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Machine Learning-Enabled Tactile Sensor Design for
Dynamic Touch Decoding

Yuyao Lu, Depeng Kong, Geng Yang,* Ruohan Wang, Gaoyang Pang, Huayu Luo,
Huayong Yang, and Kaichen Xu*

Skin-like flexible sensors play vital roles in healthcare and human–machine
interactions. However, general goals focus on pursuing intrinsic static and
dynamic performance of skin-like sensors themselves accompanied with
diverse trial-and-error attempts. Such a forward strategy almost isolates the
design of sensors from resulting applications. Here, a machine learning
(ML)-guided design of flexible tactile sensor system is reported, enabling a
high classification accuracy (≈99.58%) of tactile perception in six dynamic
touch modalities. Different from the intuition-driven sensor design, such
ML-guided performance optimization is realized by introducing a support
vector machine-based ML algorithm along with specific statistical criteria for
fabrication parameters selection to excavate features deeply concealed in raw
sensing data. This inverse design merges the statistical learning criteria into
the design phase of sensing hardware, bridging the gap between the device
structures and algorithms. Using the optimized tactile sensor, the high-quality
recognizable signals in handwriting applications are obtained. Besides, with
the additional data processing, a robot hand assembled with the sensor is
able to complete real-time touch-decoding of an 11-digit braille phone number
with high accuracy.

1. Introduction

To mimic the somatosensory systems of human beings, a vari-
ety of skin-like sensors have been developed to track abundant
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stimuli, such as touch,[1] pressure,[2]

vibration,[3] temperature,[4,5] and humi-
dity.[6] In particular, tactile perceptions
that imitate mechanoreceptors play cru-
cial roles in shaping interactions with
complex surroundings.[7–11] This enables
their wide applications in healthcare
measurement, intelligent robots, human–
machine–environment interfaces as well
as augmented/virtual reality.[12–14] In these
applications, to enhance the reliability of
signal recognition, machine learning (ML)
algorithms are emerging as effective means
to reveal correlations and subtle differences
among multichannel datasets.[15–17] For ex-
ample, speech-related or triboelectric-based
signals share pretty similar information,
which has been coupled with machine
learning algorithms, such as support vector
machine (SVM), convolutional neural net-
work (CNN), and rapid situation learning
(RSL) to boost data identification.[18–21]

This strategy has been applied to recognize
speech, characterize gait, as well as control
gestures.

To achieve a desirable sensor, general goals target at acquir-
ing the high-performance properties, such as superior sensitiv-
ity, wide working range, excellent repeatability, etc.[22] This is typ-
ically accompanied with diverse trial-and-error attempts based
on intuition or quasi-random fabrication parameters.[23] Spe-
cific applications are then performed using the optimal device
with the decent computational analysis of data output. How-
ever, such a forward strategy almost isolates the design of sen-
sors and resulting applications, which may cause increasing data
burden, weaken the personalized signal features, and reduce
the efficiency of computational analysis. In contrast, inverse de-
sign involves the statistical learning methodologies in the design
phase of sensing hardware, which challenges the intuition-driven
sensor.[24–25] Such a data-driven design approach links the train-
ing data with the target sensing information, which bridges the
gap between the hardware (device structures) and software (algo-
rithms).

In this work, a co-designed flexible sensor system realized by
an ML-reinforced design strategy is proposed to optimize the
output signals of laser-induced graphene (LIG)-based tactile sen-
sors via signal quality enhancement under various evaluation cri-
teria. Owing to the task-oriented requirement in dynamic fric-
tion interactions between the sensor and measured objects, the
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Figure 1. Schematic of the machine learning-assisted sensor design via fabrication parameters optimization.

discrimination of signals induced by six representative dynamic
touch modalities is considered as a generalized evaluation crite-
rion during the sensor design optimization. These criteria, based
on SVM and several statistical standards, are applied to intel-
ligibly disclose the quality of signals, enabling a high classifi-
cation accuracy (≈99.58%) of tactile perception in six dynamic
touch modalities. This co-designed system is able to realize visual
discrimination in handwriting signals and recognition of braille
numbers.

