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The heterogeneity of tumour immune microenvironment
revealing the CRABP2/CD69 signature discriminates distinct
clinical outcomes in breast cancer
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BACKGROUND: It has been acknowledged that the tumour immune microenvironment (TIME) plays a critical role in determining
therapeutic responses and clinical outcomes in breast cancer (BrCa). Thus, the identification of the TIME features is essential for
guiding therapy and prognostic assessment for BrCa.
METHODS: The heterogeneous cellular composition of the TIME in BrCa by single-cell RNA sequencing (scRNA-seq). Two subtype-
special genes upregulated in the tumour-rich subtype and the immune-infiltrating subtype were extracted, respectively. The
CRABP2/CD69 signature was established based on CRABP2 and CD69 expression, and its predictive values for the clinical outcome
and the neoadjuvant chemotherapy (NAT) responses were validated in multiple cohorts. Moreover, the oncogenic role of CRABP2
was explored in BrCa cells.
RESULTS: Based on the heterogeneous cellular composition of the TIME in BrCa, the BrCa samples could be divided into the
tumour-rich subtype and the immune-infiltrating subtype, which exhibited distinct prognosis and chemotherapeutic responses.
Next, we extracted CRABP2 as the biomarker for the tumour-rich subtype and CD69 as the biomarker for the immune-infiltrating
subtype. Based on the CRABP2/CD69 signature, BrCa samples were re-divided into three subtypes, and the CRABP2highCD69low

subtype exhibited the worst prognosis and the lowest chemotherapeutic response, while the CRABP2lowCD69high subtype showed
the opposite results. Furthermore, CARBP2 functioned as a novel oncogene in BrCa, which promoted tumour cell proliferation,
migration, and invasion, and CRABP2 inhibition triggered the activation of cytotoxic T lymphocytes (CTLs).
CONCLUSION: The CRABP2/CD69 signature is significantly associated with the TIME features and could effectively predict the
clinical outcome. Also, CRABP2 is determined to be a novel oncogene, which could be a therapeutic target in BrCa.
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BACKGROUND
Breast cancer (BrCa) is a widespread malignant tumour with the
highest morbidity and fatal mortality among all tumour types in
the world [1]. Based on the latest data issued by the American
Cancer Society, there will be nearly 300,000 estimated new cases
and more than 43,000 estimated cancer-related deaths in 2022 [1].
The clinical outcomes of BrCa patients have been constantly
optimised due to the rapid progression of emerging and
personalised therapeutic strategies, particularly neoadjuvant
therapy (NAT), which allows a great deal of inoperable cases to
regain the opportunity for surgical resection [2]. Nowadays, NAT
has become part of the standard-of-care therapeutic strategy of
patients with locally advanced tumours. Given the complexity and
heterogeneity of BrCa tumours, it is difficult to precisely predict
the therapeutic response to NAT. Gene-expression-based assess-
ment is significant for therapeutic and prognostic prediction [3],

but the forecasting ability of a single gene is usually insufficient,
and a multiple gene signature is not convenient.
In the past decade, it has been acknowledged that the tumour

immune microenvironment (TIME) participates in regulating
cancer progression and determining NAT efficacy [4, 5]. Tumours,
including BrCa, are composed of the mixtures of tumour cells and
microenvironment cells consisting of stromal cells, tumour-
infiltrating lymphocytes (TILs), cancer-associated fibroblasts, etc.,
with the roles of these cells being complicated and unclear [6, 7].
Tumours can be divided into “immuno-cold” or “immuno-hot”
depending on the properties of the TIME. “Immuno-cold” tumours
are featured as immunosuppressive TIME and resistant to most
treatments, such as immunotherapy and cytotoxic chemotherapy,
but “immuno-hot” tumours always exhibit well therapeutic
efficacy to various therapies, which are characterised by effective
T-cell infiltration and the immuno-supportive TIME [8, 9]. It has
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been reported that TILs abundance in TIME is associated with
pathologically complete response (pCR) in BrCa patients receiving
NAT [10–12]. However, the features of TIME are difficult to be
comprehensively described using a minor panel of biomarkers,
shrinking the clinical application prospects of TIME.
In this research, we first described the heterogeneous cellular

composition of the TIME in BrCa by single-cell RNA sequencing
(scRNA-seq), and subtyping BrCa samples into two subtypes,
including the tumour-rich and the immune-infiltrating subtypes.
Next, we extracted two subtype-special genes, namely CRABP2
and CD69, which was upregulated in the tumour-rich and the
immune-infiltrating subtypes, respectively. Based on CRABP2 and
CD69 expression, BrCa samples were re-divided into three
subtypes, and BrCa patients with CRABP2highCD69low showed
the worst prognosis and the lowest chemotherapeutic response.
In addition, CRABP2 promoted BrCa progression and cytotoxic T
lymphocytes (CTLs) exhaustion in vitro. Overall, we presented a
novel tumour subtyping strategy and determined a novel
oncogene CRABP2 in BrCa.

