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Abstract
Purpose  TRP channels have been implicated in cancer progression. Our study seeks to establish a prognostic model for 
hepatocellular carcinoma (HCC) by utilizing genes related to TRP channels.
Methods  We used the TCGA and ICGC databases as training and validation cohorts, respectively. We calculated the risk 
scores using Lasso–Cox regression analysis based on the expression levels of prognostic genes and performed survival analy-
sis to compare overall survival between high- and low-risk groups. Then we compared the clinicopathologic characteristics 
and conducted biological functional analysis. We also explored immune cell infiltration and compared the drug sensitivity.
Results  Using bioinformatics algorithms, we identified 11 TRP-related genes and calculated the risk scores. Patients in the 
high-risk group demonstrated worse overall survival, as well as more advanced T stage and pathologic stage. The risk score 
showed a significant association with the cell cycle. The high-risk group had more ICI and RTK targets with elevated expres-
sion and showed better therapeutic effect to chemotherapy including 5-fluorouracil, camptothecin, docetaxel, doxorubicin, 
gemcitabine, and paclitaxel. Overall, an individualized nomogram was constructed by integrating the risk score and requisite 
clinicopathologic parameters to predict the overall survival of HCC patients.
Conclusions  We successfully established a highly accurate prognostic model for predicting overall survival and therapeutic 
effects using TRP channel-related genes.

Keywords  Transient receptor potential · Hepatocellular carcinoma · Therapeutic effects · Prognosis prediction · 
Bioinformatic algorithm

Abbreviations
HCC	� Hepatocellular carcinoma
TCGA​	� The Cancer Genome Atlas
GSEA	� Gene set enrichment analysis
FDR	� False discovery rate
GO	� Gene ontology
KEGG	� Kyoto Encyclopedia of Genes and 

Genomes

CIBERSORT	� Cell-type identification by estimating rela-
tive subsets of RNA transcripts

ssGSEA	� Single-sample gene set enrichment 
analysis

TRP	� Transient receptor potential
TMB	� Tumor mutation burden
ICI	� Immune checkpoint inhibitor
RTK	� Receptor protein tyrosine kinase
TKI	� Protein receptor tyrosine kinase inhibitor
LASSO	� Least absolute shrinkage and selection 

operator
ICGC​	� International Cancer Genome Consortium

Introduction

Primary liver cancer is globally recognized as the sixth 
most common cancer type and ranks as the third most com-
mon cause of cancer-related mortality (Sung et al. 2021). 
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Hepatocellular carcinoma (HCC) is the most prevalent 
primary liver cancer and typically arises in the context 
of chronic liver disease caused by hepatitis B or C virus 
infection, alcohol abuse, or metabolic syndrome (Llovet 
et al. 2016). Although the mortality rate of liver cancer has 
been increasing for decades, the rates have stabilized dur-
ing the most recent 5 years in both men and women owing 
to advances in early detection, surgical techniques, and 
molecularly targeted therapies (Siegel et al. 2022). Despite 
advancements in treatment options, the overall survival rate 
of HCC patients remains unsatisfactory due to recurrent 
disease, metastasis, and drug resistance. The discovery of 
new targets is needed to slow down disease progression and 
improve prognosis.

Transient receptor potential (TRP) channels were ini-
tially discovered in a blind strain of Drosophila (Montell 
and Rubin 1989) and are now recognized as a family of 
ion channels with versatile functions. Structurally, TRPs 
are characterized by six transmembrane spanning domains 
(S1–S6) and are classified into eight families: TRPA 
(ankyrin), TRPC (canonical), TRPM (melastatin), TRPML 
(mucolipin), TRPN (NO-mechano-potential), TRPP (poly-
cystin), TRPS (soromelastatin), and TRPV (vanilloid) (Wu 
et al. 2010; Zhang et al. 2022). Functionally, TRPs are gated 
by various stimuli, including thermal, pain, mechanical, and 
chemical inputs and function as intracellular ion channels 
in cellular organelles such as lysosomes, the Golgi network, 
and the endoplasmic reticulum (Gees et al. 2010; Himmel 
and Cox 2020).

