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BACKGROUND: To investigate the predictive ability of high-throughput MRI with deep survival networks for biochemical
recurrence (BCR) of prostate cancer (PCa) after prostatectomy.
METHODS: Clinical-MRI and histopathologic data of 579 (train/test, 463/116) PCa patients were retrospectively collected. The deep
survival network (iBCR-Net) is based on stepwise processing operations, which first built an MRI radiomics signature (RadS) for BCR,
and predicted the T3 stage and lymph node metastasis (LN+) of tumour using two predefined AI models. Subsequently, clinical,
imaging and histopathological variables were integrated into iBCR-Net for BCR prediction.
RESULTS: RadS, derived from 2554 MRI features, was identified as an independent predictor of BCR. Two predefined AI models
achieved an accuracy of 82.6% and 78.4% in staging T3 and LN+. The iBCR-Net, when expressed as a presurgical model by
integrating RadS, AI-diagnosed T3 stage and PSA, can match a state-of-the-art histopathological model (C-index, 0.81 to 0.83 vs 0.79
to 0.81, p > 0.05); and has maximally 5.16-fold, 12.8-fold, and 2.09-fold (p < 0.05) benefit to conventional D’Amico score, the Cancer
of the Prostate Risk Assessment (CAPRA) score and the CAPRA Postsurgical score.
CONCLUSIONS: AI-aided iBCR-Net using high-throughput MRI can predict PCa BCR accurately and thus may provide an alternative
to the conventional method for PCa risk stratification.

British Journal of Cancer (2023) 129:1625–1633; https://doi.org/10.1038/s41416-023-02441-5

INTRODUCTION
The tumour progression and outcome of prostate cancer (PCa) are
widely variable due to its complex biological properties [1].
Approximately 20–50% of patients undergoing radical prostatect-
omy (RP) experienced biochemical recurrence (BCR), and two-
thirds of these recurrences occurred within 2 years after surgery
[2–4]. BCR is considered a surrogate predictor of clinical
recurrence and distant metastasis [5]. Therefore, it is critical to
preoperatively assess BCR risk to assist with better treatment
decision-making and follow-up schedules for patients.
Several state-of-the-art scoring systems have been proposed to

predict BCR for subsequent treatment. For example, the D’Amico
classification system categorises patients into low-, intermediate-,
and high-risk using measurements such as prostate-specific
antigen (PSA), Gleason score (GS) and clinical T stage [6]. The
Cancer of the Prostate Risk Assessment (CAPRA) adds variables as
age and percent of biopsy core positives (core+%) [7], and the
CAPRA Postsurgical (CAPRA-S) score consists of more granular
clinicopathological characteristics: PSA, pathologic GS, positive
surgical margins (SM), extracapsular extension (ECE), seminal

vesicle invasion (SVI), and pelvic lymph node metastasis (PLNM)
[8]. Unfortunately, these systems were mainly validated in western
cohorts with a C-index roughly around 0.67–0.81, so the accuracy
and repeatability still require extensive external validation [9–12].
Magnetic resonance imaging (MRI) is a state-of-the-art tool to

detect, localise and stage PCa [13, 14]. MRI assessments such as
Prostate Imaging Reporting and Data System (PI-RADS) score,
tumour size, ECE, SVI and PLNM were reflected as prognostic
biomarkers of PCa [15, 16]. Additionally, radiomics, using high-
throughput mining of quantitative image features to reveal intra-
tumoral heterogeneity, had proven predictive value for post-
surgical outcome of PCa [17–19]. In a 120-patient cohort study, a
machine learning classifier trained with radiomic features from
biparametric MRI achieved an AUC of 0.73 for the prediction of
BCR [18]. In another cohort study of 107 patients, an ADC-derived
GLSZM-based feature was associated with tumour heterogeneity
and achieved an AUC of 0.76 for the prediction of BCR [19]. Even
with encouraging results, these studies were limited by small
sample sizes and ignored the time dependence in survival
analysis. Nevertheless, no single factor alone appears to accurately