METHODS
Study design
The current study was designed to describe the global immune landscape
in BrCa and identify novel immune subtypes. Then, the subtype-specific
genes were extracted, and the CRABP2/CD69 signature was established.
Multiple in-house and public clinical cohorts were involved in this research,
which were used for scRNA-seq analysis, subtyping development and
clinical measurement (Supplementary Table S1). The functional role of
CRABP2 in BrCa was also explored. The overview of the current study
design is exhibited in Fig. 1a.

Clinical cohorts
A total of eight clinical cohorts were involved in our current research. The
collection of the cohort 1 and the cohort 6 was approved by the
institutional review board at Wuxi Maternal and Child Health Hospital, and
the collection of the cohort 8 was approved by the Clinical Research Ethics
Committee at Outdo Biotech (Shanghai, China). The cohort 2, the cohort 3,
the cohort 4, the cohort 5, and the cohort 7 were public, and no ethical
approval was needed.
Cohort 1 included ten female BrCa samples, which were collected from

Wuxi Maternal and Child Health Hospital and submitted for
scRNA-sequencing. To exclude the effect of anti-tumour therapies on the
TIME, none of these ten patients received any preoperative anti-tumour
therapies. The detailed clinic-pathological features are shown in Supple-
mentary Table S2.
Cohort 2 (n= 1069) was the Cancer Genome Atlas (TCGA) BrCa cohort,

which was used as a validated cohort for the tumour-rich and the immune-
infiltrating subtypes and a discovery cohort for the CRABP2/CD69
signature, as well as to define the expression of CRABP2 in tumour and
para-tumour tissues. The normalised RNA-seq data and clinical information
were downloaded from UCSC Xena data portal (https://xenabrowser.net/
datapages/).
Cohort 3 was the METABRIC cohort (n= 1903), used as the validated

cohort for the CRABP2/CD69 signature in predicting prognosis. The
normalised RNA-seq data and clinical information in the METABRIC cohort
were obtained from the cBioPortal data portal (http://www.cbioportal.org/
datasets) [13].
Cohort 4 was the GSE34138 cohort (n= 178) [14], and cohort 5 was the

GSE163882 cohort (n= 222) [15], which were used as validated cohorts for
the CRABP2/CD69 signature in predicting pCR in neoadjuvant chemotherapy
in BrCa. The normalised RNA-seq data and patient information in the two
cohorts were collected from the Gene Expression Omnibus (GEO) database.
Cohort 6 included 92 female BrCa patients recruited from Wuxi Maternal

and Child Health Hospital, and none of these patients received any
preoperative anti-tumour therapies, which was named the WXMCCH
cohort. The tumour FFPE samples were used to construct a tumour
microarray (TMA), which was then submitted for multiplexed immunohis-
tochemistry (mIHC) analysis to validate the CRABP2/CD69 signature in
predicting clinical outcomes. The recurrent risk of each patient was
assessed according to the guideline for diagnosis and treatment of BrCa of

the Chinese Anti-cancer Association (version 2021). The detailed clinic-
pathological features are shown in Supplementary Table S3.
Cohort 7 was the CPTAC BrCa cohort, which was applied to define the

protein levels of CRABP2 in tumour and para-tumour tissues. Proteome
data of tumour and para-tumour samples was collected from the CPTAC
dataset (http://cptac-data-portal.georgetown.edu/).
Cohort 8 contained 45 paired tumour and para-tumour samples, which

was purchased from Outdo BioTech (Cat. HBreD090CS01). The TMA was
submitted for the immunohistochemistry (IHC) assay to define the protein
expression of CRABP2 in tumour and para-tumour tissues.

ScRNA-seq and bioinformatics analysis
ScRNA-seq was submitted for Shanghai Genechem Co., Ltd. Single-cell
library sequencing was conducted on the Illumina HiSeq XTen, with 150 nt
paired-end sequencing. The Cell Ranger 3.0.2 was applied to perform
sample demultiplexing, barcode processing and generating gene count
data for each cell. The cDNA inset was aligned to the hg38/GRCh38
reference genome. The feature-barcode matrices were generated for each
individual sample by counting the valid barcodes and unique molecular
identifier. Further analysis, such as quality control and unsupervised
clustering, was performed using the Seurat (4.1.0, http://satijalab.org/
seurat/) R toolkit [16].
To avoid the influence of abnormal cells and experimental noise on

