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Bulk-local-density-of-state correspondence
in topological insulators

Biye Xie1,2,7, Renwen Huang3,4,7, Shiyin Jia3,4,7, Zemeng Lin1,7, Junzheng Hu3,4,
Yao Jiang3,4, Shaojie Ma 1, Peng Zhan 3,4 , Minghui Lu 3,5 ,
Zhenlin Wang 3,4, Yanfeng Chen 3,5 & Shuang Zhang 1,6

In the quest to connect bulk topological quantum numbers to measurable
parameters in real materials, current established approaches often necessitate
specific conditions, limiting their applicability. Here we propose and demon-
strate an approach to link the non-trivial hierarchical bulk topology to the
multidimensional partition of local density of states (LDOS), denoted as the
bulk-LDOS correspondence. In finite-size topologically nontrivial photonic
crystals, we observe the LDOS partitioned into three distinct regions: a two-
dimensional interior bulk area, a one-dimensional edge region, and zero-
dimensional corner sites. Contrarily, topologically trivial cases exhibit uniform
LDOS distribution across the entire two-dimensional bulk area. Our findings
provide a general framework for distinguishing topological insulators and
uncovering novel aspects of topological directional band-gap materials, even
in the absence of in-gap states.

Topologicalmaterials, which transcend the conventional spontaneous
symmetry-breaking paradigm, have significantly advanced our com-
prehension of condensed matter physics1–7. They hold great promise
for applications in energy-efficient electronics8 and quantum
computing9 owing to their robust and distinctive transport
properties10–17. Theoretical descriptions of topological phases rely on
quantized bulk physics known as topological invariants18,19. However,
experimental measurement of these bulk topological invariants is
challenging and typically demands sophisticated quantum state
reconstruction20. Fortunately, correspondences exist between bulk
topological physics and other experimentally accessible observables.
For example, in the case of completely gapped topological phases (or
topological insulators, TIs), conventional bulk-boundary correspon-
dence (BBC)21 dictates the presence of in-gap topological boundary
states at the interface between two topologically distinctmaterials22,23.
The powerful BBC has played a pivotal role in characterizing TIs and
has been extended to higher-order topology24, non-Hermitian

topology25, and 4D quantum Hall systems26. However, recent studies
on topological crystalline insulators27–32 have revealed that topological
phases without chiral symmetry (or particle–hole symmetry) can
habor boundary states embedded within the bulk spectrum. Conse-
quently, theBBC fails toprecisely distinguish these specific topological
phases.

To address this challenge, Peterson et al.33 introduced a measur-
able topological indicator for identifying non-trivial higher-order
topological crystalline phases, eliminating the need for in-gap loca-
lized boundary states. Specifically, they quantified the portion of
Wannier centers (WCs), also known as spectral charges, by integrating
the local density of states (LDOS)within eachunit cell in thebulk, edge,
and corner regions across the entire band spectrum. This approach
defined a fractional corner anomaly (FCA) that links non-trivial higher-
order topological insulating phases to observable fractional quantum
numbers. More recently, leveraging similar measurements of the
fractional quantumnumber (associatedwith the count ofWCswithin a
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unit cell), a bulk-disclination correspondence has been established to
predict the existence of topological disclination states with various
spatial symmetries32,34. However, a fundamental limitation persists in
this correspondence: WCs can only be defined (and subsequently
measured) across an entire band (or bands), and their distribution
within unit cells is significantly influencedby lattice spatial symmetries.
For a broad class of topological insulators (TIs) characterized by
directional bandgaps, sometimes referred to as partial bandgaps35 and
lacking in-gap states or experiencing disorders that disrupt all spatial
symmetries, both the BBC and FCA fail to characterize these topolo-
gical phases. Therefore, a pivotal question arises: What is the general
correspondence between non-trivial bulk topology and measurable
observables?

In this study, we introduce and validate an approach for the pre-
cise identification of distinct topological phases characterized by
Wannier centers (WCs). We achieve this by examining the multi-
dimensional and single-dimensional partition of the local density of
states (LDOS) for topologically nontrivial and trivial phases, thereby
establishing a comprehensive link between non-trivial bulk topology
and measurable LDOS. To mitigate finite-size effects, we calculate the
averaged LDOS across a narrow energy range and over bulk, edge, and
corner regions for both topologically nontrivial and trivial lattices.
Remarkably, we find that the magnitudes of the averaged LDOS in this
region remain nearly constant across energy levels for trivial phases,
whereas they exhibit significant variations for nontrivial phases. We
provide an intuitive explanation for this phenomenon, drawing from
modern polarization theory31and demonstrate its validity through
experiments conducted in a two-dimensional (2D) photonic system
characterized by higher-order topological insulators (TIs) featuring

directional bandgaps and devoid of in-gap localized boundary states.
Furthermore, we establish the robustness of this correspondence in
systems affected by randomdisorders. Our findings furnish a universal
criterion for diagnosing topological phases and open avenues for the
investigation of topological phases within materials possessing topo-
logical directional bandgaps.