Received: 10 December 2022 Revised: 7 September 2023 Accepted: 14 September 2023
Published online: 27 September 2023

1Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, P. R. China. 2Department of Radiology, Affiliated Hospital of
Nanjing University of Chinese Medicine, Nanjing, China. 3Department of Breast Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital,
350014 Fuzhou, China. 4Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, P. R. China. 5Department of Radiology,
Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, 450008 Zhengzhou, Henan, China. 6These authors contributed equally: Ying Hou, Ke-Wen Jiang.
7These authors jointly supervised this work: Jin-Rong Qu, Fei-Peng Zhu, Yu-Dong Zhang. ✉email: zhangyd3895@njmu.edu.cn

www.nature.com/bjcBritish Journal of Cancer

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41416-023-02441-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41416-023-02441-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41416-023-02441-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41416-023-02441-5&domain=pdf
http://orcid.org/0000-0001-8751-9988
http://orcid.org/0000-0001-8751-9988
http://orcid.org/0000-0001-8751-9988
http://orcid.org/0000-0001-8751-9988
http://orcid.org/0000-0001-8751-9988
http://orcid.org/0000-0002-2811-7513
http://orcid.org/0000-0002-2811-7513
http://orcid.org/0000-0002-2811-7513
http://orcid.org/0000-0002-2811-7513
http://orcid.org/0000-0002-2811-7513
https://doi.org/10.1038/s41416-023-02441-5
mailto:zhangyd3895@njmu.edu.cn
www.nature.com/bjc


predict tumour prognosis. We have still little understanding of the
multimodal interaction and relationship of multimodal data
features such as clinical variables, imaging features and histo-
pathological findings for time-dependent survival analysis in PCa.
The conventional method for time-to-event data analysis is Cox
proportional hazards (Cox-PH) regression. Although it generates
interpretable regression coefficients, Cox-PH makes linear assump-
tions and thus cannot simulate nonlinear relationships that may
occur in real life. Recently, Cox regression ensembled with artificial
intelligence (AI) algorithms such as machine learning or deep
learning, allowing the integration of high-dimensional features
with nonlinear and complex interactions, might be an alternative
to provide reliable prognostic information [20, 21].
Hence, this study attempts to investigate whether a multimodal

integrative deep survival network, namely iBCR-Net, especially
relying on AI-aided high-throughput MRI assessment, can predict
the BCR-free survival of PCa after RP. In addition, the clinical
benefit of iBCR-Net is compared to the start-of-the-art scoring
systems such as D’Amico, CAPRA, and CAPRA-S.

MATERIALS AND METHODS
Patients
The retrospective study included 579 histologically confirmed PCa patients
in a single tertiary care medical centre (the First Affiliated Hospital of
Nanjing Medical University) between Jan 2013 and Dec 2019. Ethics
approval was granted by the hospital Institutional Review Board (grant no.
2021-SR-396), and informed patient consent was waived. The patient
enrolment procedure is listed in Supplementary Materials (Supplementary
Fig. 1).
All patients underwent a standardised prostate examination at 3.0-T MRI

(u770, United Imaging, Shanghai, China; and Verio/Skyra, Siemens,
Erlangen, Germany), which complied with the PI-RADS document
requirements [13]. Details of acquirement protocols are provided in
Supplementary Materials (Supplementary Table 1). All imaging data were
retrospectively interpreted using PI-RADS ver. 2.1 [13] by two

uroradiologists (YH and JZ, with 5-year and 15-year experience in prostate
imaging, respectively) who were blinded to all clinical, biopsy and surgical
findings. For patients with multiple neoplastic lesions, only index lesion
(highest PI-RADS score and/or largest lesion size) was analysed, and
specific imaging features evaluated included: (1) lesion location (peripheral
zone [PZ] or transitional zone [TZ]); (2) lesion size (the max diameter); (3) PI-
RADS score; (4) MRI-based ECE, SVI, and PLNM (absent or present). During
the image interpretation, any inter-reader disagreement in qualitative
assessments was discussed until a consensus was reached.
Clinical variables included the age, PSA, and PSA density (PSAD) level.