downstream analysis, we retained the high-quality cells based on the
following criteria: (1) the number of detected genes was between 200 and
5000; (2) the percentage of reads mapped to the mitochondrial genome
was less than 20%. The cell number, the distribution of gene number,
unique molecular identifier (UMI) number and the mitochondrial percen-
tage per cell after filtering were shown in Supplementary Table S4. Finally, a
total of 36,634 cells were reserved for downstream analysis. To account for
multiple biological and experimental characteristics, the Harmony algo-
rithm [17] was used to integrated the 36,634 cells from BrCa patients. The
principal component analysis (PCA) was performed on the top 4000 genes
with the highest variability. Subsequently, the first 20 principal components
(PCs) were used to reduce the dimensionality of the scaled integrated
dataset to two-dimensional space. The cell clusters were recognised by a
shared nearest neighbour (SNN) modularity optimisation-based clustering
algorithm with a resolution of 1. According to the expression levels of some
well-known markers, the 36,634 cells were annotated as ten cell types,
including luminal cells, basal cells, fibroblasts, endothelial cells, pericytes,
mast cells, macrophages, B cells, plasma cells and T/NK cells. The inferCNV
package was applied to evaluate the copy number variants (CNVs) of each
cell based on scRNA-seq raw counts. Initial CNVs for each region of cells
were estimated by inferCNV by using luminal and basal cells as the test
group and the rest cell types as the control group. The CNV level of each
cell was calculated as a quadratic sum of CNV for each region.
To further deconstruct the subpopulations of immune cells, the

Harmony algorithm was performed to integrate 25,817 immune cells from
BrCa patients. Then, these immune cells were divided into ten clusters
unsupervised depending on the top 20 PCs and the 0.5 resolution. The
“FindAllMarkers” function was used to identify the cluster-specific genes.
Based on cluster-specific genes and conventional markers, these immune
cells were recognised as eight subpopulations, including macrophages,
mast cells, B cells, plasma cells, naive T cells, cytotoxic T cells, exhausted
T cells and NK cells.
To explore the clinical relevance of the composition of TIME, we

assessed the cell-type abundances of bulk transcriptomic data from BrCa
patients by using the BayesPrism algorithm [18]. Single cells in this study
were used as the reference, and labelled as different cell types. For
recognising the subtypes of patients based on the composition of
tumours, consensus clustering [19], NbClust testing, and Silhouette analysis
[20, 21], were applied to determine the optimal number of stable subtypes.
Then, for subtyping patients at the single-cell or bulk transcriptomic levels,
the number supported by most testing methods was chosen as the most
appropriate number of clusters at both single-cell and bulk transcriptomic
levels (Spearman distance, hierarchical clustering, n= 2).
Cell–cell communications mediated by ligand-receptor complexes were

critical to diverse biological processes, such as inflammation and
tumorigenesis. To investigate the molecular interaction networks between
different cell types, we used the “CellPhoneDB” tool [22], a software to infer
cell–cell communication from the combined expression of multi-subunit
ligand-receptor complexes, to analyse the interactions between tumour
cells and microenvironment cell subpopulations. The ligand-receptor pairs
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with a P value < 0.05 remained for the assessment of relationships among
different cell clusters.

Evaluation of the TIME characteristics in the TCGA-BrCa cohort
The immunological characteristics of TIME in the TCGA-BrCa cohort
contained immunomodulators, tumour purity, tumour-infiltrating lympho-
cytes (TILs), and immune checkpoints. The lists of 122 immunomodulators,
including MHC, receptors, chemokines, and immuno-stimulating factors, as
well as immune checkpoints referred to our previous publication [23]. The
ESTIMATE algorithm was conducted to assess Tumour Purity, ESTIMATE
Score, Immune Score, and Stromal Score [24]. The associations between
the CRABP2/CD69 signature and TIME features were assessed.

Screening the group-specific signatures
For screening the group-specific genes, the “FindAllMarkers” function
(avg_log2FC= 0.25 and min.pct = 0.25) was used to measure the
difference at the single-cell levels, while the “pROC” package was applied
to evaluate the accuracy of gene transcriptional levels in distinguishing the
tumour-rich group and the immune-infiltrating phenotypes in the
transcriptomic bulk datasets.
For identifying the tumour-rich group-specific signatures, the screening

