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Populations facing adverse environments, novel pathogens or invasive com-
petitors may be destined to extinction if they are unable to adapt rapidly.
Quantitative predictions of the probability of survival through adaptation,
evolutionary rescue, have been previously developed for one of the most
natural and well-studied mappings from an organism’s traits to its fitness,
Fisher’s geometric model (FGM). While FGM assumes that all possible
trait values are accessible via mutation, in many applications only a finite
set of rescue mutations will be available, such as mutations conferring resist-
ance to a parasite, predator or toxin. We predict the probability of
evolutionary rescue, via de novo mutation, when this underlying genetic
structure is included. We find that rescue probability is always reduced
when its genetic basis is taken into account. Unlike other known features
of the genotypic FGM, however, the probability of rescue increases mono-
tonically with the number of available mutations and approaches the
behaviour of the classical FGM as the number of available mutations
approaches infinity.
1. Introduction
In evolutionary rescue, a population facing extinction due to an adverse
environmental change survives through rapid evolution [1–3]. Typically, an
evolutionary rescue scenario involves a population that faces an abrupt
environmental change, such that the population size is suddenly in decline.
The population can then be ‘rescued’ by having, or creating, a rare genotype
that is better adapted to the new environment. Evolutionary rescue is thus an
essential concept not only in evolutionary theory [4], but also in conservation
biology, since species threatened with extinction due to habitat fragmentation
and destruction, as well as climate change, may survive through adaptation
[5]. Understanding the mechanisms of evolutionary rescue requires the
integration of both ecological and evolutionary responses of populations to a
changing environment [1,6].

The fate of populations under stressful environmental conditions is deter-
mined by a complex interplay among demographic, genetic and extrinsic
factors. The size of the initial population is a crucial determinant of evolution-
ary rescue [7–9], along with the rate of population decline, which is determined
by the degree of maladaptation or level of stress in the adversely changed (or
changing) environment [10–12]. The population is likely to face a geometrical
decline in abundance if sufficiently maladapted [13], and may decline to criti-
cally small sizes at which it will be highly susceptible to extinction via
demographic stochasticity [1]. On the other hand, the decay of the wild-type
population also releases competition between existing mutants to facilitate
rescue [14,15].

The mutation supply of beneficial mutations is another crucial factor that is
impacted by both population size and mutation rate [8]. Standing genetic
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Figure 1. Fisher’s geometric model defines fitness (coloured surface) as a function of trait values, illustrated here for N = 2. The peak fitness Wmax occurs at the
optimal trait values, shown here as 0. In an evolutionary rescue scenario, the wild-type phenotype, Q, has fitness W0 < 1. Mutations occur as displacement vectors,
η. In this example, if mutation η1 occurs, fitness is reduced. However if η2 occurs, trait values move closer to the optimum and fitness is greater than unity (stars
and black crosses indicate fitness values >1 and <1 respectively.) In the classic version of FGM, mutations can move the phenotype Q to any point in trait space. In
contrast in the genotypic realization, the phenotype Q can only ‘jump’ by additive combinations of a finite set of ηi. An illustration for two traits, N = 2, and
sequence size L = 3 is provided in the inset. Here the phenotype associated with genotype 011 is obtained from 000 by additively combining η2 and η3.
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variation (genotypes that exist before the environmental
change) and the rate of de novo mutation from the declining
wild-type population are the main genetic factors that affect
the probability of rescue [13,16]. In addition, a positive
effect of local dispersal has been demonstrated in structured
populations, as it promotes the spread of beneficial mutations
that confer adaptation to intermediate stress levels [17,18].

The fitness landscape faced by the declining population is
another critical factor in evolutionary rescue. While founda-
tional theory was developed for quantitative traits affected
by many loci [1], stochastic approaches focused on a single
rescue allele with a fixed fitness effect [6,13]. Extending the
latter approach to include a range of possible alleles of differ-
ent effect sizes [10] elegantly coupled evolutionary rescue to
Fisher’s geometric model (FGM) [19,20], a well-studied
phenotype-to-fitness landscape [21–25]. This coupling naturally
scales both the availability and effect size of rescue mutations
with the degree of environmental stress faced by the
population [10,26].