During tumor formation and metastasis, abnormal TRP 
expression has been observed in multiple cancers, which 
may act as a vital role of promoting the proliferation and 
metastasis of cancer (Brooks et al. 2010; Chen et al. 2014). 
We previously demonstrated that TRPV2 knockdown 
enhances the stemness of cancer stem-like cells through 
increased expression levels of cancer stem cell markers 
ALDH1, CD133, and CD44 (Hu et al. 2018). Additionally, 
the overexpression of TRPV2 attenuated the stemness of 
cancer stem-like cells by reducing marker levels. Koh et al. 
revealed that low TRPV6 expression was remarkably lined 
to adverse histologic features, resulting in the worse prog-
nosis (Koh et al. 2022). Similarly, Xu et al. showcased that 
TRPC6 and the Na + /Ca2 + exchanger 1 (NCX1) mediated 
the effects of TGF-β on the migration, invasion, and intrahe-
patic metastasis of human HCC cells (Xu et al. 2018). How-
ever, the number of experimental studies on TRPs and HCC 
remains limited. The biological functions of most members 
of TRPs and TRP-related genes during the development of 
HCC require more explorations.

Building upon previous research, we managed to eluci-
date the therapeutic and prognostic effects of TRP-related 
genes (TRGs) on HCC. To achieve this, we collected and 
analyzed transcriptome profiling data from HCC patients 

obtained from The Cancer Genome Atlas (TCGA) and the 
International Cancer Genome Consortium (ICGC). Based 
on this data, we intended to construct a prognosis model 
that incorporates TRGs and clinicopathologic factors. Our 
model exhibits high accuracy to forecast the survival status 
of HCC patients. Overall, our findings suggest that TRGs 
have a substantial impact on the choice of therapy and clini-
cal outcome for patients with HCC, consequently providing 
new insights into the management of this disease.

Materials and methods

Acquisition of datasets

120 TRGs were acquired from two gene sets: “Reac-
tome_TRP_channels” in the molecular signatures database 
(MSigDB) and “inflammatory mediator regulation of TRP 
channels” in the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) database (Supplementary Material 1). Gene expres-
sion data and clinical information of patients with HCC were 
obtained from TCGA-LIHC, and somatic mutation data 
were acquired from the UCSC Xena repository. After elimi-
nating patients with missing survival information and overall 
survival of 0, we collected 354 HCC and 49 normal cases 
with relevant clinicopathologic information and gene expres-
sion profiles (HTSeq-FPKM) as well as 364 HCC cases with 
somatic mutation for further analysis as the training cohort. 
The corresponding data downloaded from ICGC-LIRI were 
used as the validation cohort.

Biological functional analysis

Gene ontology (GO) and KEGG pathway analyses were 
applied to examine the functions of 120 TRGs, using the 
R package “clusterProfiler” and Database for Annotation, 
Visualization and Integrated Discovery.

Calculation of TRG‑based risk score for HCC

We conducted the least absolute shrinkage and selection 
operator (LASSO) Cox regression analysis on the training 
cohort to minimize redundant TRGs using the R package 
“glmnet.” A prognostic model was fitted using the Cox pro-
portional hazards model, based on the TRGs expression and 
survival information of each individual. The fitting process 
was performed with a maximum of 1000 iterations. The 
value of λ corresponding to the minimum penalized likeli-
hood deviation was chosen as the optimal λ. We identified 11 
TRGs for the establishment of the prognosis model. The risk 
score for each patient was calculated based on the expression 
of TRGs and their corresponding regression coefficients. 
The calculation formula was as follows:
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Expδ indicates the expression of each TRG, and Coeδ 
represents the corresponding Cox regression coefficient.