criteria were followed. Firstly, we identified the genes which were
significantly upregulated both in luminal cells and tumour-rich phenotypes
at the single-cell levels. Fold changes (FC) of gene expression and adjusted
P value were measured. In addition, we also calculated the FC of expression
percentage of each gene between luminal and other cells (pct_FC1).
Meanwhile, the FC of the percentage of expressed cells of each gene in the
tumour-rich group of the immune-infiltrating phenotypes were also
calculated (pct_FC2). Then, genes with pct_FC1 ≥ 1.2, pct.1 ≥ 0.5 and
adjusted P value < 0.05 were recognised as Luminal-upregulated signa-
tures. Genes with pct_FC2 ≥ 1.2, pct.1 ≥ 0.5 and adjusted P value < 0.05
were identified as tumour-rich group-upregulated signatures. Genes with
the ROC ≥ 0.6 in the TCGA and METABRIC datasets were identified as
subtype-related genes. Subsequently, genes belonging to the Luminal-
upregulated signatures, tumour-rich group-upregulated markers and
subtype-related genes were recognised as tumour-rich group-specific
biomarkers. For identifying the immune-infiltrating group-specific signa-
tures, the screening criteria were followed. Firstly, we identified the genes
that were significantly upregulated both in cytotoxic T cells and the
immune-infiltrating phenotype at the single-cell levels. FC of gene
expression and adjusted P value were measured. In addition, we also
calculated the FC of expression percentage of each gene between
cytotoxic T cells and other cells (pct_FC1). Meanwhile, the FC of percentage
of expressed cells of each gene in the tumour-rich group the immune-
infiltrating groups were also calculated (pct_FC2). Then, genes with
pct_FC1 ≥ 1.2, pct.1 ≥ 0.5 and adjusted P value < 0.05 were identified as
cytotoxic T-upregulated signatures. Genes with pct_FC2 ≥ 1.2, pct.1 ≥ 0.5
and adjusted P value < 0.05 were identified as immune-infiltrating group-
upregulated signatures. Genes with the ROC ≥ 0.6 in the TCGA and the
METABRIC datasets were identified as subtype-related genes. Subse-
quently, genes belonging to the cytotoxic T-upregulated signatures,
immune-infiltrating group-upregulated markers and subtype-related genes
were recognised as immune-infiltrating group-specific biomarkers.

Multiplexed immunohistochemistry
The expression patterns of CRABP2 and CD69, as well as CD8, the marker for
CTLs, were detected using the multiplexed immunohistochemistry (mIHC)
according to the standard protocol with simultaneous detection of DAPI
[25, 26]. The primary antibodies used for mIHC were shown below: anti-
CRABP2 (1:5000 dilution, Cat. 10225-1-AP, ProteinTech, Wuhan China), anti-
CD69 (1:500 dilution, Cat. ab233396, Abcam, Cambridge, UK), and anti-CD8
(Ready-to-use, Cat. PA067, Abcarta, Suzhou, China). All stained sections were
independently assessed by two senior pathologists. CRABP2 expression was
evaluated according to the immunoreactivity score criterion [27]. Briefly, the
percentage of positively stained cells was scored as 0-4: 0 (<5%), 1 (6–25%), 2
(26–50%), 3 (51–75%) and 4 ( > 75%). The staining intensity was scored as 0–3:
0 (negative), 1 (weak), 2 (moderate) and 3 (strong). The immunoreactivity
score equals the percentage of positive cells multiplied with staining intensity.
In addition, CD69 and CD8 expression were evaluated according to previous
research [28]. Taking CRABP2 and CD69 expression together, BrCa samples
were divided into four subtypes, namely the CRABP2highCD69high subtype, the
CRABP2highCD69low subtype, the CRABP2lowCD69high subtype, and the
CRABP2lowCD69low subtype.

Immunohistochemistry
The HBreD090CS01 TMA was used to perform IHC staining. The primary
antibody utilised in the study was anti-CRABP2 (1:5000 dilution, Cat.
10225-1-AP, ProteinTech, Wuhan China). Antibody staining was visualised
with DAB and hematoxylin counterstain. Stained TMA was evaluated by
two independent senior pathologists according to the immunoreactivity
score [27].