As a landscape on a continuous trait space, FGM assumes
that all possible phenotypes are accessible by mutation.
In realistic settings, however, only a finite set of mutations
may contribute to evolutionary rescue. For example, a hand-
ful of well-characterized mutations confer resistance to
antibiotics, as seen in bacterial populations [27–29]. In
essence, evolutionary rescue occurs at a genotypic level.

How will predictions about evolutionary rescue change if
we take this underlying genotypic basis into account? To
address this question, we follow [30], which introduced a geno-
typic realization of FGM. Mutations in FGM change only the
phenotype, so assigning a genetic locus to each mutation in
order to produce a genotypic version seems straightforward,
as illustrated for example by [31]. Yet, despite the additivity
and smoothness of the genotype–phenotype map, this geno-
typic model typically displays multiple fitness optima,
exhibiting behaviours that are distinct from those of the pheno-
typic FGM [30]. We use this genotypic approach to address
evolutionary rescue, deriving analytical expressions for the
probability that a population survives an adverse environmental
event. We find that the rescue probability, averaged over many
samples of the genotypic FGM, is always reduced when the
genotypic basis of evolutionary rescue is taken into account.
2. The model
2.1. Fisher’s geometric model
In Fisher’s geometric model, a phenotype is represented as a
point in an N-dimensional phenotypic space, where each axis
corresponds to a specific trait [19,20]. Each trait is assumed to
have an optimal value [32], and thus a single point in trait
space defines the best possible phenotype. An individual’s
fitness, W, is then a decreasing function of the distance
between its phenotype and the optimum phenotype.
Mathematically, this can be expressed as

W ¼ Wmax exp �
PN

i¼1ðqi �OiÞ2
2r2

 !
: ð2:1Þ

Here, Q = [q1, q2,…, qN] denotes the individual’s phenotype,
while O ¼ ½O1, O2, . . ., ON � represents the optimum pheno-
type. The maximum possible fitness is denoted by Wmax,
while ρ defines the width of the fitness function. See
figure 1 for an illustration of the fitness surface.

Mutations can affect all trait values (universal pleiotropy);
in particular, a single mutation is represented by a vector of
phenotypic changes: 1 ¼ ½11, 12, . . ., 1N �. The model further
assumes that the effects of a mutation on the trait values
are additive, i.e. Q0 ¼ Qþ 1, where Q0 is the mutant pheno-
type. Here, we also make the standard assumption that the
components 1i are normally distributed random variables
with null mean and variance σ2 [33,34]. Thus, both selection
and mutation are symmetrical, without correlations among
traits (but see [35]).

In reality, all possible phenotypes may not be accessible
via mutation. Following [30], we thus relax this assumption
and consider a genotypic realization of FGM. In particular,
we assume that a finite set of non-lethal mutations are
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available by mutation from the wild-type. For the evolution-
ary rescue scenarios considered here, we can think of this as
the set of mutations that affect specific loci that are critical to
rescue. For example, if a particular efflux pump must be up-
regulated for rescue, this could be the set of mutations that
either up- or down-regulate efflux, without causing lethality.
Similarly, if a receptor must escape binding to a new patho-
gen, we would consider the set of mutations that change
the receptor binding properties, either increasing or decreas-
ing affinity with the pathogen, without losing receptor
function. Due to the assumption of universal pleiotropy,
these mutations will affect other traits as well as the traits
important for rescue.

We let L represent the number of available mutations in
this set. The genetic state of each individual is thus simply rep-
resented as a binary sequence of size L, representing which of
L possible mutations the individual carries (figure 1, inset).
After choosing a wild-type phenotype (a point in trait space,
Q), we define the genetic state of the wild-type as S = (0, 0,
…, 0) (since it carries no mutations). We then specify L avail-
able displacement (mutation) vectors ηk. Each element of
each displacement vector ηk is drawn from a normal distri-
bution with mean zero and variance σ2 as in the classic
FGM. The genetic state of each individual then reflects the
absence or presence of each mutation, such that the phenotype
of any of the 2L possible ‘genotypes’ is obtained by simply
adding any mutations carried by that type, ηk, to the wild-
type phenotype Q. As a result, only a finite set of points in
trait space, and thus a finite set of fitness values, are accessible
via the mutation vectors ηk, as illustrated in figure 1. Note that
1 denotes a randomly drawn mutation vector as defined for
the phenotypic FGM, while ηk corresponds to one of the set
of L mutation vectors in the genotypic model. Although
identically distributed, these vectors are, crucially, drawn at
different points in the stochastic process.