Subsequently, patients in the training cohort were divided 
into high- and low-risk groups based on the median risk 
score. The validation cohort was processed similarly. R 
package “survminer” and “timeROC” were applied to con-
duct the survival analysis and time-dependent receiver oper-
ating characteristic (ROC) curve analysis, respectively. The 
difference of prognosis was analyzed, and the performance 
of the prognostic models was assessed for predicting sur-
vival outcomes at different time points.

Immune infiltration analysis

To calculate the proportion and expression of immune cells 
infiltrating HCC tumors for each patient, we utilized two 
methods: cell-type identification by estimating relative sub-
sets of RNA transcripts (CIBERSORT) and single-sample 
gene set enrichment analysis (ssGSEA) (Bindea et al. 2013; 
Hänzelmann et al. 2013; Newman et al. 2015). We then 
performed the correlation analysis between 11 TRGs and 
immune cells using Spearman’s coefficient and visualized 
the correlation.

Tumor mutation burden (TMB) analysis

After removing samples with incomplete data, we utilized 
the R package “maftools” to analyze simple nucleotide 
variation data (VarScan2) from 343 patients with LIHC. 
To explore differences in tumor mutation burden (TMB) 
between the two groups, we visualized the top 20 genes with 
the highest mutation rates using separate waterfall plots.

Differentially expressed genes and GSEA

We conducted differential analysis using the R package 
“limma” on the expression profiling data (HTSeq-FPKM), 
setting the cutoff value at p < 0.05. To identify biological 
processes and pathways enriched in the two groups, we used 
gene set enrichment analysis (GSEA). We considered gene 
sets with a nominal |NES|> 1 and p < 0.05 to represent sig-
nificant enrichment of the biological process.

Risk score =

11
∑

�=1

(Exp� ∗ Coe�).
Analysis of drug sensitivity

We utilized the half-maximal inhibitory concentration 
(IC50) data from the Genomics of Drug Sensitivity in 
Cancer (GDSC) database to compare the chemosensitivity 
between the two groups.

Construction of the prognostic model

A nomogram was established using R package “rms.” The 
total score of each prognostic factor in the scoring system 
corresponded to the estimated 1-, 2-, 3-, and 5-year sur-
vival of HCC patients at in the prediction system. Decision 
curve analysis and calibration curves were used to indicate 
the accuracy of the survival prediction.

Statistical analysis

Statistical analyses were conducted using the R (4.2.1) 
software. Figures were created using Photoshop (2019). 
Mann–Whitney test was used to indicate the significance 
of the difference between the two groups, whereas that 
between three or more groups was verified using the 
Kruskal–Wallis test. Spearman’s coefficient was applied 
to perform correlation analysis. The clinicopathologic 
features between the two groups were compared using 
the Chi-square test, and Fisher’s exact test was applied 
when required. All hypothetical tests were two-sided, and 
p < 0.05 was considered to indicate statistically significant 
differences.

Results

Identification of TRGs

We comprehensively explored the biological processes 
and signaling pathways associated with 120 TRGs by 
conducting GO and KEGG analyses. The most signifi-
cant GO terms were calcium channel activity, calcium ion 
transmembrane transport, protein serine/threonine kinase 
activity, and intracellular signal transduction (Fig. 1A–C). 
The KEGG analysis revealed that several signaling path-
ways, including inflammatory mediator regulation of 
TRP channels, calcium signaling pathway, and vascular 
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smooth muscle contraction, were enriched (Fig.  1D). 
Subsequently, the following 11 TRGs were identified via 
LASSO regression analysis: PIK3R1, PLCB1, PLCB3, 
PPP1CB, PPP1CC, PRKCD, PRKCQ, RIPK3, TRPC4AP, 
TRPM1, and TRPM6 (Fig. 1E). We figured out the risk 
score based upon the expression of 11 TRGs and their 
regression coefficients: 

 The risk score was used to divide the training and vali-
dation groups into high- and low-risk groups, respectively. 
Figure 1F, G displays the survival information and risk 

risk score =(− 0.013979829 ×Exp PIK3R1) + (0.026509423 ×Exp PLCB1)