Cell culture, transfection and function detection
BrCa cell lines SK-BR-3 (Cat. KG197), MDA-MB-231 (Cat. KG033), MCF-7
(Cat. KG031), BT-549 (Cat. KG413), and MDA-MB-468 (Cat. CX0256)
authenticated using short tandem repeat profiling were obtained from
KeyGEN (Nanjing, China) and BOSTER (Wuhan, China). SK-BR-3 cells were
cultured in McCoy’s 5 A media added with 10% foetal bovine serum (FBS)
at 37 °C with 5% CO2, MCF-7 cells were cultured in RPMI-1640 media added
with 10% FBS at 37 °C with 5% CO2, BT-549 cells were cultured in RPMI-
1640 media added with 10% FBS and 0.023U/ml insulin at 37 °C with 5%
CO2, and MDA-MB-231 and MDA-MB-468 cells were cultured in L-15 media
added with 10% FBS at 37 °C with 5% CO2. All assays were conducted with
mycoplasma-free. For CRABP2 inhibition, BrCa cells were transfected with
siRNA (5’-AGGAGGGAGACACUUUCUACATT-3’) for CRABP2 synthesised by
KeyGEN (Nanjing, China) using Lipofectamine 3000 (Cat. L3000015,
Invitrogen, CA). For CRABP2 overexpression, BrCa cells were transfected
with overexpression plasmid synthesised by KeyGEN (Nanjing, China) using
Lipofectamine 3000 (Cat. L3000015, Invitrogen, CA). The transfection
efficiency was validated by quantitative real‑time PCR (qRT-PCR) and
western blotting analysis as previously described [29]. The primers for
CRABP2 and GAPDH mRNA reverse transcription were synthesised in
KeyGEN (Nanjing, China). The detailed information of primers used for
gene amplification was shown as follows: CRABP2: (forward)
5’-ATCGGAAAACTTCGAGGAATTGC-3’, (reverse) 5’-AGGCTCTTACAGGGC
CTCC-3’; GAPDH: (forward) 5’-AGATCATCAGCAATGCCTCCT-3’, (reverse)
5’-TGAGTCCTTCCACGATACCAA-3’. The primary antibodies used as follows:
CRABP2 (1:2000 dilution, Cat. 10225-1-AP, ProteinTech, Wuhan China) and
GAPDH (1:2000 dilution, Cat. 60004-1-Ig, ProteinTech, Wuhan China).
Protein levels were standardised to GAPDH.
The functions of CRABP2-knockdown BrCa cells were checked. For cell

proliferation detection, the CCK-8 assay was applied. For cell migration and
invasion detection, the Boyden chamber assay was applied. The detailed
protocol was previously described [29].

In vitro cytotoxicity assay
Peripheral blood monouclear cells (PBMC) were collected from healthy
control. The CD8+ T cells were isolated using Dynabeads™ human
CD8 selection Kit (Cat. 11333D, Invitrogen) and cultured in RPMI-1640
complete medium (10% FBS). Human T-cell activation CD3/CD28 beads (Cat.
MBS-C001, Acrobiosystems) at the ratio of 1:1 beads-to-cells was used to
activate cytotoxic T cells, and then activated T cells were expanded in medium
supplemented with 4 ng/mL of recombinant human IL-2 protein (Cat. IL2-
H4113, Acrobiosystems). Then, the T cells were transferred into a 96-well plate
and co-cultured with BrCa cells at an effector-to-target ratio of 10:1 at 37 °C for
48 h. For tumour cell survival detection, tumour cells were washed to remove
lymphocytes, and live cells were measured using the CCK-8 assay.

Statistical analysis
R 4.0.4 and GraphPad Prism 6 were applied for statistical analysis and
figure exhibition. The parametric Student’s t test or non-parametric
Mann–Whitney test was used to compare the difference in quantitative
data between the two groups. The parametric one-way ANOVA with
Tukey’s multiple comparisons test or the non-parametric Kruskal–Wallis
with Dunn’s multiple-comparison test was performed to measure the
difference among multiple groups. Pearson correlation analysis was
utilised to assess the correlation between two variables. The difference
of categorical data was assessed using the Fisher exact probability test.
Survival analysis was conducted by log-rank test or Cox regression analysis.
For all analyses, P value < 0.05 was deemed to be statistically significant
and labelled with *P < 0.05, **P < 0.01 and ***P < 0.001.

RESULTS
Study design and global immune landscape in BrCa
To evaluate the heterogeneous cellular composition of the TIME in
BrCa, we first submitted ten BrCa samples to scRNA-seq, and then
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subtyping BrCa samples into two subtypes based on the cellular
composition, including the tumour-rich and the immune-
infiltrating subtypes. Subsequently, we extracted two subtype-
special genes, namely CRABP2 and CD69, which were upregulated
in tumour-rich subtype and immune-infiltrating subtype,

respectively. Based on the CRABP2/CD69 signature, BrCa samples
were re-divided into three subtypes, namely the CRABP2highC-
D69low subtype, the CRABP2lowCD69high subtype, and other
subgroups. Moreover, the oncogenic role of CRABP2 in BrCa was
investigated using in vitro assays (Fig. 1a).
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Fig. 2 Recognition of molecular subtypes of BrCa patients at the single-cell levels. a t-SNE visualisation of eight subpopulations of immune
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To describe the cellular heterogeneity at the single-cell level, we
integrated the scRNA-seq datasets of ten BrCa patients and
divided the high-quality cells into 24 clusters unsupervised
(Supplementary Fig. S1A, B). Based on the transcriptional levels
of the conventional signatures, we annotated the various cell
types in BrCa ecosystem, including endothelial cells, luminal cells,

basal cells, pericytes, fibroblasts, mast cells, B cells, plasma cells,
macrophages, and T/NK cells (Fig. 1b, c). By summarising the
cellular components of each patient, we found that BrCa patients
showed a high inter-tumoral heterogeneity (Fig. 1d and Supple-
mentary Fig. S1C, D). To be specific, approximately five BrCa
patients had higher infiltration of T/NK cells, while other patients
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showed higher fractions of epithelial and stromal cells. To
distinguish malignant epithelial cells from non-malignant micro-
environment cells, we further inferred the stemness and CNV
status of each single cell according to the raw count matrix.