Finally, we note that the phenotypic effect of mutation k is
constant and independent of the othermutations carried by the
individual. There is thus no epistasis in trait space. However,
the inherent nonlinearities of the phenotype–fitness map
causes the emergence of epistasis at the level of fitness [36].
In fact, epistasis is a major determinant of the topography of
these fitness landscapes, and consequently imposes con-
straints on the evolutionary process [31]. One important
consequence of providing a discrete genotypic basis for
the FGM is that the projection of the discrete genotypic space
onto the continuous phenotype space can give rise to multiple
distinct fitness maxima (see [30] for a detailed analysis).
2.2. Modelling evolutionary rescue
To model the rescue process analytically, we make several
simplifying assumptions. In particular, we assume that the
population initially consists of N0 genetically identical
(wild-type) individuals. In this contribution, we therefore
neglect the role of standing genetic variation (but see
[13,16]) and predict only the contribution of de novo
mutation to rescue. Similarly, we will assume that rescue
occurs via a single mutation from a wild-type individual,
neglecting the role of multiple mutations [26,37]; the latter
assumption will be relaxed in the simulations to follow.

Starting with the phenotypic model, we assume that the
wild-type phenotype Q is at distance d ¼

ffiffiffiffiffiffiffiffiffiffiP
q2i

q
from the fit-

ness optimum; we assume (without loss of generality) that
this optimum is at the origin. The wild-type absolute fitness
is therefore

W0 ¼ Wmax exp
�d2

2r2

� �
: ð2:2Þ

To model a rescue process, we imagine that the environment
has instantaneously changed, such that the wild-type popu-
lation size is declining. We thus choose d sufficiently large
such that the wild-type fitness, W0, is less than unity. We
describe the ‘fitness drop’, δ, as the degree to which the
wild-type is maladapted, δ = 1−W0. We then assume that
individuals reproduce asexually in discrete generations, pro-
ducing a Poisson-distributed number of offspring with mean
given by their absolute fitness. Mutations can occur during
each birth event, where the mutation rate, per individual
per replication, is given by U. As described above, we
assume that U is sufficiently small that single mutations
from the wild-type will dominate the rescue process.

As noted above, the key difference between the classic
and genotypic versions of FGM is that in the genotypic
model, only a finite set of possible mutations is accessible.
These mutations are a random sample from the infinite set
of mutations assumed in the classic FGM. In the analysis
and simulations to follow, we present the expected behaviour
over many such samples, that is, over many different sets of
mutations. Since these mutations are sampled from the same
mutational distribution as in the classic FGM, over many
draws the distributions of mutations in the classic and geno-
typic FGM are identical. We also point out that in both
models, the same number of mutations will occur during
an evolutionary rescue scenario. It is thus not clear from
the outset whether imposing a genotypic basis on FGM will
have any effect on evolutionary rescue, and the results to
follow were unexpected.
2.3. Simulating evolutionary rescue
To simulate this process, we begin with N0 individuals that
carry no mutations, and thus all have the wild-type phenotype
Q, which we define as a point on the hypersurface of radius d
from the origin. As described above, we choose d such that the
wild-type fitness W0 < 1. Individuals are subject to selection
and mutation. Thus, in each generation, each individual gener-
ates a Poisson-distributed number of offspring with mean W,
where W refers to the absolute fitness determined by the
individual’s phenotype (equation (2.1)). As described above,
we consider non-overlapping generations.

Each offspringmutates with probabilityU. To simulate the
classic (phenotypic) FGM, each time a mutation occurs we
draw a new mutation vector, 1, such that the mutant
phenotype is Qþ 1. In the case of FGM with a genetic basis,
we draw the L possible mutation vectors before the simulation
begins. Each time a mutation occurs we then choose a random
locus that will mutate; the locus in question will change from 0
in the parent to 1 in the offspring, or vice versa (back mutation
is included in the simulations). A mutation at locus kwill thus
add (or subtract) the displacement vector ηk to determine the
offspring’s phenotype.