+ (0.004029417 ×Exp PLCB3) + (0.013928081 ×Exp PPP1CB)

+ (0.016535821 ×Exp PPP1CC)

+ (0.006513565 ×Exp PRKCD)

+ (−0.032692058 ×Exp PRKCQ)

+ (−0.058352729 ×Exp RIPK3)

+ (0.010791336 ×Exp TRPC4AP)

+ (−0.323784473 ×Exp TRPM1)

+ (0.037941235 ×Exp TRPM6).

scores for each sample. Heatmaps (Fig. 2A, B) shows the 
expression of the 11 TRGs between these two risk groups.

Correlation between risk score and clinicopathologic 
characteristics

We compared the clinicopathologic characteristics of the 
two groups based on the risk scores of the TCGA–LIHC 
samples. The ICGC–LIRI samples were processed similarly. 
Our analysis revealed that compared with the low-risk group, 
the high-risk group had significantly worse overall survival 
(Fig. 2C, D). Furthermore, the time–ROC results yielded 
satisfactory predictive accuracy of the risk score for overall 
survival (Fig. 2E, F). Patients in the high-risk group exhib-
ited higher pathological T stage (Fig. 2G, H). However, no 
significant differences were observed with regard to gen-
der, N/M stages, treatment, or age between the two groups 
(Table 1, Table S1).

Risk score is remarkably associated with cell cycle

After filtrating genes most related to the risk score by con-
ducting Spearman analysis (p < 0.001 and R > 0.5), we 

Fig. 1   Biological functional analysis of 120 TRP and identification of TRGs. A–D GO and KEGG analysis of 120 TRP. E–G Lasso–Cox regres-
sion analysis of TRGs
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obtained 2136 and 1354 genes in the training (Supplemen-
tary Material 2) and validation cohorts (Supplementary 
Material 3), respectively, to explore the biological func-
tions and pathways. Through GO analysis, we found that 
the risk score was significantly associated with cell cycle-
related biological functions, including cell division, DNA 
replication, nuclear division, and DNA repair, in both the 
TCGA and ICGC cohorts (Fig. 3A, C). KEGG analysis 
yielded similar results, with cell cycle, DNA replication, 
cellular senescence, and endocytosis being closely involved 
(Fig. 3B, D). Through GSEA and GO analysis, we analyzed 
the functional differences and identified several significant 
pathways in the enrichment of MSigDB collection (c5.
go.v2022.1.Hs.symbols.gmt) in the high-risk group. These 
pathways included intrinsic apoptosis signaling pathway, cell 

adhesion, cell motility, leukocyte chemotaxis, and signaling 
receptor binding (Fig. 3E). GO analysis indicated that the 
significantly upregulated genes in the high-risk group were 
closely associated with cell cycle-related pathways, corrobo-
rating the results of the aforementioned correlation analysis 
(Fig. 3F). This result revealed that TRGs might be involved 
in uncontrolled cell cycles and cause worse prognosis in 
patients with HCC.

Somatic mutation landscape between groups

As increased TMB can be caused by impaired cell cycle-
related pathways; we compared the landscape of genetic 
mutation profiles between two groups (Fig. 4A, B). Nota-
bly, the mutation frequencies of the top 20 genes differed 

Fig. 2   Comparison of clinicopathologic characteristics between the two groups. A, B Expression landscape of 11 TRGs. C, D Survival analysis 
of TCGA–LIHC and ICGC–LIRI patients. E, F Time–ROC analysis. G, H Comparison of risk score in different T stages
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significantly between the groups. Higher TMB was observed 
in the high-risk group, which may be related to the high-risk 
score and poor prognosis (Fig. 4C–E). Moreover, on con-
ducting a survival analysis based on TMB and risk score, 
no discernible differences were detected between patients 
with high TMB and those with low TMB in overall survival 
(Fig. S1). By conducting survival analysis combining TMB 
and risk scores, we found that patients with low-risk scores 
had the best prognosis regardless of their TMB levels, while 
patients exhibiting high TMB alongside high-risk scores 
tended to have the worst overall survival rate (Fig. 4F–H).