Results showed that luminal cells had significantly higher
stemness and CNV levels than those cell types (Supplementary
Fig. S1E, F), suggesting that the luminal cells contribute to the
malignancy of BrCa.
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Identification and validation of scRNA-seq-dependent
immune subtype
Having observed that a considerable number of immune cells
existed in the TIME, we wondered whether these cells distributed
differently among BrCa patients. Thus, we next re-clustered the
myeloid and lymphocyte cells unsupervisedly to further recognise
the subpopulations of these cells. According to the cluster-specific
genes and the conventional signatures, we defined them into
macrophages, mast cells, B cells, plasma cells, naive T cells,
exhausted T cells, cytotoxic T cells and NK (Fig. 2a, b). Given of the
differentially distribution of the immune subset, especially the
T/NK subpopulations among BrCa patients (Supplementary
Fig. S2), we next subtype the BrCa patients into several stable
groups according to the cellular components at the single-cell
level. Consensus clustering, NbClust testing and silhouette analysis
suggested that two was the optimal cluster number (Fig. 2c–e and
Supplementary Fig. S3). Subsequently, all ten patients were
classified into two heterogeneous subtypes by performing
consensus clustering (see “Methods”) (Fig. 2f). The tumour-rich
group was featured by the accumulation of numerous luminal
cells, the tumour cells which contribute to the malignancy of BrCa
(Fig. 2f, g). The immune-infiltrating group was featured by the
high infiltration of immune cells, especially the T-cell subpopula-
tions (Fig. 2f, g and Supplementary Fig. S4).
To further validate the cellular composition-based grouping, we

used a consensus cluster to divide the BrCa samples into two
groups (Fig. 3a, b), and the cell markers between two groups were
compared to ensure the accuracy of the grouping (Fig. 3c and
Supplementary Fig. S5). Next, we assessed the association
between the cellular composition-based subgroups and clinic-
pathological parameters. Obviously, subgroups were associated
with age, vital status, T stage, molecular type, HER2 status and ER
status (Fig. 3d). Moreover, the prognosis of BrCa patients in the
tumour-rich group was worse than that in the immune-infiltrating
subtypes (Fig. 3e). The prognostic value of the cellular
composition-based subgroups was also validated in the METABRIC
cohort, and the similar result was observed (Fig. 3f). Furthermore,
we also found that the cellular composition-based subgroups
were associated with the chemotherapeutic responses, and BrCa
patients in the tumour-rich group exhibited poor response to
chemotherapy in both the GSE34138 cohort and the GSE163882
cohort (Fig. 3g, h). Taken together, these results suggest that
cellular composition-based subgroups were associated with both
prognosis and chemotherapeutic response in BrCa.

Development of the CRABP2/CD69 classifier based on immune
subtype
Given that the cellular composition-based subtyping strategy could
not be applied in clinical practice unless scRNA-seq and/or RNA-
seq data is available, we tried to extract specific genes associated
with cellular composition-based subgroups. After evaluating the
distinguishing ability of genes both at the single-cell and
transcriptomic omics datasets (see “Methods”) (Fig. 4a, b), we
found that CRABP2 was specifically expressed in the tumour-rich
phenotype, and CD69 was highly expressed in the immune-
infiltrating group (Fig. 4c). We re-divided BrCa patients according
to the median expression levels of CRABP2 and CD69. The results
exhibited that BrCa patients with the CRABP2highCD69low feature
showed the worst clinical outcome, and patients with the
CRABP2lowCD69high feature exhibited the most favourable prog-
nosis in both the TCGA and the METABIRC cohorts (Fig. 4d, e).
Moreover, in two independent NAT cohorts, BrCa patients with the
CRABP2highCD69low feature showed the lowest NAT response and
patients with the CRABP2lowCD69high feature showed the highest
NAT response (Fig. 4f, g). In addition, we also conducted Cox
regression analysis and found that the CRABP2/CD69 signature was
the independent prognostic factor in BrCa in the TCGA and the
METABIRC cohorts (Supplementary Fig. S6A–D). Furthermore, BrCa