For each independent run, the simulation is stopped if
either the population goes extinct, or if the number of indi-
viduals with fitness W > 1 surpasses 100 (our results are
insensitive to this threshold as long as it is sufficiently
large, as in [26]). The latter case is counted as an instance of
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evolutionary rescue. When rescue occurs in the genotypic
model, we also record the mean number of mutations that
are carried by individuals with W > 1. We also note that dis-
tances in this model can be rescaled by any one of the three
length scales, ρ, d and σ. In the simulation results to follow,
we take ρ = 1 and thus express distances in terms of the
width of the fitness distribution around the optimum.

Unless stated otherwise, for each simulation result we
drew 100 000 independent sets of mutations, and simulated
a single rescue scenario for each mutational set. As compared
with simulating replicate rescue scenarios over a smaller
number of mutational sets, this procedure reduces statistical
fluctuations. We also use the replicate approach, however,
to examine the distribution of the rescue probabilities
obtained across distinct sets of mutations.
oc.Interface
20:20230424
3. Analytical predictions
3.1. Distribution of fitness effects of mutations
The distribution of fitness effects of single mutations (the
DFE), where mutations are drawn randomly as described
above, has a known form for this version of FGM [24,38].
The distribution of the relative growth rate, m/m0, has also
been previously derived (appendix II.2 in [10]), where m0 is
the Malthusian growth rate of the wild-type,

m0 ¼ logðW0Þ ¼ logðWmaxÞ � d2

2r2
: ð3:1Þ

In brief, we consider the growth rate of a lineage that carries
one mutation, with displacement vector 1 ¼ ½11, 12, . . ., 1N �.
The phenotype of the mutant is Qþ 1 and the growth rate of
the mutant is

m ¼ log Wmax e �
P

ðqiþ1iÞ2ð Þ=2r2� �
¼ logðWmaxÞ � 1

2r2
X

ðqi þ 1iÞ2

¼ logðWmaxÞ � 1
2r2

YN : ð3:2Þ

Here, the random variable YN ¼Pðqi þ 1iÞ2 is the sum of the
squared values of N independent, normally distributed
random variables, each with a different mean value (the qi).
YN therefore follows a non-central χ-squared distribution,
with N degrees of freedom and with non-centrality parameter
given by

P
q2i ¼ d2 [39].

The probability density function for YN can therefore be
written as

PðyÞ ¼
X1
i¼1

e�d2=2ðd2=2Þi
i!

PNþ2iðyÞ, ð3:3Þ

where PjðyÞ is the probability density function of a (standard)
χ2 distribution with j degrees of freedom.

Using equation (3.2), we can also trivially rewrite
equation (3.3) to give the probability density for the
random variable M, the growth rate of a random mutant.
For readability in the sections to follow, we will use p(m) to
denote this probability density.

Finally, since the non-central χ2 distribution may be un-
familiar to the general scientific reader, we present a more
accessible derivation of p(m) in the electronic supplementary
material.
3.2. Evolutionary rescue: phenotypic Fisher’s geometric
model

To estimate the rescue probability in the phenotypic model,
we follow the standard approach [6,13], first estimating
the overall number of de novo mutations that occur while
the wild-type population is en route to extinction. Since the
wild-type population decays as a geometric series, this is
given by

A ¼ UN0

X1
i¼1

Wi
0 ¼

UN0W0

1�W0
, ð3:4Þ

where the the index of summation begins at one because our
model assumes discrete generations in which mutation fol-
lows birth.

We define a rescue mutation as a displacement vector
that, when added to the wild-type phenotype, results in a
positive growth rate (m > 0). The probability that a randomly
chosen mutation is a rescue mutation, and survives extinction
when rare, is then given by

~p ¼
ðm̂
m¼0

pðmÞpðmÞdm, ð3:5Þ

where m̂ ¼ logðWmaxÞ is the maximum possible growth rate,
and π(m) is the probability that a mutant lineage with
growth rate m survives extinction. Although several good
approximations to π(m) are available [40], in our model
growth is density-independent, and thus the growth of the
mutant subpopulation is a branching process. In the results
to follow we can therefore use the exact result, computing
π(m) numerically as the fixed point of the probability generat-
ing function for Poisson-distributed offspring: π(m) = 1− exp
(−emπ(m)) ([41], pp. 145–150).