TRUS/MRI-fusion targeted biopsy in conjunction with extended systematic
biopsy was performed standardly according to the Ginsburg protocol [22].
Histopathological examinations were performed by two experienced
uropathologists with more than 10 years of experience in uropathology
in accordance with the International Society of Urological Pathology (ISUP)
2005 and 2014 recommendations [23, 24]. Biopsy variables included biopsy
GS, core+%, and the presence of perineural invasion (Peri-NI). Postsurgical
histopathological variables included pathological GS, negative or positive
of SM, ECE, SVI and PLNM if a pelvic lymph node dissection (PLND) or
extended PLND (ePLND) is adopted. The GS of the tumour was recorded
and grouped into four categories, as per ISUP grade group (GG): GS 3+3
(GG 1), GS 3+4 (GG 2), GS 4+3 (GG 3), and GS ≥ 4+4 (GG 4).
Postoperative follow-up was based on PSA, MRI, and/or positron

emission tomography or bone scans [25]. Routinely patients were followed
up every 3 months for the first 2 years post-operatively, every 6 months
thereafter until 5 years, and then annually according to institutional
practice. The primary endpoint was BCR-free survival, which was calculated
from the date of surgery to the date of BCR or censored at the date of last
follow-up (up to 5 years). BCR was defined as three postoperative
consecutive increasing PSA values >0.1 ng/ml at least 6 weeks with final
PSA > 0.2 ng/ml or PSA ≥ 0.4 ng/ml once at least 6 weeks post-operatively,
or secondary treatment due to elevated PSA level, referenced to a previous
report and related to the probability of subsequent PSA progression [26].

The iBCR-Net construction
The iBCR-Net model works on three key steps: (1) first, we performed
processing operations to derive an MRI radiomics prognostic signature
(RadS) that allows to indicate the BCR-free survival probability. (2) Second,
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Fig. 1 Flowchart of iBCR-Net construction. The study consists of the following primary steps: first, individual prostate MRI within the cohort
of study, in response to each pathological status, is acquired by a panel of experts and is evaluated with a pretrained AI-based network for
diagnosing ECE (a) and a pretrained diagnostic model for PLNM (b), respectively. Tumour radiomics features are extracted on T2WI, b1500 DWI
and ADC images and processed with a Lasso-Cox regression algorithm to derive a radiomics survival (RadS) score that connects to BCR
survival outcome (c). Additionally, expert-based interpretation for PI-RADS score, tumour size, tumour zone, T stage and N stage, etc., is done
by the panel of radiologists (d). Then, the newly determined imaging biomarkers, together with clinicopathologic variables, are fed into a
stack of Cox-based algorithms, including Cox-PH, Cox-GBM and Cox-DL, to derive a prognostic model for BCR survival outcome. Last, the
model is validated clinically in independent test data. ECE extracapsular extension, PLNM pelvic lymph node metastasis, BCR biochemical
recurrence, SVI seminal vesicle invasion, Cox-PH Cox proportional hazards, Cox-GBM Cox gradient boosting machine, Cox-DL deep learning-
based Cox model.
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Table 1. The baseline characteristics of the patients.

Variable Train group n= 463 Test group n= 116 p-value

Age (yr), median (IQR) 69 (65–74) 69 (63–75) 0.952

PSA (ng/ml), median (IQR) 14.9 (8.8–26.5) 16.8 (9.0–34.5) 0.407

PSAD (ng/ml/cc), median (IQR) 0.5 (0.2–0.9) 0.4 (0.2–0.9) 0.598

PI-RADS score 0.589

1–2 23/463 (5.0%) 4/116 (3.4%)

3 79/463 (17.1%) 25/116 (21.6%)

4 158/463 (34.1%) 41/116 (35.3%)

5 203/463 (43.8%) 46/116 (39.7%)

Lesion location 0.099

TZ 150/463 (32.4%) 47/116 (40.5%)

PZ 313/463 (67.6%) 69/116 (59.5%)