Results
Multidimensional partition of LDOS reveals topology
To gain an intuitive grasp of this approach, we commence with the
concept of a topological insulator (TI), where the topological phases
aredistinguishedby the displacement ofWannier centers (WCs)within
unit cells, signifying bulk polarizations and filling anomalies31,36–38. In
TIs, WCs are situated away from the centers of unit cells. Specifically,
WCs positioned at the sides and corners of unit cells correspond to
first-order and second-order TIs, respectively, as depicted in Fig. 1a.
Conversely, if WCs are found at the centers of unit cells, the system is a
trivial atomic topological insulator, often referred to as an ordinary
insulator (OI) (see Fig. 1b). Since WCs represent charge centers of
wavefunctions39, the number of WCs in specific regions governs the
magnitude of the local density of states (LDOS) in those areas. More-
over, in a finite-size lattice,WCs located at bulk, edge, and corner areas
(highlighted in colored regions in Fig. 1) dictate the portion of wave-
functions that combine to form bulk, edge, and corner states,
respectively. Consequently, for topologically nontrivial lattice with
WCs localized at the corner of unit cells as shown in Fig. 1a, the mul-
tidimensional hybridization of single lattice site’s orbitals at bulk
(green area in Fig. 1a), edge (blue area in Fig. 1a), and corner areas (red
area in Fig. 1a) results in the multidimensional partition of LDOS in the
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Fig. 1 | Schematic of the bulk-LDOS correspondence. a A topological insulator
(TI) with Wannier centers (WCs) located at the corner of unit cells. The gray dots,
gray lines, and black lines represent the lattice sites, intra-cell couplings and inter-
cell couplings, respectively. The green, blue, and red solid circles represent WCs
which are located at the bulk area (gray color area), edge area (blue color area) and
corner areas (red color area), respectively. b A trivial atomic insulator (or ordinary
insulator, OI)withWCs located at centers of unit cells. The elements have the same

meaning in (a). c and d The averaged local density of states (LDOS) distributions
over a small energy range at different positions in the energy domain for a TI as
shown in a andOI as shown in b, respectively. The green, blue, and red dots on the
axis represent the eigenstates that have a higher field strength on the bulk, edge,
and corner lattice sites, respectively. The sizes of green, blue, and red circles
represent themagnitudeof running averaged LDOSover the eigenstates inside the
green, blue, and red boxes at each lattice site, respectively.
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spectrum. However, for topologically trivial lattice, all lattice sites’
orbitals (represented by green area in Fig. 1b) hybridize to form bulk
states and therefore the LDOS is distributed in single-dimension (here
is 2-dimension for example). This multidimensional partition of LDOS

in a system with open boundary conditions is an intrinsic physical
property of the topologically non-trivial phase and it recovers to the
conventional BBC when there is a complete bandgap with in-gap
localized boundary states and FCA when there is a complete bandgap
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Fig. 2 | The projected band structures (PBS) of TIs with directional bandgaps.
a Schematic of a finite-size photonic TI with boundary rods having a smaller radius
than the bulk rods. The zoom-in inset presents thepositionof the probe tomeasure
the projective band structure. The radius of the bulk and edge rods are 0.11a and
0.1a respectively. b The PBS of the unperturbed lattice. The white (blue) lines are

the numerically simulated bulk and edge states. The bright and dark colors
represent the experimentally measured PBS. The zoom-in inset shows the 1D edge
state is an in-gap state. c The PBS of the perturbed lattice. The elements have the
same meaning as in (b). The zoom-in inset shows the 1D edge state is embedded
into the bulk spectrum for the second band gap.
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Fig. 3 | Multidimensional partition of photonic LDOS of a TI with perturbed
boundary. a A finite-size photonic TI. The parameters are the same as those in
Fig. 2a, b. The ratio between the running averaged edge LDOS over the running
averaged bulk LDOS (left panel), the ratio between the running averaged corner
LDOS over the running averaged bulk LDOS (left panel), and the ratio between the
running averaged corner LDOS over the running averaged edge LDOS (left panel)
are presented respectively. The solid (dashed) blue and orange lines represent the
measured (simulated) ratio for the OI and TI, respectively. c The upper (lower)