The probability of evolutionary rescue in the phenotypic
model, due to de novo mutation, is then approximated
by [6,13]

Prescue ¼ 1� (1� ~p)A ð3:6Þ
� 1� e�A~p: ð3:7Þ

Importantly, the compact form of equation (3.6) is possible
because each of the A mutations constitutes a new
random draw from the distribution of growth rates,
p(m). This is the main feature that does not hold in the
genotypic model.
3.3. Evolutionary rescue: genotypic Fisher’s geometric
model

In the genotypic model, the number of available displace-
ment vectors (mutations) is limited. Since the expected
number of de novo mutations that occur before extinction is
A and all mutations are equally likely, the number of de
novo occurrences of each displacement vector is Poisson
distributed with expected value A/L.

Considering the distribution of growth rates of single
mutations, p(m), we define the rescue fraction, f, as the
probability that a displacement vector is a potential rescue
mutation,

f ¼
ðm̂
m¼0

pðmÞdm: ð3:8Þ
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Figure 2. Rescue probability versus mutation effect size. The probability of
evolutionary rescue for the classic, phenotypic FGM (grey lines, equation
(3.6)) and for the genotypic model (equation (3.12)) is plotted versus the
mutation effect size, σ. We find that the rescue probability is reduced in
the genotypic model, decreasing with the number of available mutations,
L (L ¼ 15, 10 and 5 plotted in green, blue and purple, respectively).
Filled circles are simulation results (error bars are similar to or smaller
than symbol heights and have been omitted). Other parameters are:
N = 5, U = 10−3, δ = 0.2, ρ = 1.
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For displacement vectors that are potential rescue mutations,
we also know that their growth rates are distributed with
probability density

pðmjm . 0Þ ¼ pðmÞÐ m̂
0 pðmÞdm

¼ pðmÞ
f

for m [ ð0, m̂Þ:

We first consider a single displacement vector that is a poten-
tial rescue mutation. The probability that it fails to rescue the
population is given by the probability that it occurs de novo i
times, and all i independent lineages go extinct: (1− π(m))i.
We can then condition on the probability that this mutation
occurs i times, sum over all i and integrate over all possible
growth rates for a rescue mutation. The complement of this
integral yields R, the probability that a single displacement
vector rescues the population,

R ¼ 1� 1
f

ðm̂
m¼0

pðmÞ
X1
i¼0

e�lli

i!
ð1� pðmÞÞi dm, ð3:9Þ

where λ =A/L. Here we see the difference between the
phenotypic and genotypic rescue scenarios, in that a
mutation with a particular growth advantage can reoccur i
times in the genotypic model. Thus, rather than considering
the probability that a single de novo mutation survives and
rescues the population, we compute the probability that a
single potential rescue mutation actually rescues the popu-
lation. Conveniently, the infinite sum in R simplifies to yield:

R ¼ 1� 1
f

ðm̂
m¼0

pðmÞ exp �pðmÞA
L

� �
dm: ð3:10Þ

Since there are L displacement vectors in total, the prob-
ability that k of the L displacement vectors are potential
rescue mutations is given by the binomial distribution with
parameters L and f. To estimate the probability that at least
one of these vectors rescues the population, we sum over k,
the number of potential rescue mutations,

Prescue,L ¼ 1�
XL
k¼0

L
k
fk(1� f)L�k(1� R)k, (3:11)

and use the binomial theorem to simplify the above equation
to

Prescue,L ¼ 1� (1� Rf )L (3:12)

� 1� e�RfL: ð3:13Þ

Equation (3.12) has a natural intuitive interpretation. If we
consider each of the L displacement vectors, f gives the prob-
ability that each of these is a potential rescue mutation. The
product Rf gives the probability that this vector does
indeed rescue the population. Therefore, 1−Rf is the prob-
ability that one of the L displacement vectors fails to rescue
the population, and the expression for Prescue,L follows.

Finally, combining equations (3.10) and (3.12) we have

Prescue,L ¼ 1� 1� f þ
ðm̂
m¼0

p(m) exp
�p(m)A

L

� �
dm

� �L

:

(3:14)

Defining XL as the complement 1� Prescue,L, it is straight-
forward to show that

lim
L!1

logXL ¼ �A
ðm̂
m¼0

pðmÞpðmÞdm, ð3:15Þ
and thus we find that

lim
L!1

XL ¼ exp �A
ðm̂
0
pðmÞpðmÞdm

� �

¼ exp �A
ðm̂
�1

pðmÞpðmÞdm
� �

, ð3:16Þ

under the assumption that the fixation of deleterious
mutations during evolutionary rescue is negligible, i.e.
π(m) = 0 for m < 0. Under this assumption, in the limit as
L→∞, equation (3.12) yields equation (3.7). In other words,
the probability of evolutionary rescue in the genotypic
model approaches the rescue probability in the phenotypic
model as the number of available mutations approaches
infinity.
4. Results
In the results to follow, we evaluate the distribution of growth
rates, p(m), numerically and then use either equation (3.6)
or equation (3.12) to predict rescue probabilities in the
phenotypic or genotypic realizations of FGM, respectively.
We confirm all analytical results with simulations as
described above.

