from the combined $[Cl^- + NO_3^-]$ of the vacuole. The availability of ¹³NO₃⁻ has enabled us to investigate the locus(i) of this feedback. Table III demonstrates that prior exposure to 0.5 mM Cl⁻ failed to reduce subsequent $^{13}NO_3^-$ influx, by comparison with plants grown without Cl⁻. Thus, a consistent pattern emerges with respect to the common feedback effect of vacuolar Cl⁻ or NO₃⁻ on NO₃⁻ uptake. It is clear that the reduction of net NO₃⁻ uptake does not result from reduction of plasmalemma influx. By contrast, in the case of Cl⁻, Cram (2) has demonstrated that both the ϕ_{oc} and the ϕ_{ov} are reduced by prior Cl⁻ or NO₃⁻ accumulation.

Table III also demonstrates that ${}^{13}NO_3^-$ influx is insensitive to the presence of Cl⁻ in the external medium. This observation is consistent with the report by Smith (19) that net NO_3^- uptake is insensitive to external Cl⁻. However, in a previous study of NO_3^-/Cl^- interactions, which made use of ${}^{36}ClO_3^-$ as a tracer for NO_3^- (7), it was observed that NO_3^- (${}^{36}ClO_3^-$) influx was extremely sensitive to external Cl⁻. Furthermore, pretreatment with Cl⁻ caused inhibition of NO_3^- (${}^{36}ClO_3^-$) influx.

In view of the present observations with ¹³NO₃⁻, the anomalous behavior of ³⁶ClO₃⁻ in the above instance could readily be accounted for by contamination of the ³⁶ClO₃⁻ employed in the above two experiments with ³⁶Cl⁻. This is entirely feasible since ³⁶ClO₃⁻ was generated by electrolysis of ³⁶Cl⁻, followed by chromatographic separation of the products (4). Alternatively, although ClO₃⁻ may be a legitimate analog for NO₃⁻ under a range of circumstances, there may be a failure to faithfully trace NO₃⁻ under these particular circumstances. We have previously cautioned that ³⁶ClO₃⁻ may not serve as a satisfactory tracer for NO₃⁻ in some organisms (8).

Table III. Influence of Cl⁻ and NH₄⁺ upon ¹³NO₃⁻ Influx

Plants were grown for 5 d in 'standard' media containing 0.01 mM KNO₃, 0.1 mM K₂SO₄, 0.5 mM CaSO₄, and 0.01 mM MgSO₄ together with the micronutrient components of 1/100 strength modified Johnson's medium (18). In treatment no. 2, 0.5 mM Cl⁻ (Ca salt) was added to the growth medium. Standard influx medium contained 0.5 mM CaSO₄ plus 0.75 mM KNO₃, labeled with ¹³NO₃⁻. In treatment nos. 3 and 4, 0.5 mM Cl⁻ (Ca salt) or 0.5 mM NH₄⁺ (SO₄²⁻ salt), respectively, were added to the influx media. Values for influx are means of four replicates ± SE.

Pretreatment	Influx Medium	¹³ NO ₃ ⁻ Influx
		μ mol g ⁻¹ fresh wt h ⁻¹
1. Standard ^a	Standard ^a	8.95 ± 0.47
2. Standard + 0.5 mM Cl ⁻	Standard	9.88 ± 0.81
3. Standard	Standard + 0.5 mм Cl ⁻	10.12 ± 0.98
4. Standard	Standard + 0.5 mм NH ₄ ⁺	4.80 ± 0.41

* As described in legend for table.

Influence of NH₄⁺ on ¹³NO₃⁻ Influx. Plants previously exposed to low-N conditions (0.01 mM KNO₃) were exposed to 0.25 mM (NH₄)₂SO₄ during the influx period in 0.75 mM NO₃⁻. The results of this experiment clearly demonstrate that ¹³NO₃⁻ influx was strongly inhibited by NH₄⁺. This confirms what has been apparent from numerous studies of net NO₃⁻ absorption (13, 17).

In summary, it is apparent that plasmalemma $^{13}NO_3^-$ influx is insensitive to the NO_3^- or Cl⁻ status of the tissue and that the site of the negative feedback upon net NO_3^- absorption is therefore probably at the tonoplast. Inhibition of tonoplast $NO_3^$ fluxes by NO_3^- or Cl⁻ accumulation would inevitably lead to increased cytoplasmic [NO_3^-] and/or increased transport of NO_3^- to the shoot, together with increased efflux of NO_3^- . In these respects, the situation bears close resemblance to the picture for SO_4^{2-} absorption proposed by Cram (3) on the basis of compartmental analysis.