Lesion size (cm), median (IQR) 1.5 (1.0–2.2) 1.4 (0.9–2.5) 0.949

Expert-based ECE 0.252

Present 142/463 (30.7%) 42/116 (36.2%)

Absent 321/463 (69.3%) 74/116 (63.8%)

Expert-based SVI 0.404

Present 70/463 (15.1%) 14/116 (12.1%)

Absent 393/463 (84.9%) 102/116 (87.9%)

Expert-based PLNM 0.718

Present 45/463 (9.7%) 10/116 (8.6%)

Absent 418/463 (90.3%) 106/116 (91.4%)

Biopsy Gleason score 0.915

GS 3+3 119/463 (25.7%) 33/116 (28.4%)

GS 3+4 97/463 (21.0%) 25/116 (21.6%)

GS 4+3 120/463 (25.9%) 29/116 (25.0%)

GS ≥ 4+4 127/463 (27.4%) 29/116 (25.0%)

Percentage of positive cores, median (IQR) 0.4 (0.2–0.6) 0.3 (0.1–0.6) 0.222

Perineural invasion 0.187

Present 70/463 (15.1%) 12/116 (10.3%)

Absent 393/463 (84.9%) 104/116 (89.7%)

Surgical Gleason Score 0.949

GS 3+3 69/463 (14.9%) 17/116 (14.7%)

GS 3+4 129/463 (27.9%) 30/116 (25.9%)

GS 4+3 141/463 (30.5%) 35/116 (30.2%)

GS ≥ 4+4 124/463 (26.8%) 34/116 (29.3%)

Pathological ECE 0.349

Present 116/463 (25.1%) 34/116 (29.3%)

Absent 347/463 (74.9%) 82/116 (70.7%)

Pathological SVI 0.321

Present 74/463 (16.0%) 23/116 (19.8%)

Absent 389/463 (84.0%) 93/116 (80.2%)

Pathological SM 0.488

Present 199/463 (43.0%) 54/116 (46.6%)

Absent 264/463 (57.0%) 62/116 (53.4%)

Pathological PLNM 0.774

Present 41/463 (8.9%) 10/116 (8.6%)

Absenta 422/463 (91.1%) 106/116 (91.4%)

Unless indicated otherwise, data are the number of tumours, with percentages in parentheses. The Mann–Whitney U test for continuous variables. The chi-
square test was used for categoric variables.
PSA prostate serum antigen, PSAD prostate serum antigen density, PI-RADS Prostate Imaging and Reporting and Data System version 2.1, TZ transition zone, PZ
peripheral zone, ECE extracapsular extension, SVI seminal vesicle invasion, PLNM pelvic lymph node metastasis, GS Gleason Score, SM surgical margin, PLND
pelvic lymph node dissection, ePLND extended PLND.
a299/579 (51.6%) patients without PLND or ePLND were assumed to have no lymph node involvement by default.
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we measured two AI-derived predictions that allow to assess the T3 stage
and PLNM of PCa, respectively, using two predefined AI models described
in previous studies [27, 28]. (3) Last, the new MRI predictors, including
RadS, AI-predicted T3 stage, and AI-predicted PLNM, were combined with
17 ordered clinical indicators from clinical, radiological, and pathological
documents to develop a multimodal integrative deep survival network, i.e.,
the iBCR-Net, for the prediction of BCR-free survival. The iBCR-Net was
constructed by a concept of multimodal data integration and multi-
algorithm ensemble, the detailed architecture of which is illustrated in
Fig. 1. Additionally, we evaluated the predictive accuracy and clinical
applicability of iBCR-Net model by comparing with D’Amico, CAPRA, and
CAPRA-S scoring schemes in the independent test dataset.