Figure 2 shows the probability of rescue as a function of
mutation effect size, σ, where the distance between the
wild-type population and the fitness optimum is fixed. This
figure illustrates several trends that will be repeated through-
out our results. First, we find that when a finite number of
mutations are available (genotypic model), rescue is less
likely than in the classic, phenotypic FGM. Second, we see
that rescue becomes less likely as the number of available
mutations, L, is reduced. Third, we see that incorporating
genotypic constraints in FGM does not change the overall
behaviour of evolutionary rescue as a function of other par-
ameters. Here for example both Prescue and Prescue,L are
unimodal functions of σ, showing that for a fixed distance
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from the optimum, a single ‘best’ mutation size is most likely
to achieve evolutionary rescue, whether or not genotypes are
included in the model. Finally, we note that our analytical
approach assumes that only single mutations from the wild-
type contribute to rescue. Although this assumption is
relaxed in the simulations, the agreement between analytical
predictions (lines) and simulation results (filled circles) is
striking. We note that at the parameter values illustrated
here, in particular at this mutation rate, the average number
of mutations in individuals with positive growth rates at
the end of a simulation is approximately 1.1, so this assump-
tion is not often violated (see figure 5, inset, for further
discussion on this point).

In figure 3, we further illustrate the influence of the number
of available mutations on Prescue,L. Results are presented for
small, intermediate and large mutation effect sizes. As pre-
dicted, including genotypic constraints always reduces
rescue probability, and Prescue,L grows monotonically with L.
More importantly, we confirm that as L→∞, the rescue prob-
ability in the genotypic model approaches the prediction
under Fisher’s classic geometric model (grey horizontal lines).

As discussed previously, an essential factor in the likeli-
hood of evolutionary rescue is the initial level of stress
the population experiences [1,10,11]. In our model, this
factor is reflected in the parameter δ, which describes the
degree to which the wild-type is maladapted after the
environmental change. Figure 4a shows, as expected, that
the rescue probability drops considerably as δ increases.
However, we also notice that when δ is large, the effect of a
finite genome on Prescue is weakened, both in absolute
terms and relatively. Figure 4b shows the effect of the
number of traits (dimensionality of trait space) on Prescue.
When the number of independent traits contributing to fit-
ness increases, the chance of rescue is reduced; again the
genotypic model does not change the overall pattern but
reduces rescue probabilities at any parameter values.

Figure 5 shows rescue probability as a function of
mutation rate. As the influx of de novo mutations is pro-
portional to the mutation rate U, the monotonic growth of
rescue probabilities with U is not surprising. Previous work
on the classic FGM has already proven that a sufficiently
high mutation rate can ensure the persistence of the popu-
lation [10,42]; we illustrate this effect in figure 5, where
Prescue approaches unity as U exceeds approximately 0.01.
Coloured lines show our analytical predictions for Prescue,L,
which substantially underestimate simulated rescue probabil-
ities at high mutation rates. This occurs because the
assumption that only single mutational steps from the wild-
type contribute to rescue is no longer valid at high mutation
rates. The inset of figure 5 plots the number of mutation vec-
tors present, on average, in individuals with positive growth
rates at the end of each simulation run, demonstrating how
this assumption is violated as U grows.

An interesting feature is suggested by these results as
well: the assumption of a finite number of available
mutations imposes an upper bound on rescue probabilities,
such that even at high mutation rates, the persistence of the
population is no longer guaranteed. The smaller the set of
available mutations, the lower the upper bound on the
rescue probability. This makes intuitive sense because even
at high mutation rates, there is at least some chance that no
combination of the L displacement vectors produces a geno-
type with a positive growth rate. Since an approach that
includes multiple mutations is beyond the scope of this
work, we leave this interesting observation for future work.

