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Abstract

Purpose TRP channels have been implicated in cancer progression. Our study seeks to establish a prognostic model for
hepatocellular carcinoma (HCC) by utilizing genes related to TRP channels.

Methods We used the TCGA and ICGC databases as training and validation cohorts, respectively. We calculated the risk
scores using Lasso—Cox regression analysis based on the expression levels of prognostic genes and performed survival analy-
sis to compare overall survival between high- and low-risk groups. Then we compared the clinicopathologic characteristics
and conducted biological functional analysis. We also explored immune cell infiltration and compared the drug sensitivity.
Results Using bioinformatics algorithms, we identified 11 TRP-related genes and calculated the risk scores. Patients in the
high-risk group demonstrated worse overall survival, as well as more advanced T stage and pathologic stage. The risk score
showed a significant association with the cell cycle. The high-risk group had more ICI and RTK targets with elevated expres-
sion and showed better therapeutic effect to chemotherapy including 5-fluorouracil, camptothecin, docetaxel, doxorubicin,
gemcitabine, and paclitaxel. Overall, an individualized nomogram was constructed by integrating the risk score and requisite
clinicopathologic parameters to predict the overall survival of HCC patients.

Conclusions We successfully established a highly accurate prognostic model for predicting overall survival and therapeutic
effects using TRP channel-related genes.

Keywords Transient receptor potential - Hepatocellular carcinoma - Therapeutic effects - Prognosis prediction -
Bioinformatic algorithm
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Hepatocellular carcinoma (HCC) is the most prevalent
primary liver cancer and typically arises in the context
of chronic liver disease caused by hepatitis B or C virus
infection, alcohol abuse, or metabolic syndrome (Llovet
et al. 2016). Although the mortality rate of liver cancer has
been increasing for decades, the rates have stabilized dur-
ing the most recent 5 years in both men and women owing
to advances in early detection, surgical techniques, and
molecularly targeted therapies (Siegel et al. 2022). Despite
advancements in treatment options, the overall survival rate
of HCC patients remains unsatisfactory due to recurrent
disease, metastasis, and drug resistance. The discovery of
new targets is needed to slow down disease progression and
improve prognosis.

Transient receptor potential (TRP) channels were ini-
tially discovered in a blind strain of Drosophila (Montell
and Rubin 1989) and are now recognized as a family of
ion channels with versatile functions. Structurally, TRPs
are characterized by six transmembrane spanning domains
(S1-S6) and are classified into eight families: TRPA
(ankyrin), TRPC (canonical), TRPM (melastatin), TRPML
(mucolipin), TRPN (NO-mechano-potential), TRPP (poly-
cystin), TRPS (soromelastatin), and TRPV (vanilloid) (Wu
et al. 2010; Zhang et al. 2022). Functionally, TRPs are gated
by various stimuli, including thermal, pain, mechanical, and
chemical inputs and function as intracellular ion channels
in cellular organelles such as lysosomes, the Golgi network,
and the endoplasmic reticulum (Gees et al. 2010; Himmel
and Cox 2020).

During tumor formation and metastasis, abnormal TRP
expression has been observed in multiple cancers, which
may act as a vital role of promoting the proliferation and
metastasis of cancer (Brooks et al. 2010; Chen et al. 2014).
We previously demonstrated that TRPV2 knockdown
enhances the stemness of cancer stem-like cells through
increased expression levels of cancer stem cell markers
ALDHI, CD133, and CD44 (Hu et al. 2018). Additionally,
the overexpression of TRPV2 attenuated the stemness of
cancer stem-like cells by reducing marker levels. Koh et al.
revealed that low TRPV6 expression was remarkably lined
to adverse histologic features, resulting in the worse prog-
nosis (Koh et al. 2022). Similarly, Xu et al. showcased that
TRPC6 and the Na+/Ca2 +exchanger 1 (NCX1) mediated
the effects of TGF-f on the migration, invasion, and intrahe-
patic metastasis of human HCC cells (Xu et al. 2018). How-
ever, the number of experimental studies on TRPs and HCC
remains limited. The biological functions of most members
of TRPs and TRP-related genes during the development of
HCC require more explorations.