panels show the LDOS of a single frequency at 4.04, 5.04, 5.88, 7.08, and 7.52GHz
for OI and TI, respectively. For the ordinary insulator (OI), the LDOS is homo-
geneously distributed over the entire bulk area (EBA) at all frequencies. For the
topological insulator (TI), at 4.04, 5.04, 5.88, 7.08, and 7.52 GHz, the LDOS is
dominant at the interior bulk area (IBA), edge and IBA, corner, edge and IBA, edge
and IBA, respectively (encircled by dashed blue lines) which clearly reveals the
multidimensional partition of the LDOS.
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with crystalline symmetries33. Moreover, it can characterize topologi-
cally non-trivial phases even in systems with directional bandgap and
no in-gap boundary states or without any symmetries. The displace-
ment of WCs in unit cells which is the bulk topological invariant has a
one-to-one correspondence to themultidimensional partitionof LDOS
in a system with open boundary conditions, clearly revealing an
intrinsic bulk-LDOS correspondence of topological phases (see
detailed discussions on the tight-binding models and the difference
between excited field distributions and the local density of states in
Section I in SI).

Although we can directly apply the bulk-LDOS correspondence
to distinguish different topological phases, in a finite-size structure
with a few unit cells, it is not always clear to see themultidimensional
partition of LDOS at an arbitrary energy magnitude due to the dis-
crete resonating mode in the whole structure. To overcome this
problem, we note that in a finite-size structure with open boundary
conditions, different-dimensional hybridized states have different
consecutive level spacings (the frequency distances between
frequency-adjacent modes)40, therefore the bulk, edge, and corner
states are inhomogeneously distributed in the energy domain (see
the dots in the vertical axis in Fig. 1c) for TIs. In terms of the LDOS, the
running average of the LDOS for eigenmodes over a small energy
range is also distributed in different dimensions in the energy
domain (see Fig. 1c). This running average of the LDOS over a small
energy range will reduce the finite-size fluctuations of LDOS for a
single-frequency mode while preserving the character of the multi-
dimensional partitionof LDOS.However, forOIs, the running average
of the LDOS over a small energy range is single-dimensional dis-
tributed instead (see Fig. 1d).

Bulk-LDOS correspondence in topological directional bandgap
materials
To experimentally observe this correspondence, we consider a 2D
topological photonic crystal (PC), comprised of dielectric cylinders.
PCs with engineered photonic band structures have been used to
explore various topological phases including quantum Hall states22,
quantum spin Hall states23, higher-order topological insulators41, and
with fractional quantum numbers32. It is noteworthy that Wannier
centers (WCs) and spectral charges can also be defined within photo-
nic bands. Prior investigations have demonstrated thatby retrieving S11
parameters and concurrently considering the Purcell effect during
near-field scanning, we can directly obtain the local density of states
(LDOS) for photonic states (for an in-depth discussion, refer to the
“Methods” section).

In this context, we focus on a 2D photonic Su–Schrieffer–Heeger
(SSH) model featuring a directional bandgap within the s-wave band
structure (see band structure in SI). By adjusting the intercell coupling
strength tinter and the intracell coupling strength tintra, the 2D photonic
SSH model experiences a topological phase (tinter > tintra) or a trivial
phase (tinter < tintra). Moreover, the 2D photonic SSH model has been
previously shown to have hierarchical topological phases with both 1D
edge states and 0D corner states41. The higher-order topological phase
in this PC can be numerically classified by the displacement of WCs of
photonic modes and explained by the filling anomaly. To observe the
1D edge states, we place an excitation source at the 1D interface
between the topologically nontrivial configuration and the perfect
electric conductor (PEC) boundary realized bymetals (see Fig. 2a). The
projected band structure with in-gap 1D edge states can be seen from
the Fourier transform of the excited edge states (see Fig. 2b). We then
modify boundary sites by reducing the diameters of rods (see Fig. 2a).
A small perturbation on theonsite energy of the boundary siteswill not
destroy the topological phases but only shift the frequency of edge
states. Consequently, the 1D topological edge states are now embed-
ded into the bulk spectrum as shown in Fig. 2c and there are no in-gap
states in the directional bandgaps.