patients with the CRABP2highCD69low feature exhibited the lowest
immune infiltration, and patients with the CRABP2lowCD69high

feature exhibited the highest immune infiltration in the TCGA, the
METABIRC, the GSE34138 and the GSE163882 cohorts (Supple-
mentary Fig. S7A–E).
To further verify the predictive value of the CRABP2/CD69

signature in BrCa, we collected 92 BrCa samples from Wuxi
Maternal and Child Health Hospital and submitted these samples
for mIHC analysis. These 92 BrCa patients were grouped according
to the median expression levels of CRABP2 and CD69 (Fig. 5a).
Notably, the patients with the CRABP2highCD69high feature were
limited (Fig. 5b). To verify the above findings, we compared
immune cell infiltration and recurrence risk in the current cohort.
The results showed that BrCa patients with the CRABP2highCD69low

feature exhibited the highest recurrent risk and lowest CD8+ T cells
infiltration, and patients with the CRABP2lowCD69high exhibited the
opposite findings (Fig. 5c, d). Overall, the CRABP2/CD69 signature is
significantly associated with immune cell infiltration and recur-
rence risk in BrCa.

CRABP2 promotes BrCa progression and CTLs exhaustion
We next examined the functional role of CRABP2 in BrCa. First, the
IHC assay revealed that the expression of CRABP2 was notably
enhanced in BrCa tumour tissues compared with para-tumour
tissues in three independent cohorts, including the TCGA cohort,
the CPTAC cohort and the HBreD090CS01 cohort (Fig. 5e–g). Then,
we compared CRABP2 expression in several BrCa cell lines, including
MDA-MB-231, BT-549, MCF-7, SK-BR-3 and MDA-MB-468, and the
results show that MDA-MB-231 expressed the lowest CRABP2 and
MDA-MB-468 expressed the highest CRABP2 (Fig. 6a, b). Thus, we
conducted knockdown experiments in MDA-MB-468 cells and
overexpression experiments in MDA-MB-231 cells. The efficiency
of CRABP2 knockdown and overexpression in these two BrCa cells
was evaluated by qRT-PCR and western blotting assays (Fig. 6c, d).
Compared with cells in the control group, CRABP2-silencing BrCa
cells showed inhibited proliferative capacity, and CRABP2-
overexpressed BrCa cells showed enhanced proliferative capacity
(Fig. 6e). Moreover, CRABP2 knockdown notably suppressed the
migratory and invasive capacities of BrCa cells, and CRABP2
overexpression exhibited the opposite effects (Fig. 6f, g). Moreover,
CRABP2 knockdown in tumour cells enhanced the cytotoxic effects
of CD8+ T cells, and CRABP2 overexpression in tumour cells
contributed to immune escape (Fig. 6h). Overall, CRABP2 functions
as an oncogene in BrCa, which could be used as a novel target for
BrCa therapy.
To investigate the interaction between luminal cells that

expressed or non-expressed CRABP2 and immune cells, we
perform a high-resolution dissection of interactions among
various cell types based on the combined expression of multi-
subunit ligand-receptor complexes. Based on the expression levels
of CRABP2, the luminal cells were divided into CRABP2+ and
CRABP2- groups. Results showed that the CRABP2+ luminal cells
presented significantly more interactions with immune cells than
the CRABP2- luminal cells (Supplementary Fig. S8A). Notably, we
calculated the difference in interaction numbers among various
cell types. The CRABP2+ luminal cells, showed higher commu-
nication strength with immune cells, especially the CD8+ T/NK
cells (Supplementary Fig. S8B). These results collectively suggested
that compared with CRABP2- luminal cells, CARBP2+ luminal cells
had activated cell–cell communications, especially interactions
with immune cells, which potentially take part in the formation of
an immunosuppressive TIME. We further identified the significant
ligand-receptor interactions between luminal and CD8+ T/NK
using the CellphoneDB tool. Results showed that CRABP2+ luminal
cells communicated with CD8+ T/NK cells via some inhibitory
interaction, such as CD47-SIRPG, CD74-MIF and TGFB1-TGFβ
receptor [30, 31] (Supplementary Fig. S8C). Besides, lines of
evidence showed that the CXCR6-CXCL16 interaction between
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CRABP2+ luminal cells and CD8+ T/NK cells played important roles
in the progression of BrCa [32, 33]. Summing up, at the single-cell
level, we found that compared with CRABP2- luminal cells,
CRABP2+ luminal cells had stronger interactions with immune
cells, especially the CD8+ T/NK cells. Also, CRABP2+ luminal cells
can communicate with CD8+ T/NK cells via ligand-receptor
interactions which were associated with the shaping of immuno-
suppressive TIME and the progression of BrCa.