Building upon previous research, we managed to eluci-
date the therapeutic and prognostic effects of TRP-related
genes (TRGs) on HCC. To achieve this, we collected and
analyzed transcriptome profiling data from HCC patients
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obtained from The Cancer Genome Atlas (TCGA) and the
International Cancer Genome Consortium (ICGC). Based
on this data, we intended to construct a prognosis model
that incorporates TRGs and clinicopathologic factors. Our
model exhibits high accuracy to forecast the survival status
of HCC patients. Overall, our findings suggest that TRGs
have a substantial impact on the choice of therapy and clini-
cal outcome for patients with HCC, consequently providing
new insights into the management of this disease.

Materials and methods
Acquisition of datasets

120 TRGs were acquired from two gene sets: “Reac-
tome_TRP_channels” in the molecular signatures database
(MSigDB) and “inflammatory mediator regulation of TRP
channels” in the Kyoto Encyclopedia of Genes and Genomes
(KEGG) database (Supplementary Material 1). Gene expres-
sion data and clinical information of patients with HCC were
obtained from TCGA-LIHC, and somatic mutation data
were acquired from the UCSC Xena repository. After elimi-
nating patients with missing survival information and overall
survival of 0, we collected 354 HCC and 49 normal cases
with relevant clinicopathologic information and gene expres-
sion profiles (HTSeq-FPKM) as well as 364 HCC cases with
somatic mutation for further analysis as the training cohort.
The corresponding data downloaded from ICGC-LIRI were
used as the validation cohort.

Biological functional analysis

Gene ontology (GO) and KEGG pathway analyses were
applied to examine the functions of 120 TRGs, using the
R package “clusterProfiler” and Database for Annotation,
Visualization and Integrated Discovery.

Calculation of TRG-based risk score for HCC

We conducted the least absolute shrinkage and selection
operator (LASSO) Cox regression analysis on the training
cohort to minimize redundant TRGs using the R package
“elmnet.” A prognostic model was fitted using the Cox pro-
portional hazards model, based on the TRGs expression and
survival information of each individual. The fitting process
was performed with a maximum of 1000 iterations. The
value of 1 corresponding to the minimum penalized likeli-
hood deviation was chosen as the optimal 1. We identified 11
TRGs for the establishment of the prognosis model. The risk
score for each patient was calculated based on the expression
of TRGs and their corresponding regression coefficients.
The calculation formula was as follows:
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Risk score = Z (Expé * Coed).
6=1

Expd indicates the expression of each TRG, and Coed
represents the corresponding Cox regression coefficient.

Subsequently, patients in the training cohort were divided
into high- and low-risk groups based on the median risk
score. The validation cohort was processed similarly. R
package “survminer” and “timeROC” were applied to con-
duct the survival analysis and time-dependent receiver oper-
ating characteristic (ROC) curve analysis, respectively. The
difference of prognosis was analyzed, and the performance
of the prognostic models was assessed for predicting sur-
vival outcomes at different time points.

Immune infiltration analysis

To calculate the proportion and expression of immune cells
infiltrating HCC tumors for each patient, we utilized two
methods: cell-type identification by estimating relative sub-
sets of RNA transcripts (CIBERSORT) and single-sample
gene set enrichment analysis (ssGSEA) (Bindea et al. 2013;
Hinzelmann et al. 2013; Newman et al. 2015). We then
performed the correlation analysis between 11 TRGs and
immune cells using Spearman’s coefficient and visualized
the correlation.

Tumor mutation burden (TMB) analysis

After removing samples with incomplete data, we utilized
the R package “maftools” to analyze simple nucleotide
variation data (VarScan2) from 343 patients with LIHC.
To explore differences in tumor mutation burden (TMB)
between the two groups, we visualized the top 20 genes with
the highest mutation rates using separate waterfall plots.