Immune infiltration analysis

To examine the differences in immunological function, we 
conducted CIBERSORT and ssGSEA analyses. The CIB-
ERSORT analysis revealed that the high-risk group exhib-
ited a greater proportion of dendritic resting cells and M0 

macrophages (Fig. S2). Additionally, ssGSEA analysis dem-
onstrated that the expression of 11 immune cell subtypes, 
comprising activated CD4 T, activated dendritic, central 
memory CD4 T, central memory CD8 T, effector memory 
CD4 T, natural killer T, and type 2 T-helper cells, were 
considerably different, with most subtypes exhibiting high 
expression levels in the high-risk group (Fig. 5A). Similar 
results were observed in the validation cohort (Fig. 5B). The 
results of correlation analysis (Fig. 5C) suggested a more 
substantial infiltration of CD4 T-cells in the high-risk group.

Comparison of the therapeutic effect

Immune checkpoint inhibitors (ICIs) play a pivotal role in 
HCC therapy. Correlation analysis between immune modu-
lator genes, 11 TRGs, and risk scores (Fig. 6A, B) revealed 
a close correlation between the risk score and most immune 
modulator genes. Furthermore, we identified targets of 

Table 1   Clinicopathologic 
characteristics of the two groups

ALL Low risk High risk p. overall
N = 354 N = 177 N = 177

OS Time 820 (731) 983 (819) 657 (591)  < 0.001
OS  < 0.001
 Alive 226 (63.8%) 132 (74.6%) 94 (53.1%)
 Dead 128 (36.2%) 45 (25.4%) 83 (46.9%)

Age 59.4 (13.4) 59.8 (13.8) 59.1 (13.1) 0.624
Gender 0.053
 Male 240 (67.8%) 129 (72.9%) 111 (62.7%)
 Female 114 (32.2%) 48 (27.1%) 66 (37.3%)

M stage 0.250
 M0 256 (98.8%) 121 (100%) 135 (97.8%)
 M1 3 (1.16%) 0 (0.00%) 3 (2.17%)

N stage 0.622
 N0 240 (98.4%) 121 (99.2%) 119 (97.5%)
 N1 4 (1.64%) 1 (0.82%) 3 (2.46%)

Stage 0.014
 I 166 (50.3%) 98 (58.3%) 68 (42.0%)
 II 80 (24.2%) 37 (22.0%) 43 (26.5%)
 III 80 (24.2%) 32 (19.0%) 48 (29.6%)
 IV 4 (1.21%) 1 (0.60%) 3 (1.85%)

T stage  < 0.001
 T1 176 (50.1%) 105 (60.0%) 71 (40.3%)
 T2 87 (24.8%) 37 (21.1%) 50 (28.4%)
 T3 75 (21.4%) 32 (18.3%) 43 (24.4%)
 T4 13 (3.70%) 1 (0.57%) 12 (6.82%)

Treatment 0.456
 Radiation therapy 186 (52.5%) 97 (54.8%) 89 (50.3%)
 Pharmaceutical therapy 168 (47.5%) 80 (45.2%) 88 (49.7%)
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immunomodulatory drugs under clinical trials for advanced 
HCC and compared the expression of these targets between 
the low-risk and high-risk groups. We discovered that 
most immunomodulatory targets (PDCD1, CTLA4, CD80, 
CD86, LAG3, HAVCR2, TIGHT, IDO1, TNFRSF14, and 
CD47) had notably higher expressions in the high-risk group 
(Fig. 6C–F).

Tyrosine kinase inhibitors (TKIs) and antiangiogenic 
drugs are pivotal in HCC treatment. We observed differ-
ences in the expression of various receptor tyrosine kinases 
(RTKs) and the VEGF family across the two risk groups. 
Several RTKs, including FGFR 1–4 and KIT, and VEGF 
families, comprising VEGFA, VEGFB, and PGF, exhibited 

substantial expressions in the high-risk group (Fig. 7A–D), 
while KDR (also known as VEGFR2) and FLT4 (also known 
as VEGFR3) displayed high expressions in the low-risk 
group.