In figures 2–5, the probability of rescue was obtained by
averaging over 100 000 independent sets of mutations,
where a single rescue scenario was simulated using each
set. In figure 6, we show the dispersion of rescue probabilities
over an ensemble of 1000 sets of mutations, where for each
set, we simulated 1000 independent evolutionary rescue scen-
arios. Here we see a broad spectrum of probabilities, covering
the whole range of possible values. A key observation here is
that a substantial fraction of mutational draws do not allow,
or only rarely allow rescue (broken bar on left); this fraction
may be a key driver of rescue probability when considering
a finite number of loci.
5. Discussion
Evolutionary rescue (ER) has been the subject of intense
study in the evolutionary biology community [2,3]. The
seminal work of Golmukiewicz and Holt introduced ER via
many mutations of small effect [1], while Orr and Unckless
quantified the probability of evolutionary rescue via a
single mutation [6,13]. In the latter approach, the wild-type
allele is assumed to have absolute fitness 1− δ in the new
environment. The population’s survival relies on a beneficial
allele—either arising by de novo mutation or existing in
standing genetic variation—that confers an absolute fitness
1− δ + s, where s > δ.

As mentioned in the Introduction, the level of environ-
mental stress, reflected in the parameter δ, has both direct and
indirect effects on evolutionary rescue. Beyond influencing
the demographic characteristics of a population, a stressful
environment can also impact the rate of adaptation [43]. This
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occurs because the degree of maladaptation of the wild-type
can influence factors such as the rate and distribution
of mutation effects on traits [35]. These indirect effects high-
light the importance of considering the interplay between
environmental stress and the rate of adaptation in ER studies.
Following [10], here we use Fisher’s geometric model to study
a full distribution of fitness effects of mutations (DFE), and to
provide a framework in which the DFE changes in a natural
way for populations experiencing different levels of stress.

Previous work introduced a genotypic realization of FGM
that allows for a finite set of beneficial mutations [30]. These
authors demonstrate that the discrete nature of genotypic
space gives rise to intriguing features in the emergent fitness
landscape. In particular, although the phenotypic landscape is
single-peakedandsmooth, the fitness landscape in thegenotypic
realization exhibits multiple fitness peaks, and the number of
peaks increases exponentially with the size of the genome [30].

In this contribution, we use the genotypic realization of
FGM to study evolutionary rescue via de novo mutation.
Importantly, during rescue under the phenotypic FGM,
each mutation comprises a random draw from the DFE.
This assumption no longer holds for the genotypic model,
as now, the number of available mutations is constrained to
a finite set of size L. We derive the probability that at least
one of these L mutation vectors rescues the population. Our
analytical predictions have a clear intuitive interpretation
and are validated by simulation. Our theory breaks down
when the assumption that only single mutations contribute
to rescue is broken, i.e. in the limit of high mutation rates.
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Our results demonstrate that the probability of evolution-
ary rescue is always reduced when the genetic basis of the
rescue process is taken into account. This finding is somewhat
counterintuitive, given that the rate at which mutations occur
is unchanged, that all mutations are drawn from the same
distribution, and that genotypic results show the average
over many such draws. Whenever a finite set of mutations
is drawn, however, there is a non-zero probability that none
of the mutations improves fitness. Our results show that
with all other parameters held constant, the rescue prob-
ability can vary widely for different sets of mutations
(figure 6), and can include a large fraction of mutational
sets for which rescue is impossible or unlikely. In addition,
we note that the largest value of a set of L draws from any
distribution increases with L [44]. Thus for parameter regimes
in which rescue is driven by rare beneficial mutations, we
might expect that allowing only L draws from the mutation
vector distribution will reduce rescue probabilities.

Consistent with this line of reasoning, the rescue probability
increases when the set of available mutations grows larger. In
fact, we demonstrate analytically that the rescue probability in
the classic FGM is recovered in the limit as L→∞. This is inter-
esting since the topographical properties of this fitness
landscape, such as the number of local maxima, do not
approach those of the classic FGM in this limit [30].