Differentially expressed genes and GSEA

We conducted differential analysis using the R package
“limma” on the expression profiling data (HTSeq-FPKM),
setting the cutoff value at p <0.05. To identify biological
processes and pathways enriched in the two groups, we used
gene set enrichment analysis (GSEA). We considered gene
sets with a nominal INESI> 1 and p <0.05 to represent sig-
nificant enrichment of the biological process.

Analysis of drug sensitivity

We utilized the half-maximal inhibitory concentration
(IC50) data from the Genomics of Drug Sensitivity in
Cancer (GDSC) database to compare the chemosensitivity
between the two groups.

Construction of the prognostic model

A nomogram was established using R package “rms.” The
total score of each prognostic factor in the scoring system
corresponded to the estimated 1-, 2-, 3-, and 5-year sur-
vival of HCC patients at in the prediction system. Decision
curve analysis and calibration curves were used to indicate
the accuracy of the survival prediction.

Statistical analysis

Statistical analyses were conducted using the R (4.2.1)
software. Figures were created using Photoshop (2019).
Mann—Whitney test was used to indicate the significance
of the difference between the two groups, whereas that
between three or more groups was verified using the
Kruskal-Wallis test. Spearman’s coefficient was applied
to perform correlation analysis. The clinicopathologic
features between the two groups were compared using
the Chi-square test, and Fisher’s exact test was applied
when required. All hypothetical tests were two-sided, and
p <0.05 was considered to indicate statistically significant
differences.

Results
Identification of TRGs

We comprehensively explored the biological processes
and signaling pathways associated with 120 TRGs by
conducting GO and KEGG analyses. The most signifi-
cant GO terms were calcium channel activity, calcium ion
transmembrane transport, protein serine/threonine kinase
activity, and intracellular signal transduction (Fig. 1A-C).
The KEGG analysis revealed that several signaling path-
ways, including inflammatory mediator regulation of
TRP channels, calcium signaling pathway, and vascular
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Fig. 1 Biological functional analysis of 120 TRP and identification of TRGs. A-D GO and KEGG analysis of 120 TRP. E-G Lasso—Cox regres-

sion analysis of TRGs

smooth muscle contraction, were enriched (Fig. 1D).
Subsequently, the following 11 TRGs were identified via
LASSO regression analysis: PIK3R1, PLCBI, PLCB3,
PPPICB, PPPICC, PRKCD, PRKCQ, RIPK3, TRPC4AP,
TRPM1I, and TRPM6 (Fig. 1E). We figured out the risk
score based upon the expression of 11 TRGs and their
regression coefficients:

risk score =(—0.013979829 X, PIK3R1) + (0.026509423 X, PLCBI)
+(0.004029417 X, PLCB3) + (0.013928081 X, PPP1CB)
+(0.016535821 g, PPP1CC)
+(0.006513565 X, PRKCD)
+(~0.032692058 X, PRKCO)
+ (~0.058352729 Xpy, RIPK3)
+(0.010791336 X, TRPC4AP)
+(~0.323784473 X, TRPM1)

+(0.037941235 X, , TRPM6).
The risk score was used to divide the training and vali-

dation groups into high- and low-risk groups, respectively.
Figure 1F, G displays the survival information and risk
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scores for each sample. Heatmaps (Fig. 2A, B) shows the
expression of the 11 TRGs between these two risk groups.

Correlation between risk score and clinicopathologic
characteristics

We compared the clinicopathologic characteristics of the
two groups based on the risk scores of the TCGA-LIHC
samples. The ICGC-LIRI samples were processed similarly.
Our analysis revealed that compared with the low-risk group,
the high-risk group had significantly worse overall survival
(Fig. 2C, D). Furthermore, the time—ROC results yielded
satisfactory predictive accuracy of the risk score for overall
survival (Fig. 2E, F). Patients in the high-risk group exhib-
ited higher pathological T stage (Fig. 2G, H). However, no
significant differences were observed with regard to gen-
der, N/M stages, treatment, or age between the two groups
(Table 1, Table S1).