Moreover, we identified 12 potential drugs by estimating 
IC50 values obtained from the GDSC database. The IC50 
of most of these commonly used drugs, including fluoro-
uracil, doxorubicin, gemcitabine, and paclitaxel, was lower 
in the high-risk group (Fig. 7E). The findings indicated that 
patients in the high-risk group would derive greater advan-
tages from systemic therapy.

Fig. 3   Biological functions associated with risk scores. A–D GO and KEGG analysis of risk score-related pathways in TCGA and ICGC. E 
GSEA analysis of genes upregulated in the high-risk group. F GO analysis of genes differentially expressed in the high-risk group
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Construction of nomogram for the prognostic 
model

We conducted a multivariate Cox regression analysis on 
the risk score and clinicopathologic features to establish 
a risk model. Our findings revealed that independent risk 
factors included risk score, age, and T stage (Fig. 8A). 
Using these independent risk factors, we developed a 
prediction model and established a nomogram (Fig. 8B). 
Our risk model outperformed other approaches, such as in 
terms of age, T stage, and risk score, as confirmed by the 
decision curve analysis (Fig. 8C). The calibration curve 
showed a satisfactory match between the predicted sur-
vival events and the actual survival observations in both 
training and validation groups, indicating the accuracy of 
the prediction model (Fig. 8D, E). The Sankey diagram 
depicts the relationship between different T stages, risk 
scores, and TMB in patients with HCC (Fig. 8F).

Transcription factor (TF)–TRG network analysis

Using the Human Protein Atlas (HPA), an online tool, we 
verified the expression of eight TRGs at the protein level by 
antibody staining, whereas three TRGs (PRKCQ, RIPK3, 
and TRPM6) lacked protein expression data (Fig. S3). 
Subsequently, we sought to identify the regulatory genes 

of TRGs. The development of HCC is aided by the dys-
regulation of liver-enriched TFs (Cai et al. 2017). Through 
NetworkAnalyst, an online tool providing comprehensive 
gene expression profiling and network visual analytics with 
the JASPAR TF binding site profile database-derived TF 
targets, we predicted 45 TFs and constructed a network with 
11 TRGs (Fig. 9A). In our study, we observed upregulation 
of most TFs in both tumor tissues and the high-risk group 
(Figs. 9B–E). The results of biological functional analysis 
indicated that 45 TFs were significantly present in numerous 
cancer-related pathways such as chemical carcinogenesis, 
MAPK signaling pathway, transcriptional misregulation in 
cancer, and TNF signaling pathway (Figs. 9F, G). Correla-
tion analysis demonstrated that TRGs and risk scores were 
closely associated with TFs (Fig. 9H), indicating that some 
genes in the 11 TRGs regulated by TFs might influence HCC 
progression through the aforementioned pathways.

Discussion

Despite available curative and palliative treatments, the like-
lihood of tumor recurrence is high following HCC treatment, 
leading to a typically poor prognosis for patients (Llovet 
et al. 2008; Sherman 2008). The development of specialized 
therapy regimens requires the identification of prognostic 

Fig. 4   Mutation landscape of LIHC patients. A, B Comparison of the mutation landscape. C–E Comparison of TMB. F–H Survival analysis 
based on TMB and the risk score
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indicators to improve the prognosis of HCC. TRPs are sig-
nificant in the onset of HCC, indicating a prospective area 
for further research in hepatocellular carcinoma (Hu et al. 
2018). However, no risk scoring system for HCC has been 
developed based on TRGs. Our research managed to estab-
lish 11 TRG-based risk model, providing new options for 
predicting and improving prognosis of patients with HCC.