BCR-related radiomics signature (RadS). The entire volumetric region-of-
interest (ROI) of the tumour was drawn by another two dedicated
radiologists (KWJ and YDZ) and in consultation with uropathologists.
Generally, the ROI of the target lesion was predefined once the patient
received an MRI exam and following MRI/TRUS-fusion biopsy in a clinical
routine, while PI-RADS was reevaluated by the dedicated investigators with
a retrospective blinded reviewing process when the patient was compliant
with enrolment criteria for this study. Details of ROI identification and
image preprocessing are described in Supplementary Materials (Supple-
mentary E1). To avoid the risk of bias and overfitting in high-dimensional
survival data, a Cox-based least absolute shrinkage and selection operator
(Lasso-Cox) regression analysis was utilised for feature selection and
shrinkage to construct RadS [29].

AI-predicted ECE and PLNM. The ECE and PLNM status (absence vs
presence) of all patients in this study were assessed using two predefined
AI models described previously [27, 28], in which the ECE (T3 stage) model
is built on a ResNeXt network in 596 PCa patients with RP [27], and the
PLNM model is built on a random forest analysis using 18 integrative clinic-
imaging features on 248 PCa patients with both RP and ePLND [28].

Development of iBCR-Net. Patients were randomly assigned into train
(n= 463) and test group (n= 116). The inputs of iBCR-Net contained: (1)
clinical variables such as age, PSA, and PSAD; (2) expert-interpreted
radiological identifications such as lesion location, lesion size, PI-RADS
score, expert-based ECE, SVI, and PLNM; (3) AI-derived predictions
including RadS, AI-predicted ECE and PLNM; (4) biopsy findings including
biopsy GG, core+%, and Peri-NI; (5) postsurgical-pathological findings such
as pathological GG, SM, ECE, SVI, and PLNM. In real-world clinical settings,
not all patients are candidates for PLND or ePLND; therefore, compromis-
ingly, patients without PLND were assumed to have no PLNM at
histopathology by default.
To achieve a model allowing to accurately predict BCR-free survival, we

proposed three baseline algorithms for iBCR-Net: (1) a state-of-the-art Cox-
PH, specifically included independent prognostic indicators related to BCR
in the multivariate analysis; (2) a powerful gradient boosting model using
Gradient Boosting Machine (Cox-GBM), using a forward stage-wise
decision tree strategy to build an additive model [30]; (3) a deep
learning-based Cox model (Cox-DL) using 7 baseline frameworks such as a
DL-based Cox proportional hazard model (DeepSurv) [31], a non-
proportional and a proportional Cox referred to as Cox-Time and Cox-CC
model [32], respectively, a linear Cox regression (Deep-Hit) [33], a neural
multi-task logistic regression (N-MTLR) [34], a regression parametrising the
probability mass function (PMF) and a piecewise constant hazard
regression assuming the continuous-time hazard function is constant in
predefined intervals (PC-Hazard) [35]. Primarily, we selected the desired
model for Cox-DL with a stepwise ablation experience by comparing
Harrell’s concordance index (C-index) on a five-fold cross-validation in the
train group, then validated it in the test group. The detail of the analysis is
summarised in Supplementary Materials (Supplementary E2).
In total, we trained 18 iBCR-Net models using multimodal integrations to

answer the critical questions about current clinical concerns on PCa
treatment and management [36]: (1) preoperative (pre-Op) vs post-
operative (post-Op) variables; (2) AI-aided vs expert-based assessment; (3)
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MRI-added vs MRI-spared (e.g., D’Amico, CAPRA, and CAPRA-S). We
postulated a simple model relying on clinical and automatic AI detections
that can be comparable to a state-of-the-art model relying on presurgical
and postsurgical indicators (see more details in Supplementary Materials in
Supplementary Fig. 2).

Statistical analysis
The Mann–Whitney U test and chi-square test were used to calculate group-
difference in terms of baseline characteristics. Model discrimination was
evaluated based on Harrell’s C-index, calibration curves and decision curve
analysis. Kaplan–Meier and log-rankwere used to calculate survival curves. X-tile
software (version 3.6.1) was applied to determine the cutoff value of RadS and
risk scores for prognostic model in the training cohort and classified patients
into high- and low-risk groups [37]. Model building and statistical analyses were
performed using the R package (version 4.1.2; http://www.Rproject.org). All tests
were two-tailed, with statistical significance set at 0.05.