2. Results and Discussion

In the proposed ML-assisted sensor design, a set of parameters
related to triboelectric nanogenerator (TENG)-based tactile sens-
ing performance under contact-sliding mode is selected as the
initial optimization targets, including types of the readout sig-
nals (e.g., current and voltage), distribution of electrodes, shapes,
and density of microstructures (Figure 1). Six dynamic touch
modalities are performed on the sensor by the finger skin, in-
cluding press, pat, up, down, left, and right sliding. These multi-
directional interactions are selected for targeted tasks to evalu-
ate each fabrication parameter. The signal qualities are evaluated
by an SVM-based ML algorithm and several statistical criteria to
screen the optimal value for each fabrication parameter. The eval-
uation and optimization process are repeated until all targets are
optimized, giving rise to a group of desirable parameters for sen-
sor fabrication and data acquisition. Different from the general

intuition-driven sensor design, this work provides a data-driven
approach to optimizing fabrication parameters for the targeted
applications, which closely connects the device design and algo-
rithms.

Figure 2a illustrates fabrication processes of a flexible TENG-
based tactile sensor. First, the interdigital electrodes were fab-
ricated via a digital infrared (IR) laser direct writing technique.
By virtue of the laser-induced thermal effect, LIG patterns could
be obtained by laser carbonization of a polyimide (PI) film. The
LIG method features rapid patterning without precursors as well
as active materials’ transfer to soft elastomers.[26–33] Then, the
LIG/PI film was spin-coated with polydimethylsiloxane (PDMS).
After the PDMS solution infiltrates into the porous LIG, a heat-
curing process was performed, followed by peeling off the PI
to achieve a thin LIG/PDMS film. To introduce additional elec-
tronegative groups as well as remove the surface impurities, oxy-
gen plasma treatment of LIG/PDMS was conducted. The next
crucial process was the alignment of Fluorinated ethylene propy-
lene (FEP) on LIG/PDMS, which aims to enhance the triboelec-
tric effect during contact-sliding processes. Finally, the device was
encapsulated by a layer of PDMS. During the co-designed pro-
cess, the grid-like and fingerprint-like microstructures were cre-
ated on the top layer of encapsulation PDMS by laser texturing.

To validate the properties of LIG before and after trans-
fer, the surface morphology and Raman spectra of LIG/PI and
LIG/PDMS were characterized, respectively. During the laser en-
graving process, the rapid release of gas leads to the high porosity
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Figure 2. Characterizations of the TENG-based tactile sensor. a) Fabrication procedures of the sensor. SEM of b) porous LIG and c) PDMS-embedded
LIG. d) Raman results of LIG on PI and LIG on PDMS after transfer. e) Explosive view of the device. f) Working mechanism of the sensor. The triboelectric
current of TENG under stimuli of g) different contact forces, h) frequencies and i) contact areas. j) The triboelectric current induced by various contact
materials including tissue paper, carbon cloth, nitrile, copper, skin, and FEP. k) The wear-resisting property of the proposed triboelectric sensor under
over 60 000 cycles of friction.

of structures (Figure 2b). After the transfer of LIG onto PDMS,
the porous structures are well preserved (Figure 2c). Further-
more, the LIG presented similar Raman peaks (i.e., D, G, and
2D peaks) to graphene at 1349, 1589, and 2711 cm−1, respectively
(Figure 2d). However, the LIG/PDMS is observed with relatively
weak intensity of D and G peaks, probably caused by the mechan-
ical delamination to introduce additional defects.[34]

As illustrated in the fabrication steps, the TENG-based tac-
tile sensor is composed of four layers including top and bot-
tom PDMS encapsulations, interdigital LIG electrodes and a FEP
film (Figure 2e). When the finger touches the surface of PDMS,
human skin is positively charged due to their different electron
affinities. Based on the principle of electrostatic induction, the
horizontal sliding of charged finger creates electron transfer with
induced current between the two LIG electrodes (Figure 2f). In

such a case, the interdigital design of LIG electrodes allows for
a gradient electron transfer that the induced current alternates
negatively and positively to balance the potential difference be-
tween the two electrodes. This mechanism effectively incorpo-
rates information related to dynamic touch modalities into the
raw data. Notably, two conductive electrodes are applied for the
free-standing TENG rather than utilize the grounding method.
Therefore, the accumulated charges of a moving object can be
transported between the cross-distributed interdigital electrodes
for facile measurements.

To characterize the performance of this tactile sensor, open-
circuit voltage, and short-circuit current were recorded as func-
tions of contact forces, frequencies, areas, and materials. For con-
tact forces, both open-circuit voltage and short-circuit current of
TENG are observed with gradient increases as the force increases
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from 0.3 N to 20 N (Figure 2g; Figure S1a,b, Supporting Informa-
tion). With the increase of contact frequencies, the short-circuit
current presents a positive correlation while the open-circuit volt-
age negligibly changes (Figure S1c, Supporting Information).
This proves that the output voltage of proposed TENG is indepen-
dent of frequency. A minor degradation of short-circuit current is
captured at the frequency of 8 Hz probably due to the saturation
of ionized charges (Figure 2h).