Acknowledgments—We wish to thank Dr. David Fensom for the generous invitation to A.D.M.G. to participate in the activities of the group at Laval. To Dr. Drouin at Université Laval go our sincere thanks for promoting, encouraging, and organizing the ventures at the Van de Graaff facility. The assistance of Richard Coté in separating ${}^{13}NO_{3}^{-1}$ from various contaminants was invaluable.

LITERATURE CITED

- CALDWELL CD, DS FENSOM, L. BORDELEAU, RG THOMPSON, R DROUIN, R DIDSBURY 1984 Translocation of ¹³N and ¹¹C between nodulated roots and leaves in alfalfa seedlings. J Exp Bot 35: 431-443
- CRAM WJ 1973 Internal factors regulating nitrate and chloride influx in plant cells. J Exp Bot 24: 328-341
- CRAM WJ 1983 Characteristics of sulfate transport across plasmalemma and tonoplast of carrot root cells. Plant Physiol 72: 204–211
- DEANE-DRUMMOND CE 1981 Rapid method for the preparation of ³⁶ClO₃⁻ from ³⁶Cl⁻ by electrolysis. Int J Appl Radiat Isot 32: 758-759
- DEANE-DRUMMOND CE 1982 Mechanisms for nitrate uptake into barley (Hordeum vulgare cv Fergus) seedlings grown at controlled nitrate concentrations in the nutrient medium. Plant Sci Lett 24:79–89
- DEANE-DRUMMOND CE, ADM GLASS 1982 Nitrate uptake into barley (Hordeum vulgare) plants. A new approach using ³⁶ClO₃⁻ as an analog for NO₃⁻. Plant Physiol 70: 50-54
- DEANE-DRUMMOND CE, ADM GLASS 1982 Studies of nitrate influx into barley roots by the use of ³⁶ClO₃⁻ as a tracer for nitrate. 1. Interactions with chloride and other ions. Can J Bot 60:2148–2153
- DEANE-DRUMMOND CE, ADM GLASS 1983 Short term studies of nitrate uptake into barley plants using ion specific electrodes and ³⁶ClO₃⁻. Plant Physiol 73: 100-104
- GLASS ADM 1978 An improved method of sample preparation for the radioassay of β-particle emitters by Cerenkov counting. Int J Appl Radiat Isot 29: 75-76
- GLASS ADM, MY SIDDIQI 1984 The control of nutrient uptake rates in relation to the inorganic composition of plants. Adv Plant Nutr 1: 103-147
- JACKSON WA, D FLESHER, RH HAGEMAN 1973 Nitrate uptake by dark-grown corn seedlings: some characteristics of apparent induction. Plant Physiol 51:120-127
- JACKSON WA, KD KWIK, RJ VOLK, RG BUTZ 1976 Nitrate influx and efflux by intact wheat seedlings: Effects of prior nitrate nutrition. Planta 132: 149– 156
- LEWIS OAM, DM JAMES, EJ HEWITT 1982 Nitrogen assimilation in barley (Hordeum vulgare L. cv Mazurka) in response to ammonia and nitrate nutrition. Ann Bot 49: 39-49
- MCNAUGHTON GS, MR PRESLAND 1983 Whole plant studies using radioactive 13-nitrogen. 1. Techniques for measuring the uptake and transport of nitrate and ammonium in hydroponically grown Zea mays. J Exp Bot 34: 880–892
- MORGAN MA, RJ VOLK, WA JACKSON 1973 Simultaneous influx and efflux of nitrate during uptake by perennial ryegrass. Plant Physiol 51: 267-272
- PEARSON CJ, RJ VOLK, WA JACKSON 1981 Daily changes in nitrate influx, efflux and metabolism in maize and pearl millet. Planta 152: 319-324
- RAO KP, DW RAINS 1976 Nitrate absorption by barley: kinetics and energetics. Plant Physiol 57: 55-58
- SIDDIQI MY, ADM GLASS 1983 Studies of the growth and mineral nutrition of barley varieties. I. Effect of potassium supply on the uptake of potassium and growth. Can J Bot 61: 671–678
- SMITH FA 1973 The internal control of nitrate uptake into excised barley roots with differing salt contents. New Phytol 72: 769-782