RESULTS
Baseline characteristics
The characteristics of the 579 enrolled patients are summarised in
Table 1. Overall, 137/463 (29.6%) and 34/116 (29.3%) patients
experienced BCR in the train and test cohort, respectively. About
94.7% of biochemical relapses occurred within the first 2 years in
the whole cohort. The median follow-up time was 26.1 (95%
confidence intervals [CIs], 24.1–28.1) months.

New MRI signatures for BCR
The stepwise Lasso-Cox analysis selected a total of 9 significant
radiomics features (one feature on T2WI, 5 features on DWI, and 3
features on ADC) associated with BCR-free survival in the training
cohort. The RadS was calculated through a linear combination of
selected feature weights by their respective coefficients, as plotted

Table 2. The C-index of iBCR-Net with multimodal integration using Cox-PH, Cox-GBM and Cox-DL in the test group.

Model Cox-PH Cox-GBM Cox-DL

Pre/Post-Op M0 0.791 (0.712–0.870) 0.800 (0.722–0.878) 0.808 (0.738–0.878)

Pre-Op M1 0.772 (0.694–0.850) 0.783 (0.704–0.862) 0.783 (0.715–0.851)

Pre-Op M2 0.761 (0.683–0.839) 0.779 (0.703–0.855) 0.783 (0.712–0.854)

Pre-Op M3 0.746 (0.655–0.837) 0.746 (0.661–0.831) 0.765 (0.685–0.845)

Pre-Op M4 0.808 (0.740–0.876) 0.811 (0.746–0.876) 0.815 (0.753–0.877)

Pre-Op M5 0.812 (0.750–0.874) 0.816 (0.756–0.876) 0.826 (0.770–0.882)

The numbers in parentheses are the 95% confidence interval.
Cox-PH Cox proportional hazards, Cox-GBM Cox gradient boosting machine, Cox-DL a deep learning-based Cox proportional hazard model.
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in Fig. 2a. It resulted in a C-index of 0.718 (95% CIs, 0.687–0.749)
and 0.721 (95% CIs, 0.664–0.778) in train and test group for
predicting BCR-free survival, respectively. Using the cutoff value of
0.80 for staging ECE, the predefined AI model produced an overall
accuracy of 82.6% (478/579) with 72.7% (109/150) sensitivity and
86.0% (369/429) specificity in diagnosis of ECE (Fig. 2b). The
C-index of AI-predicted ECE score was 0.678 (95% CIs, 0.639–0.717)
and 0.697 (95% CIs, 0.617–0.777) in train and test group,
respectively, for predicting BCR-free survival. Simultaneously,
using the cutoff value of 0.83 for PLNM, the dedicated model
produced an overall accuracy of 78.4% (454/579) with 72.5% (37/
51) sensitivity and 79% (417/528) specificity in determining PLNM
(Fig. 2c). The AI-predicted PLNM score resulted in a C-index of
0.671 (95% CIs, 0.634–0.708) and 0.719 (95% CIs, 0.646–0.792) in
train and test group for predicting BCR-free survival, respectively
(Fig. 2d).

Ablation experience of Cox-DL
The results of dynamic performance tuning of Cox-DL models are
summarised in Supplementary Materials (Supplementary Fig. 3
and Supplementary Table 3), where DeepSurv outperformed other
DL survival models regarding the best C-index (0.804) over the
five-fold cross-validation. The output of DeepSurv was selected as
the desired model for Cox-DL for the estimation of BCR-free
survival in an individual patient.