We utilized LASSO Cox regression analysis to identify 
the optimal prognostic indicators and establish the risk 
scores for patients. The biological functional analysis indi-
cated that risk score correlated with cell cycle, which when 
dysregulated may result in higher TMB. The TMB is a cru-
cial factor that influences the overall survival of patients 
with HCC and their response to immunotherapy (Tang et al. 
2021). Moreover, a higher TMB has been linked to the effi-
cacy of immunotherapy, with increased TMB leading to bet-
ter tumor remission effects and clinical benefits obtained 
from immunotherapy (Meléndez et al. 2018). Based on our 
results that showed higher TMB in the high-risk group, we 
postulate that individuals with high risk may gain significant 
benefits from immunotherapy.

Considering that individuals in the high-risk group are 
presumed to gain remarkable benefits from immunotherapy, 
we investigated whether differences existed in the immune 
microenvironment between the two groups. We concen-
trated on the differences in immune cell infiltration, which 
is closely linked to the response rate of immunotherapy in 
general. Although the unique immunological environment 
of the liver results in low immunotherapy response rates for 
HCC, substantial clinical evidence suggests that the immune 
cell composition of HCC tumors has a close association with 
the overall prognosis and response to therapy (Yasuoka et al. 
2020). Our study found a strong association between CD4 T 
cell expression and risk score. According to reports, CD4 T 
cells inhibit cancer cell proliferation by hindering cell cycle 
progression at G1/S (Seung et al. 2022). The crucial genes 
of the cell cycle pathway that are strongly represented in the 
high-risk group may serve as potential participants in the 
anti-proliferation activity of CD4 T cells, when considered 
in conjunction with the outcomes of our functional enrich-
ment analysis. This offers new insights and opportunities for 
conducting more comprehensive mechanistic studies.

Fig. 5   Immune infiltration analysis. A ssGSEA analysis in TCGA. B ssGSEA analysis in ICGC. C Correlation analysis between immune infil-
trating cells and TRGs along with risk score. *p < 0.05, **p < 0.01, and ***p < 0.001. ns indicates p > 0.05
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Systemic therapy, referring mainly to anti-tumor therapy, 
including molecular-targeted drugs, immunotherapy, chemo-
therapy, and traditional Chinese medicine, plays a pivotal 
role in enhancing the prognosis of patients with HCC. The 
effectiveness of many treatments, however, differs among 
patients. For example, patients receiving ICIs are required 
to undergo genetic testing, whereas for patients taking TKIs 
and chemotherapeutic medications, there is no theoretical 
evidence of personalized dosing prior to administration. A 
detailed risk scoring system is urgently needed for person-
alized prediction of response rate to systemic therapy aim-
ing to enhance treatment effectiveness and improve patient 
prognosis. Based upon our results, individualized treatment 
approach could be effectively developed using the risk scor-
ing system, which predicts the efficacy of immunotherapy, 
molecular targeted therapy, and chemotherapy. In recent 
years, ICIs, TKIs, and VEGF inhibitors have emerged as 
promising options for cancer treatment (Callahan et al. 2016; 
European Association for the Study of the Liver. Electronic 

address: easloffice@easloffice.eu and European Associa-
tion for the Study of the Liver 2018). The IMbrave150 trial 
established the combination of atezolizumab and bevaci-
zumab as a first-line treatment option in patients (Finn et al. 
2020). We conducted correlation analysis to investigate the 
relationship between risk score and immune checkpoint 
genes. Moreover, we compared the expression of immune 
checkpoint genes between the two groups. We found that 
the risk score significantly correlated with the expression of 
most immune checkpoint genes and their upregulation was 
generally observed in the high-risk group. Therefore, we 
believe that patients in the high-risk group would benefit 
more from combined immunotherapy and small-molecule 
targeted therapy. Notably, we found that all four members of 
the FGFR family, namely FGFR 1–4, were highly expressed 
in the high-risk group. This suggests that these patients 
may be more responsive to TKIs that target FGFR. In the 
field of chemotherapy, the FOLFOX4 regimen is approved 
in China as a first-line treatment for patients with locally 