Risk score is remarkably associated with cell cycle

After filtrating genes most related to the risk score by con-
ducting Spearman analysis (p <0.001 and R>0.5), we
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Fig.2 Comparison of clinicopathologic characteristics between the two groups. A, B Expression landscape of 11 TRGs. C, D Survival analysis

of TCGA-LIHC and ICGC-LIRI patients. E, F Time—ROC analysis. G, H Comparison of risk score in different T stages

obtained 2136 and 1354 genes in the training (Supplemen-
tary Material 2) and validation cohorts (Supplementary
Material 3), respectively, to explore the biological func-
tions and pathways. Through GO analysis, we found that
the risk score was significantly associated with cell cycle-
related biological functions, including cell division, DNA
replication, nuclear division, and DNA repair, in both the
TCGA and ICGC cohorts (Fig. 3A, C). KEGG analysis
yielded similar results, with cell cycle, DNA replication,
cellular senescence, and endocytosis being closely involved
(Fig. 3B, D). Through GSEA and GO analysis, we analyzed
the functional differences and identified several significant
pathways in the enrichment of MSigDB collection (c5.
£0.v2022.1.Hs.symbols.gmt) in the high-risk group. These
pathways included intrinsic apoptosis signaling pathway, cell

adhesion, cell motility, leukocyte chemotaxis, and signaling
receptor binding (Fig. 3E). GO analysis indicated that the
significantly upregulated genes in the high-risk group were
closely associated with cell cycle-related pathways, corrobo-
rating the results of the aforementioned correlation analysis
(Fig. 3F). This result revealed that TRGs might be involved
in uncontrolled cell cycles and cause worse prognosis in
patients with HCC.

Somatic mutation landscape between groups
As increased TMB can be caused by impaired cell cycle-
related pathways; we compared the landscape of genetic

mutation profiles between two groups (Fig. 4A, B). Nota-
bly, the mutation frequencies of the top 20 genes differed

@ Springer
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Table 1 Clinicopathologic

- ALL Low risk High risk p. overall
characteristics of the two groups
N=354 N=177 N=177
OS Time 820 (731) 983 (819) 657 (591) <0.001
oS <0.001
Alive 226 (63.8%) 132 (74.6%) 94 (53.1%)
Dead 128 (36.2%) 45 (25.4%) 83 (46.9%)
Age 59.4 (13.4) 59.8 (13.8) 59.1 (13.1) 0.624
Gender 0.053
Male 240 (67.8%) 129 (72.9%) 111 (62.7%)
Female 114 (32.2%) 48 (27.1%) 66 (37.3%)
M stage 0.250
MO 256 (98.8%) 121 (100%) 135 (97.8%)
Ml 3(1.16%) 0 (0.00%) 32.17%)
N stage 0.622
NO 240 (98.4%) 121 (99.2%) 119 (97.5%)
N1 4 (1.64%) 1(0.82%) 3 (2.46%)
Stage 0.014
I 166 (50.3%) 98 (58.3%) 68 (42.0%)
I 80 (24.2%) 37 (22.0%) 43 (26.5%)
I 80 (24.2%) 32 (19.0%) 48 (29.6%)
v 4 (1.21%) 1 (0.60%) 3 (1.85%)
T stage <0.001
T1 176 (50.1%) 105 (60.0%) 71 (40.3%)
T2 87 (24.8%) 37 (21.1%) 50 (28.4%)
T3 75 (21.4%) 32 (18.3%) 43 (24.4%)
T4 13 (3.70%) 1 (0.57%) 12 (6.82%)
Treatment 0.456
Radiation therapy 186 (52.5%) 97 (54.8%) 89 (50.3%)
Pharmaceutical therapy 168 (47.5%) 80 (45.2%) 88 (49.7%)

significantly between the groups. Higher TMB was observed
in the high-risk group, which may be related to the high-risk
score and poor prognosis (Fig. 4C-E). Moreover, on con-
ducting a survival analysis based on TMB and risk score,
no discernible differences were detected between patients
with high TMB and those with low TMB in overall survival
(Fig. S1). By conducting survival analysis combining TMB
and risk scores, we found that patients with low-risk scores
had the best prognosis regardless of their TMB levels, while
patients exhibiting high TMB alongside high-risk scores
tended to have the worst overall survival rate (Fig. 4F-H).