Now we fabricate a 2D sample with identical parameters to those
in Fig. 2 to investigate the hierarchical topological phases (the detailed
sample parameters are discussed in the “Methods” section) as shown
in Fig. 3a. We then apply the near field scanning method by putting a
metal probe near the top of the sample and extracting the S11 para-
meters to obtain the LDOS of photonic states (see discussions on the
measurement of photonic LDOS in the “Methods” section). We con-
sider a structure of photonic crystals with modified boundary rods,
perfect electric conduction boundary condition, and 6 × 6 unit cells
(see Fig. 3a). The topological phases andbandgapsof this structure can
be adjusted by the inter-cell couplings and intra-cell couplings which is
determined by the distances between rods. Specifically, we realize two
photonicOI andTIwith directional bandgapand topological boundary
states embedded in the bulk spectrum similar to those in Fig. 2 (see
detailed discussion in SI). The detailed design of these photonic crys-
tals is discussed in the “Methods” section. According to Fig. 2, there are
no complete bandgaps from the spectra of eigenmodes and therefore
one can not apply the direct measurement of spectral charges to dis-
tinguish topological phases.

Nevertheless, by applying the same approach as discussed in the
preceding section, we can experimentally obtain the spectral multi-
dimensional partition of photonic LDOS as shown in Fig. 3b, c for both
non-trivial and trivial configurations. To provide a clear characteriza-
tion of this multidimensional partition of the LDOS, we define a ratio r
between the averaged LDOS over a certain energy range Δf starting
from an initial frequency fi at edge (corner) sites Di

edge (Di
corner) and

those at the bulk sites Di
bulk as rðn,m,iÞ = Di

n

Di
m
. Here n,m = bulk, edge,

corner. We set Δf = 1/8∑ where ∑ = ft−fb represents the energy range
from the bottom of the band structure fb to the top of the band
structure ft. Here this running averaging range Δf is chosen to ensure
that the finite-size fluctuation of LDOS is reduced. We plot r(edge,bulk),
r(corner,bulk) and r(corner,edge) with fi starting from fb to ft−Δf as shown in
Fig. 3b, respectively, for both TIs and OIs.

We clearly see two peaks of r(edge,bulk) and one peak of r(corner,bulk) and
r(corner,edge) for the TI and small fluctuations of r(edge,bulk), r(corner,bulk) and
r(corner,edge) for the OI. We here emphasize that unlike the tight-binding
model, there exist higher-order couplings in our PCs, which inevitably
break the chiral symmetry of the system. Nevertheless, the multi-
dimensional partition of running averagedphotonic LDOS ispreserved
and hence it captures general cases without any stringent requirement
on the chiral symmetry of the system. From the single frequency LDOS
as shown in Fig. 3c, we find that for OI (the upper panels in Fig. 3c),
when we increase the frequency from the bottom to the top of the
band structure, the LDOS is distributed across the 2D entire bulk area
(EBA) without any partition. However, for the TI, we observe that the
LDOS is distributed across the 2D interior bulk area (IBA, avoiding 1D
edges and 0D corner sites) at 4.04GHz, both 2D IBA and 1D edges
(avoiding 0D corners) at 5.04GHz, both 2D IBA and 0D corners
(avoiding 1D edges) at 5.88GHz, and both 2D IBA and 1D edges
(avoiding 0D corners) at 7.08 and 7.52 GHz as shown in lower panels in
Fig. 3c. This character clearly reveals themulti-dimensional partition of
the LDOS for the topologically nontrivial phase.

The bulk-LDOS correspondence finds applicability in systems
where no distinct detuned and separated components exist, similar
to the traditional BBC and FCA for completely gapped systems33.
Nevertheless, when such defective boundary localized states
emerge by adding a large onsite energy potential to the boundary
sites, we can still distinguish between topologically trivial and non-
trivial cases by examining the local density of states (LDOS) in both
the energy domain and real space. Specifically, there are two fun-
damental characteristics in the LDOS: (a) The topological boundary
states stem from the hybridization of two (or evenmore) bands near
the bandgap, and therefore, in our case, there are only two sets of
edge states, and 1 set of corner states at certain frequency range
while this is not the case for defect boundary localized states. For

Article https://doi.org/10.1038/s41467-023-42449-2

Nature Communications |         (2023) 14:7347 4



defect states, they are introduced by the detuning process and
originate from the single band. Therefore, when we add a large
onsite energy potential to boundary sites in the trivial lattices, there
will be more sets of boundary localized states than the topological
cases. (b) In real space, the LDOS of topological boundary states are
strongly localized at the boundary sites and dominant at the same
sub-lattice sites. However, for the LDOS of the defect boundary
states, they are extended to other lattice sites within different
sublattices. A detailed discussion on the difference between topo-
logical boundary states and defective boundary states in terms of
the LDOS is provided in Section IV in SI (see detailed discussions on
the tight-binding models and the difference between excited field
distributions and the local density of states in supplementary
materials).