DISCUSSION
A great deal of evidence support the opinion that TIME plays a
critical role in regulating tumour progression and determining
therapeutic responses in not only BrCa but in most solid tumours
[34–36]. BrCa is the tumour type with the highest incidence
worldwide, and not all patients have a satisfactory prognosis [1].
The rapid expansion of scRNA-seq technology greatly promotes
the resolution of TIME and the discrimination of tumour
heterogeneity in BrCa [37]. Due to the continuous progress in
typing strategies, it seems that the barriers created by classical
molecular typing could be broken [38–40]. In this research, we
collected ten BrCa samples with various molecular types and
submitted these samples for scRNA-seq. We divided these BrCa
samples into two subtypes based on the heterogeneous cellular
composition of the TIME, including the tumour-rich and the
immune-infiltrating subtypes. Next, this subtyping strategy was
also applied in several public cohorts, which indeed exhibited
distinct prognosis and chemotherapeutic responses in the TCGA,
the METABIRC, the GSE34138 and the GSE163882 cohorts.
However, the cellular composition-based subtyping strategy could

not be applied in clinical practice unless scRNA-seq and/or RNA-seq
data is available. Thus, we tried to establish a novel translational
subtyping strategy based on the existing subtyping. Previous
research revealed that classification based on specific cell markers
could contribute to risk discrimination and TIME feature identification
[41, 42]. We extracted CRABP2 as the biomarker for the tumour-rich
subtype and CD69 as the biomarker for the immune-infiltrating
subtype, and further used these two biomarkers to establish a novel
subtyping strategy. Based on the CRABP2/CD69 signature, BrCa
samples were re-divided into three subtypes, and the CRABP2high

CD69low subtype exhibited the most unfavourable prognosis and the
lowest chemotherapeutic response, and the CRABP2lowCD69high

subtype showed the opposite results.
CD69 is expressed in most leucocytes and notably enhanced

upon activation. Thus, CD69 is always used as a marker for
activated natural killer cells and lymphocytes [43]. CD69 is also a
marker for tissue-resident memory T (Trm) cells [44]. However, the
functional role of CD69 has been mostly revealed in autoimmune
diseases [45], its function in tumours is largely missing. It has been
uncovered that CD69 expression is positively associated with most
immune checkpoints and TILs, and acts as a promising biomarker
to predict the response to anti-PD-1/PD-L1 immunotherapy in
lung cancer and melanoma [46]. In cholangiocarcinoma,
CD69+CD103+ Trm-like CD8+ TILs mediate momentous cancer-
specific immune responses and could be used as a candidate
potential therapeutic target [47]. In the current research, CD69 was
used as a marker for the CRABP2/CD69 signature in BrCa.
However, the functional role of CD69 was not uncovered, which
should be further studied.
CRABP2 encodes a member of the retinoic acid binding protein

family and lipocalin/cytosolic fatty acid-binding protein family
[48]. CRABP2 has been revealed to be upregulated and function as
an oncogene in various cancers, including gastric cancer [49],
thyroid cancer [50], ovarian cancer [51] and lung cancer [52].
CRABP2 is a key molecule in oxaliplatin resistance by attenuating
mitochondrial apoptosis in gastric cancer [49], which provides a
potential correlation between CRABP2 and resistance to che-
motherapy. In BrCa, Zhao et al. reveal that CRABP2 is upregulated

in BrCa tissues and functions as a biomarker that is sensitive to
goserelin [53], but the functional role of CRABP2 has not been well
studied. In this research, we used CRABP2 as a component of the
CRABP2/CD69 signature to discriminate BrCa patients into
different subtypes. Moreover, we also found that CRABP2 was
highly expressed in BrCa tissues and acted as a tumour-promoting
gene by accelerating cell proliferation, migration and invasion. In
addition, inhibition of CRABP2 also suppressed the immune
evasion of tumour cells and restored the activity of CTLs.
It must be admitted that the current study still has several

limitations. First, due to the fact that the BrCa patients in the
WXMCCH cohort were all diagnosed in the last 3 years, the
prognostic value of the CRABP2/CD69 signature could not be
validated in the in-house cohort. In addition, given that the
CRABP2/CD69 signature was significantly associated with TIME
features, whether it could predict the immunotherapeutic
responses should be further explored. Moreover, the
CRABP2/CD69 signature was only tested in a small-scale multi-
ple-centre cohort, so the universality of the model remains to be
externally validated.

CONCLUSIONS
Collectively, the current research established a novel practical
subtyping strategy based on CRABP2 and CD69 expression. The
established signature was significantly associated with TIME
features and the response to NAT in BrCa. Moreover, we also
revealed CRABP2 as a novel oncogene in BrCa, which could be a
notable target to control tumour progression and immune
evasion.
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