Immune infiltration analysis
To examine the differences in immunological function, we
conducted CIBERSORT and ssGSEA analyses. The CIB-

ERSORT analysis revealed that the high-risk group exhib-
ited a greater proportion of dendritic resting cells and MO
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macrophages (Fig. S2). Additionally, ssGSEA analysis dem-
onstrated that the expression of 11 immune cell subtypes,
comprising activated CD4 T, activated dendritic, central
memory CD4 T, central memory CD8 T, effector memory
CD4 T, natural killer T, and type 2 T-helper cells, were
considerably different, with most subtypes exhibiting high
expression levels in the high-risk group (Fig. 5SA). Similar
results were observed in the validation cohort (Fig. 5B). The
results of correlation analysis (Fig. 5C) suggested a more
substantial infiltration of CD4 T-cells in the high-risk group.

Comparison of the therapeutic effect

Immune checkpoint inhibitors (ICIs) play a pivotal role in
HCC therapy. Correlation analysis between immune modu-
lator genes, 11 TRGs, and risk scores (Fig. 6A, B) revealed
a close correlation between the risk score and most immune
modulator genes. Furthermore, we identified targets of
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immunomodulatory drugs under clinical trials for advanced
HCC and compared the expression of these targets between
the low-risk and high-risk groups. We discovered that
most immunomodulatory targets (PDCD1, CTLA4, CD80,
CD86, LAG3, HAVCR?2, TIGHT, IDO1, TNFRSF14, and
CD47) had notably higher expressions in the high-risk group

(Fig. 6C-F).

Tyrosine kinase inhibitors (TKIs) and antiangiogenic
drugs are pivotal in HCC treatment. We observed differ-
ences in the expression of various receptor tyrosine kinases
(RTKs) and the VEGF family across the two risk groups.

group.

substantial expressions in the high-risk group (Fig. 7A-D),
while KDR (also known as VEGFR2) and FLT4 (also known
as VEGFR3) displayed high expressions in the low-risk

Moreover, we identified 12 potential drugs by estimating
IC50 values obtained from the GDSC database. The IC50

of most of these commonly used drugs, including fluoro-

Several RTKSs, including FGFR 1-4 and KIT, and VEGF
families, comprising VEGFA, VEGFB, and PGF, exhibited

uracil, doxorubicin, gemcitabine, and paclitaxel, was lower
in the high-risk group (Fig. 7E). The findings indicated that
patients in the high-risk group would derive greater advan-
tages from systemic therapy.
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Fig.4 Mutation landscape of LIHC patients. A, B Comparison of the mutation landscape. C-E Comparison of TMB. F-H Survival analysis

based on TMB and the risk score

Construction of nomogram for the prognostic
model

We conducted a multivariate Cox regression analysis on
the risk score and clinicopathologic features to establish
a risk model. Our findings revealed that independent risk
factors included risk score, age, and T stage (Fig. 8A).
Using these independent risk factors, we developed a
prediction model and established a nomogram (Fig. 8B).
Our risk model outperformed other approaches, such as in
terms of age, T stage, and risk score, as confirmed by the
decision curve analysis (Fig. 8C). The calibration curve
showed a satisfactory match between the predicted sur-
vival events and the actual survival observations in both
training and validation groups, indicating the accuracy of
the prediction model (Fig. 8D, E). The Sankey diagram
depicts the relationship between different T stages, risk
scores, and TMB in patients with HCC (Fig. 8F).