Since L, the number of available mutations, may be large
(see [45] for discussion), it is important to discuss the circum-
stances under which the genotypic basis of ER might be
relevant to quantitative predictions. In other words, when
will Prescue and Prescue,L differ substantially? High degrees of
parallel evolution have been reported in microbial evolution
experiments [46–50], as reviewed by Bailey et al. [51] and Bol-
nick et al. [52]. While parallelism is highest at the level of
phenotype, substantial parallel evolution has been observed
at the level of individual genes [48,49], even across bacterial
phyla and clinical isolates [50]. High degrees of parallelism
in individual mutations have also been observed in the adap-
tation of both bacteriophages [46] and mitochondrial DNA in
malaria [47]. Thus at least for microbial populations, a rela-
tively small number of mutations may contribute to
evolutionary rescue. The effect of a finite set of available
mutations is likely to be most important in small, highly con-
strained genomes such as viruses. For such pathogens, our
work demonstrates that classic ER predictions based on the
phenotypic FGM will overestimate rescue probabilities; clas-
sic predictions will thus provide conservative estimates of
treatment doses that are predicted to eliminate an infection.

We also note that L is defined as the total number of avail-
able, non-lethal mutations that affect the traits of interest.
Of these, fraction f are potential rescue mutations. This
formalism allows us to use FGM directly to compute the
DFE. Returning to the example of a receptor protein, we
might imagine L nucleotide substitutions that affect binding
properties. With some combination of those nucleotides, the
receptor is best able to escape the pathogen; with another
combination, the receptor is least able to escape. The wild-
type individual in our model does not begin at the nadir of
this fitness landscape; both beneficial and deleterious
mutations are available. As with rescue mutations, the
number of available deleterious mutations scales directly in
our model with the total number of available mutations, L.

It is also possible, however, that while the number of
potential rescue mutations remains small, the number of
available deleterious mutations could be extremely large
and may not scale with L. Since this effect is captured in
FGM only very close to the optimum, further model
development would be required to study this situation.

The genetic basis of ER has previously been studied
within the framework of quantitative genetics [53]. In that
study, ER was found to be less likely when more loci contrib-
uted to fitness. While this seems at odds with our overriding
conclusion that ER increases with L, such comparisons
depend critically on what is being held constant. In [53],
the initial population fitness and maximum growth rate are
held constant, such that the selective effect per mutation
falls as the number of loci increases. By contrast, we compare
mutations with the same average effect size, but vary
the number of such mutations that are available. This com-
parison points to rich open questions at the interface of
quantitative- and population-genetic models of ER.

As outlined above, we find that rescue probabilities are
reduced when their genotypic basis is taken into account.
Nonetheless, the overall qualitative behaviour of ER as a func-
tion of other model parameters remains unchanged. For
example, we show that the rescue probability is a single-
peaked function of the mutation effect size σ. This phenom-
enon has been previously observed (e.g. [54,55]) and can be
understood as follows. The probability that a mutation is ben-
eficial approaches 1/2 when the effect size is very small, as
compared with the distance to the optimum [33,56]. Nonethe-
less, mutations with a small effect are unlikely to promote
rescue if the initial maladaptation level of the population is
high. Mutations that strongly affect traits, in contrast, are rare
and are also less likely to be beneficial. The balance of these
effects implies that mutations of intermediate effect size are
the most likely to contribute to population rescue. Our results
suggest that the mutation effect size that maximizes Prescue is
invariant with the number of available mutations, L, but
strongly influenced by the stress level δ. Indeed, levels of
extinction risk and population growth rates are known to
change the spectrum of effect size for established mutations
in the classic FGM [54,55]. In particular, fewer and larger
effect mutations are more likely to fix under high extinction
risk, an effect that is even more pronounced when the
number of available loci is small [55].

Another intriguing prediction of the genotypic model is
the observation of an upper bound on the rescue probability.
While rescue is essentially assured in the classic FGM at high
mutation rates, when only a finite set of mutations is avail-
able, the rescue probability plateaus below unity as the
mutation rate increases. The existence of an upper bound
for the rescue probability follows from the fact that there
exists a non-zero probability that none of the L mutation
vectors restores a positive growth rate.

To allow for analytical progress, we studied ER via de
novo mutation only. Standing genetic variation is another
important contributor to evolutionary rescue [13,16] that
can produce counterintuitive effects in the rescue process
[9]. We also narrowed our focus to the effects of single
mutations from the wild-type (but see [26]). Since evolution-
ary rescue is, in essence, a genotypic phenomenon, relaxing
these assumptions while retaining a genotypic fitness
landscape is a clear avenue for future work.
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