Fig. 6   Comprehensive analysis of immunomodulator genes. A, B 
Correlation analysis between immunomodulatory genes, risk score, 
and TRGs. C, D Comparison of several immune checkpoint genes 

in TCGA. E, F Comparison of several immune checkpoint genes in 
ICGC. *p < 0.05, **p < 0.01, and ***p < 0.001. ns indicates p > 0.05
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advanced and metastatic HCC that cannot be treated with 
surgical resection or locoregional therapy (Qin et al. 2013). 
In a recent study, He et al. evaluated the combination of 
sorafenib and intraarterial FOLFOX (SoraHAIC) as a first-
line treatment option for patients with HCC and portal vein 
thrombosis and observed positive results (He et al. 2019). 
We could predict the sensitivity to chemotherapy using the 
risk score. Analysis of the GDSC data revealed multiple 
drugs with lower IC50s in the high-risk group, suggesting a 
higher chemotherapy sensitivity in this group. Thus, patients 
in the high-risk group may have a higher response rate to 
treatments such as the FOLFOX4 regimen or SoraHAIC. 
The risk score might offer an adequate theoretical basis for 
choosing an optimal treatment strategy. Our study suggests 

that patients with high-risk scores may have a wider range of 
treatment options, while the lower response rates to systemic 
therapy observed in patients with low-risk scores may be due 
to TRGs and require further exploration.

The analysis of gene expression profiles has shown that 
liver-enriched TFs can downregulate the expression of most 
genes in HCC. This suggests that these TFs may function 
in suppressing the gene expression in HCC (Gong et al. 
2020). Using online tools, we predicted 45 TFs that might 
be involved in HCC progression by regulating the expression 
of 11 TRGs. Given that many of these TFs were significantly 
upregulated or downregulated in the high-risk group, our 
study offers new insights into understanding the function of 

Fig. 7   Evaluation of therapeutic effects. A, B Comparison of RTKs and VEGF family in TCGA. C, D Comparison of RTKs and VEGF family in 
ICGC. E Comparison of IC50 of different agents. *p < 0.05, **p < 0.01, and ***p < 0.001. ns indicates p > 0.05
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TFs in the progression of HCC, as determined by the risk 
score.

As far as we know, this is the first prognostic model for 
HCC that utilizes TRGs and has been validated using two 
independent databases TCGA and ICGC. We screened 11 
TRGs, calculated their expression-based prognostic risk 
scores, and developed a risk model by integrating them with 
clinicopathologic factors. Using the risk scores, we evalu-
ated the immune microenvironment and therapeutic effects 
in patients with HCC. Furthermore, we identified the cor-
responding sensitive drugs for each group based on the risk 
scores and constructed a nomogram that could accurately 
predict the overall survival. Despite its contributions, our 
study has some limitations. Some of the expression profiles 
in the ICGC dataset contained missing values, which were 
supplemented using the "impute.knn()" function. This may 
have introduced bias into our data. Besides, our study pri-
marily focused on bioinformatic analysis without experimen-
tal validation. Further experimental analyses are required to 
explore the functions of the identified TRGs in HCC. This 

will help identify subgroups of HCC patients who would 
benefit from ICI or TKI therapy and to better understand the 
relationship between TRGs and HCC progression.

Conclusion

In our study, we constructed a novel prognostic model 
using 11 TRGs for HCC. This model offers a new theoreti-
cal framework for predicting survival and developing indi-
vidualized treatment strategies for patients with HCC. It is 
a clinically relevant contribution to the search for prognostic 
biomarkers and provides new insights into understanding the 
correlation between TRGs and HCC.

Fig. 8   Establishment of the risk model. A Multivariate Cox regression analysis in TCGA. B Construction of individualized prediction model. C 
Evaluation of the risk model by DCA. D, E Evaluation of the risk model by a calibration curve. F Sankey diagram of LIHC patients
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