Transcription factor (TF)-TRG network analysis

Using the Human Protein Atlas (HPA), an online tool, we
verified the expression of eight TRGs at the protein level by
antibody staining, whereas three TRGs (PRKCQ, RIPK3,
and TRPM6) lacked protein expression data (Fig. S3).
Subsequently, we sought to identify the regulatory genes
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of TRGs. The development of HCC is aided by the dys-
regulation of liver-enriched TFs (Cai et al. 2017). Through
NetworkAnalyst, an online tool providing comprehensive
gene expression profiling and network visual analytics with
the JASPAR TF binding site profile database-derived TF
targets, we predicted 45 TFs and constructed a network with
11 TRGs (Fig. 9A). In our study, we observed upregulation
of most TFs in both tumor tissues and the high-risk group
(Figs. 9B-E). The results of biological functional analysis
indicated that 45 TFs were significantly present in numerous
cancer-related pathways such as chemical carcinogenesis,
MAPK signaling pathway, transcriptional misregulation in
cancer, and TNF signaling pathway (Figs. 9F, G). Correla-
tion analysis demonstrated that TRGs and risk scores were
closely associated with TFs (Fig. 9H), indicating that some
genes in the 11 TRGs regulated by TFs might influence HCC
progression through the aforementioned pathways.

Discussion

Despite available curative and palliative treatments, the like-
lihood of tumor recurrence is high following HCC treatment,
leading to a typically poor prognosis for patients (Llovet
et al. 2008; Sherman 2008). The development of specialized
therapy regimens requires the identification of prognostic
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indicators to improve the prognosis of HCC. TRPs are sig-
nificant in the onset of HCC, indicating a prospective area
for further research in hepatocellular carcinoma (Hu et al.
2018). However, no risk scoring system for HCC has been
developed based on TRGs. Our research managed to estab-
lish 11 TRG-based risk model, providing new options for
predicting and improving prognosis of patients with HCC.

We utilized LASSO Cox regression analysis to identify
the optimal prognostic indicators and establish the risk
scores for patients. The biological functional analysis indi-
cated that risk score correlated with cell cycle, which when
dysregulated may result in higher TMB. The TMB is a cru-
cial factor that influences the overall survival of patients
with HCC and their response to immunotherapy (Tang et al.
2021). Moreover, a higher TMB has been linked to the effi-
cacy of immunotherapy, with increased TMB leading to bet-
ter tumor remission effects and clinical benefits obtained
from immunotherapy (Meléndez et al. 2018). Based on our
results that showed higher TMB in the high-risk group, we
postulate that individuals with high risk may gain significant
benefits from immunotherapy.

Considering that individuals in the high-risk group are
presumed to gain remarkable benefits from immunotherapy,
we investigated whether differences existed in the immune
microenvironment between the two groups. We concen-
trated on the differences in immune cell infiltration, which
is closely linked to the response rate of immunotherapy in
general. Although the unique immunological environment
of the liver results in low immunotherapy response rates for
HCC, substantial clinical evidence suggests that the immune
cell composition of HCC tumors has a close association with
the overall prognosis and response to therapy (Yasuoka et al.
2020). Our study found a strong association between CD4 T
cell expression and risk score. According to reports, CD4 T
cells inhibit cancer cell proliferation by hindering cell cycle
progression at G1/S (Seung et al. 2022). The crucial genes
of the cell cycle pathway that are strongly represented in the
high-risk group may serve as potential participants in the
anti-proliferation activity of CD4 T cells, when considered
in conjunction with the outcomes of our functional enrich-
ment analysis. This offers new insights and opportunities for
conducting more comprehensive mechanistic studies.
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Fig.6 Comprehensive analysis of immunomodulator genes. A, B
Correlation analysis between immunomodulatory genes, risk score,
and TRGs. C, D Comparison of several immune checkpoint genes

Systemic therapy, referring mainly to anti-tumor therapy,
including molecular-targeted drugs, immunotherapy, chemo-
therapy, and traditional Chinese medicine, plays a pivotal
role in enhancing the prognosis of patients with HCC. The
effectiveness of many treatments, however, differs among
patients. For example, patients receiving ICIs are required
to undergo genetic testing, whereas for patients taking TKIs
and chemotherapeutic medications, there is no theoretical
evidence of personalized dosing prior to administration. A
detailed risk scoring system is urgently needed for person-
alized prediction of response rate to systemic therapy aim-
ing to enhance treatment effectiveness and improve patient
prognosis. Based upon our results, individualized treatment
approach could be effectively developed using the risk scor-
ing system, which predicts the efficacy of immunotherapy,
molecular targeted therapy, and chemotherapy. In recent
years, ICIs, TKIs, and VEGF inhibitors have emerged as
promising options for cancer treatment (Callahan et al. 2016;
European Association for the Study of the Liver. Electronic
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in TCGA. E, F Comparison of several immune checkpoint genes in
ICGC. *p<0.05, **p <0.01, and ***p <0.001. ns indicates p > 0.05