Performance of iBCR-Net
The C-index of 18 iBCR-Net models based on multimodal
integration and multialgorithm ensemble is summarised in Table 2.
The predicted vs observed BCR-free survival rate of baseline Cox-
PH, Cox-GBM, and Cox-DL model (including all clinical-imaging-
pathological variables) is plotted with a calibration curve in Fig. 3a,
b and c, respectively. The RadS, pathological ISUP GG, lesion
location, surgical PLNM, and expert-based SVI were independent
predictors of BCR-free survival at Cox-PH model (HRs > 1.50,
p < 0.05) (Fig. 3d). Similar results are observed in Cox-GBM, where
RadS and pathological ISUP GG are two top-ranked predictors of

BCR-free survival by calculating average decrease in accuracy with
dynamically adding variables in Cox-GBM analysis (Fig. 3e). The 1-
year, 2-year and 3-year survival Receiver-Operating-Characteristic
(ROC) analysis of the models for predicting BCR-free survival are
plotted with area-under-the-curves (AUC) values in Supplementary
Fig. 4a. Based on the optimal cutoff value determined by X-tile
software, patients are stratified as low-risk and high-risk cate-
gories, whereas the low-risk patients have longer median BCR-free
survival time than high-risk patients at the Kaplan–Meier plots
(Supplementary Fig. 4b). The detail results of predictive perfor-
mance of M1 to M5 are illustrated in Supplementary Figs. 5–7.
To determine the agreement of iBCR-Net prediction with

ground truth observation, the cross-odds ratio (COR) and BCR-
free survival curves between iBCR-Net predictions and true
observations are plotted using a pairwise log-rank test (Fig. 4). It
shows that M1, M2, M4 and M5 are competitive to baseline M0
model (all CORs vs ground truth, p > 0.05), while M3 is significantly
lower than M0 (0.21–0.67 vs ground truth, p < 0.01) in either Cox-
PH, or Cox-GBM, or Cox-DL model. Details of the pairwise
comparison of CORs between M0 to M5 and observed outcomes,
with a specific interpretation of Q1–4 referred to in Supplementary
Fig. 2, are summarised in Supplementary Materials (Supplemen-
tary Tables 4–6 and Supplementary E3).
With advances in simplicity, noninvasiveness, and non-reduced

diagnostic accuracy, the M5 model, consisting of three presurgical
predictors (RadS, AI-predicted ECE, and serum PSA), is regarded as
the optimal model for BCR assessment in real-world clinical
settings. The Cox-PH M5 is transformed into an easy-to-use
nomogram by summing the coefficients of dedicated predictors
(Fig. 5a). Survival curves of the 7-level risk categories based on M5
model are plotted (Fig. 5b), relying on which a more simplified
triple-stratifying scheme combining RadS (low- vs high-risk),
AI-predicted ECE (absent vs present) and PSA (≤20 ng/ml vs
>20 ng/ml) is determined (Fig. 5c). It shows that triple-positive
patients (RadS+, AI-predicted ECE+, and PSA > 20 ng/ml) have
45.1-fold recurrence risk compared to triple-negative patients
within 5 years after surgery.
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In pairwise comparison with a hazard regression plot, the iBCR-
Net, especially Cox-GBM M5, resulted in 5.16-fold, 12.8-fold, and
2.09-fold (p < 0.05 with the log-rank test) benefit, respectively,
against D’Amico, CAPRA, and CAPRA-S for BCR-free survival
prediction (Fig. 5d). Decision curve analysis showed that iBCR-
Net produced relatively higher net benefits against D’Amico and
CAPRA in diagnosing 5-year BCR at all threshold probabilities, and
relatively higher net benefit against CAPRA-S at threshold
probabilities below 50% (Fig. 5e).

DISCUSSION
Precise stratification of BCR risk of PCa patients after RP is
desirable to guide appropriate therapeutic strategy. Preoperative
identification of low-risk BCR may enhance the clinician’s decision
confidence to delay additional therapy; while high-risk PCa
patients are potential candidates to initiate adjuvant therapy
[25]. Therefore, we developed a novel iBCR-Net model by a
concept of multimodal integration and multialgorithm ensemble,
which allows to preoperatively assess BCR risk in PCa patients with
RP. The proposed iBCR-Net, especially the biopsy-free AI-aided M5
model, can match the state-of-the-art referred postsurgical model
or, in some cases, outperform conventional scoring systems such
as D’Amico, CAPRA, and CAPRA-S, thereby provides patients and
clinicians more information for administrative decisions.
Recent research suggests that MRI-derived features, especially