Bulk-LDOS correspondence in disordered topological materials
The Bulk-LDOS correspondence roots in the redistribution of the
positions of WCs when there is a topological phase transition. Global
spatial symmetries and chiral symmetry only determine the fractio-
nalization of charges and the frequency of corner states, respectively.
A small perturbation that does not close the band gapswill not destroy
the relevant topological phases. Hence, our proposed bulk-LDOS
correspondencealso holds for topological phaseswith certain levels of
random disorders where one cannot define the band structures and
the symmetry-protected fractionalization of spectral charges. To elu-
cidate this correspondence, we add random perturbations of on-site
energy by randomly changing the diameters of the rods in the
unperturbed lattice (with the same parameters as those in Fig. 2b). For
simplicity in fabrication, we add the random perturbation on dia-
meters of rods in a discrete manner. Specifically, based on the finite-
size structure as discussed in Fig. 3a without modifying the boundary

sites, we change the diameters of rods by a number λ which is ran-
domly and discretely distributed between 0 and 1/6r0 where r0 = 0.11a
is the radius of the unperturbed rods. Under the small perturbations,
there is still no complete bandgap in the spectra. Similarly, as before,
we can measure the multidimensional partition of running averaged
LDOS r(edge,bulk), r(corner,bulk) and r(corner,edge) as shown Fig. 4b. We find there
are two peaks for r(edge,bulk) indicating the first-order topology with two
non-degenerate edge states and one peak for r(corner,bulk) and r(corner,edge),
indicating the second-order topology with corner states. We can also
see the bulk-LDOS correspondence from the single frequency mea-
surement of LDOS for the disordered structures as shown in Fig. 4c.
The upper and lower panels in Fig. 4c correspond to the LDOS of wave
functions for OI and TI with disorders respectively. We also see a
single-dimensional partition of LDOS for OI and a multidimensional
partition of LDOS for TI. We here note that due to the random dis-
orders in the structure, the LDOS of single mode may have no C4

symmetry as shown in Fig. 4c and therefore the quantized fractional
charges do not exist33. Nevertheless, the bulk-LDOS correspondence
holds on. Besides, this perturbation will also break the bound-state in
the continuum (BIC) and therefore one cannot usean excited source to
map out the eigenfield distributions. The excited field distributions
may change significantly with respect to different positions of the
source and therefore cannot be applied to diagnose the bulk topology
(see detailed discussions on the tight-binding models and the differ-
ence between excited field distributions and the local density of states
in Section III in SI).

Discussion
In conclusion, we have proposed and demonstrated a rigorous Bulk-
LDOS correspondence in TIs in which the topological phases are
characterized by the displacement of WCs. We find that in
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radius of rods are presented.bThe ratio between the running averaged edge LDOS
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ratio between the running averaged corner LDOS over the running averaged edge
LDOS (left panel) are presented respectively. The solid (dashed) blue and orange
lines represent the measured (simulated) ratio for the disordered OI and TI,
respectively. c The upper (lower) panels show the LDOS of a single mode at
fi = 3.98, 4.96, 5.72, 7.10, and 7.56 GHz for disordered OI and TI, respectively.

Article https://doi.org/10.1038/s41467-023-42449-2

Nature Communications |         (2023) 14:7347 5



topologically trivial structures, the LDOS of bulk modes extend all the
way to the edges and corners, while in topologically nontrivial struc-
tures the LDOS of bulk modes actually avoids the edges and corners.
Our approach based on the measurement of the multidimensional
partition of LDOS can identify both the first-order topological insu-
lating phases and higher-order topological phases simultaneously.
Moreover, compared to previous BBC and FCA approaches, the pro-
posed bulk-LDOS correspondence extends its applicability to more
general scenarios, including TIs featuring directional bandgaps with-
out in-gap states and even those affected by disorders. While our
experimental work is grounded in the domain of photonic crystals, the
implications of our findings are broad and can be extrapolated to
diverse systems, encompassing electronic materials42, acoustic
crystals43, mechanics44, and plasmonics45. Besides, we expect further
exploration of this correspondence in Wannier-nonrepresentable TIs
such as fragile topological phases46 and topological phases char-
acterized by a non-zero Chern number26 and even gapless topological
systems such as the Weyl and Dirac semimetals47. In practical appli-
cations, considering that the LDOS has previously been linked to the
spontaneous emission rate of atoms and molecules embedded within
photonic crystals48, our discoveries offer valuable insights for future
investigations into topological light emissions and light–matter inter-
actions within directional topological bandgap materials.