address: easloffice @easloffice.eu and European Associa-
tion for the Study of the Liver 2018). The IMbrave150 trial
established the combination of atezolizumab and bevaci-
zumab as a first-line treatment option in patients (Finn et al.
2020). We conducted correlation analysis to investigate the
relationship between risk score and immune checkpoint
genes. Moreover, we compared the expression of immune
checkpoint genes between the two groups. We found that
the risk score significantly correlated with the expression of
most immune checkpoint genes and their upregulation was
generally observed in the high-risk group. Therefore, we
believe that patients in the high-risk group would benefit
more from combined immunotherapy and small-molecule
targeted therapy. Notably, we found that all four members of
the FGFR family, namely FGFR 1-4, were highly expressed
in the high-risk group. This suggests that these patients
may be more responsive to TKIs that target FGFR. In the
field of chemotherapy, the FOLFOX4 regimen is approved
in China as a first-line treatment for patients with locally
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advanced and metastatic HCC that cannot be treated with
surgical resection or locoregional therapy (Qin et al. 2013).
In a recent study, He et al. evaluated the combination of
sorafenib and intraarterial FOLFOX (SoraHAIC) as a first-
line treatment option for patients with HCC and portal vein
thrombosis and observed positive results (He et al. 2019).
We could predict the sensitivity to chemotherapy using the
risk score. Analysis of the GDSC data revealed multiple
drugs with lower IC50s in the high-risk group, suggesting a
higher chemotherapy sensitivity in this group. Thus, patients
in the high-risk group may have a higher response rate to
treatments such as the FOLFOX4 regimen or SoraHAIC.
The risk score might offer an adequate theoretical basis for
choosing an optimal treatment strategy. Our study suggests

that patients with high-risk scores may have a wider range of
treatment options, while the lower response rates to systemic
therapy observed in patients with low-risk scores may be due
to TRGs and require further exploration.

The analysis of gene expression profiles has shown that
liver-enriched TFs can downregulate the expression of most
genes in HCC. This suggests that these TFs may function
in suppressing the gene expression in HCC (Gong et al.
2020). Using online tools, we predicted 45 TFs that might
be involved in HCC progression by regulating the expression
of 11 TRGs. Given that many of these TFs were significantly
upregulated or downregulated in the high-risk group, our
study offers new insights into understanding the function of
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TFs in the progression of HCC, as determined by the risk
score.

As far as we know, this is the first prognostic model for
HCC that utilizes TRGs and has been validated using two
independent databases TCGA and ICGC. We screened 11
TRGs, calculated their expression-based prognostic risk
scores, and developed a risk model by integrating them with
clinicopathologic factors. Using the risk scores, we evalu-
ated the immune microenvironment and therapeutic effects
in patients with HCC. Furthermore, we identified the cor-
responding sensitive drugs for each group based on the risk
scores and constructed a nomogram that could accurately
predict the overall survival. Despite its contributions, our
study has some limitations. Some of the expression profiles
in the ICGC dataset contained missing values, which were
supplemented using the "impute.knn()" function. This may
have introduced bias into our data. Besides, our study pri-
marily focused on bioinformatic analysis without experimen-
tal validation. Further experimental analyses are required to
explore the functions of the identified TRGs in HCC. This
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will help identify subgroups of HCC patients who would
benefit from ICI or TKI therapy and to better understand the
relationship between TRGs and HCC progression.

Conclusion

In our study, we constructed a novel prognostic model
using 11 TRGs for HCC. This model offers a new theoreti-
cal framework for predicting survival and developing indi-
vidualized treatment strategies for patients with HCC. It is
a clinically relevant contribution to the search for prognostic
biomarkers and provides new insights into understanding the
correlation between TRGs and HCC.
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