radiomics, are relevant for identifying men at high risk of BCR [18,
19]. In our study, a more comprehensive radiomics analysis was
implemented based on a large-scale sample. Partly in accordance

with Bourbonne et al. [19], we found that the ADC-derived Grey
Level feature is the most important contributor of RadS. The
integrative RadS score, indicating tumour heterogeneity and
aggressiveness, was associated with poor BCR-free survival of PCa.
In accordance with previous studies [4, 38, 39], higher ISUP GGs,

presence of ECE, or presence of PLNM, implying higher aggres-
siveness of PCa, were associated with shorter BCR-free survival in
our patients. The expert-based performance of MRI in the
diagnosis of ECE and PLNM has potential limitations. A single-
centre retrospective study reported a sensitivity of 16–44% for ECE
diagnosis and a sensitivity of 27–40% for PLNM diagnosis,
respectively [28, 40]. With our proposed AI models [27, 28], it
resulted in an improved accuracy for staging ECE and PLNM.
Additionally, the use of AI may provide a potential way to
overcome inter-reader and intra-centre variance during image
interpretation. Our results also demonstrated a significant
difference in BCR-free survival between low-risk and high-risk
patients stratified by AI-aided ECE and PLNM assessment. Notice
that the proportion of surgical PLNMs is relatively low compared
with previous reports (8.9% vs 15%) [41]. This may be caused by
the fact that only 48.4% of our patients underwent PLND or
ePLND. Compromission in defining surgical PLNM may produce
bias in model assessment. It is thus urgent to further expand the
sample size to test the performance of our AI model for PLNM.
In the process of integrating multimodal data for survival

analysis, we found that all three Cox-based models provided
outstanding risk stratification ability and prediction accuracy. Our
findings in the pre-op M5 model supported a critical issue in PCa
treatment and management that deserves special attention: the
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incorporation of AI predictions does not degrade model
performance even in the absence of postoperative or biopsy
variables, suggesting that M5, avoiding complications caused by
invasive procedures or biopsy sampling errors, had promising
validity and feasibility in recurrence prediction. This result ties well
with the report by Meissner et al. that validated the feasibility of
primary RP avoiding invasive prior biopsy in patients with strong
PSMA uptake and positive MRI [36]. This indicates the urgent need
for noninvasive examination and prediction in clinic. The
preoperative simplified triple-stratifying scheme had great poten-
tial as a noninvasive tool for prognostic assessment, especially for
patients who are not candidates for RP. In our cohort, the
performance of D’Amico, CAPRA, and CAPRA-S was better than
those reported previously [10] while inferior to our M5 except
CAPRA-S. This indicated the potential of our iBCR-Net for
preoperative prognostic prediction, which will provide clinicians
with more treatment strategy choices.
We acknowledge that our study had potential limitations.

First, inherent bias may exist because of its retrospective
character. Second, the validation dataset was limited to a single
institution. To validate the reproducibility of our iBCR-Net,
further prospective multicenter studies are warranted. Third,
although about two-thirds of patients experienced biochemical
relapse within 2 years after surgery and this percentage in our
study reached nearly 90%, the short follow-up is still a potential
issue. Long-term follow-up of PCa patients will be conducted
further to verify our model. Last, our M5 had a relatively lower
net benefit against the CAPRA-S model at a risk threshold larger
than 0.5. This may leave a gap for missing patients with high
recurrence risk with M5. We can understand that CAPRA-S is a
postoperative approach with predictable predictive accuracy.
Compared with some accepted preoperative models, such as
D’Amico and CAPRA, our M5 is superior and does not even
require biopsy results. Therefore, M5 can be easier and more
noninvasive against CAPRA-S.
In conclusion, our study confirmed the clinical application value

of iBCR-Net in the prognostic task of PCa. The M5 featured with
biopsy-free and AI assistance can match state-of-the-art baseline
M0 and, in some cases, outperform D’Amico, CAPRA, and CAPRA-S
in predicting BCR. Therefore, we support that our iBCR-Net
provides a potential way for risk stratification in PCa patients prior
to surgery.
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