Note added: During the peer-review process of our work, we
became aware of a concurrent independent study on revealing topo-
logical phases in gapless systems using K-theory49. In comparison, our
proposed method considers a more generalized model that does not
require the system to possess chiral symmetry. In addition, our
approach has the potential to be applied to higher dimensions.

Methods
Measurement of projected band structure
The projected energy band was measured utilizing a 2-ports trans-
mission spectrum S21 using a microwave network analyzer Keysight
E5063A.We put the sample on a displacement stage with a step size of
2mm and placed a metallic plate right above the sample to prevent
radiative loss. The air gap between the sample and the upper plate is
2mm. Two antennas are included in this measurement: one is fixed
through the sample to work as an excitation source and the other is
embedded in the upper plate with a distance to the PCs of 1mm for
detection. Therefore, both the amplitude and phase corresponding to
the eigenmode at different positions of the sample can be measured
with themoving displacement stage. During eachmoving step, a pause
of 0.5 s is set for stationary measurement.

Measurement of LDOS
The LDOS of the PCs can be derived from the one-port reflection
spectrum S11, which is accomplished by inserting an antenna into the
upper metal plate with a coaxial cable of 50Ω connected to the ana-
lyzer. Between the sample and the upper metallic plate, an airgap of
2mm is introduced. We averagely divide each unit cell to 10 × 10 parts
and detect the central region of each part in a range of 2−9GHz with a
resolution of about 5MHz (see detailed discussions on the tight-
binding models and the difference between excited field distributions
and the local density of states in Section II in SI).

We first calculate the extinction rate from the reflection as
E(f) = 1−∥S11(f)∥2. Considering the Purcell effect, we divide the mea-
sured extinction rate by the frequency squared, Dðf Þ= Eðf Þ

f 2
, which is

proportional to the density of states with eachmeasured spacial point.
To obtain the LDOS for one dielectric pillarD(r, f), we sum theD(r, f) in
one-quarter of the unit cell up and normalize it as

Dðr,f Þ=
X

i

Diðr,f Þσi ð1Þ

with ∫allD(r, f) = 1 Here, the integral is taken over all bands.D(r, f) and σi
are the density of states and the area of the ith region with i varying
from 1 to 25, respectively (see detailed discussions on the tight-binding
models and the difference between excited field distributions and the
local density of states in Fig. S4 in SI).

To demonstrate the inhomogeneous distribution of LDOS, we
average D(r, f) of each pillar belonging to corner, edge, and bulk,
respectively. Then, the obtained Dcorner(f), Dedge(f) and Dbulk(f) are fur-
ther integrated over the range of Δf starting from a initial frequency fi.

Di
m =

Z f i +Δf

f
Dmðf Þdf ð2Þ

Herem = corner, edge, bulk. fi goes from the bottom frequency of the
band structure fb to the top of the band structure ft. We here choose
Δf = 1/8(ft−fb) for the reason that this value is large enough to reduce
the fluctuations of averaged LDOS due to the finite-size effect and
small enough to ensure the summed set of eigenmodes are firstly all
bulk states and then contain the edge states as fi increases so that we
can observe the spectral inhomogeneity more clearly. For each fi, we
calculate the ratio as

rn,m,i =
Di
m

Di
n

ð3Þ

Here m, n = corner, edge, bulk. Specifically, we calculate r(edge,bulk),
r(corner,bulk), and r(corner,edge) as shown in Figs. 3 and 4.

Simulation
Numerical simulations are performed via the commercial finite-
element simulation software (COMSOL MUTIPHYSICS). We build 3D
photonic crystal models in all of the simulations for better corre-
spondencewith the experiments. Energy bandswith infinite structures
are calculated by setting the boundaries perpendicular to the propa-
gation direction of the edge states as periodic boundaries and other
boundaries as perfect electric conductor (PEC). For the calculation of
the LDOS with a finite structure, we set PEC boundary conditions in all
directions.

Data availability
All data needed to evaluate the conclusions in the paper are present in
the manuscript and Supplementary Information. The data are also
available upon request from the corresponding author. Source data
are provided with this paper.

Code availability
The codes are available upon request from the corresponding author.
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