To enhance the performance of tactile sensor, the effect of con-
tact area and dielectric properties of contact materials were inves-
tigated. Notably, both open-circuit voltage and short-circuit cur-
rent evidently increase with contact area from 1–4 cm2 (Figure 2i;
Figure S1d, Supporting Information). In addition, contact mate-
rials with high permittivity and triboelectric effect, such as cop-
per, human skin, and FEP film, generate short-circuit current
with nearly three times higher (> 350 nA) than tissue paper
(<50 nA), illustrating a more remarkable signal-to-noise ratio
(Figure 2j). Since the tactile sensor was designed for feature sig-
nal extraction in a touch-sliding process, a high signal-to-noise ra-
tio plays a significant role in the data analysis. Based on the sens-
ing principle, the small interferences (<7.5%) caused by both
high moisture (>90% RH) and temperature variations (25–60 °C)
on the output amplitude of this tactile sensor is almost negligible
(Figure S2, Supporting Information). In this case, an FEP film
was chosen as the middle layer material between the interdigi-
tal LIG electrodes and PDMS to further enlarge the contact sig-
nals. To validate the durability of this device, over 60 000 times of
repeated slaps were conducted. The negligible change in perfor-
mance reflects the stability and signal repeatability of TENG as a
tactile sensor (Figure 2k).

The design of TENG-based flexible tactile sensor reinforced
by ML involves several fabrication parameters, especially the
arrangement of electrodes, shape, and density of surface mi-
crostructures (Figure 3a). Signal qualities were assessed to quan-
tify the effects of these parameters. It should be noted that criteria
to evaluate signal quality should be as plain and general as pos-
sible for disclosing the properties of signals, as a sophisticated
one may muffle them. This often happens along with an over-
fitting problem, where a strong criterion, such as neural network,
reports high scores regardless of the signals’ quality. Thus, this
study proposed two easily implemented criteria, i.e., the average
classification accuracy by a set of SVMs and the separability of
signals in a dimensionality-reduced space, to select a group of
optimal fabrication parameters. Given a set of categorized data,
N SVM classifiers were implemented in parallel to classify them,
during which an average classification accuracy 1

N

∑N
k = 1 Acck was

obtained as the first criterion (Figure 3b). Next, the t-distributed
stochastic neighbor embedding (t-SNE) algorithm was employed
to reduce the dimensionality of raw signals into a 2D space (range
of its two dimensions were projected into [0, 1]), where the sep-
arability of signals was evaluated as diagrammed in Figure 3c.
Specifically, the clustering center of each category was computed
as the mean value of involved data, followed by the computation
of Euclidean distance between each pair of centers as the next
criterion (e.g., eij indicates the Euclidean distance between clus-
tering center i and j). In addition, the dispersion of each cluster
was approximated by the standard deviation 𝜎i. The three indica-
tors reflected the properties of collected signals, giving rise to the
total criterion as:

score = 1
N

N∑

k = 1

Acck +
C∑

i = 1

C∑

j = 1

eij +
C∑

i = 1

−log
(
𝜎i

)
(1)

where N is the number of SVM classifiers, C is the number of
clustering centers. It should be noted that we performed a nor-
malization technique on three indicators to project them into the
range [0, 1], in order to eliminate the effect of dimensions. Addi-
tionally, since smaller deviation was expected for signals of higher
repeatability, 𝜎i was modified as its negative logarithm form −
log𝜎i. By maximizing the criterion score in Equation (1), the fab-
rication parameters can be optimized.

In order to generate the categorized data to support the pro-
posed criteria, six dynamic touch modalities were performed on
the tactile sensor to produce datasets for the optimization of fab-
rication parameters. The interdigital LIG electrodes can generate
alternating signals based on the working mechanism of TENG.
These signals exhibit distinct temporal features dominated by dif-
ferent sliding directions. Therefore, the six touch modalities are
determined as press, pat, up, down, left, and right sliding. In the
process of data collection, a semi-automatic annotation strategy
is proposed to segment and annotate the collected data as illus-
trated in Figure S3 (Supporting Information) and summarized in
Algorithm S1 (Supporting Information), where an anchor sam-
ple is applied to search for the alternative data samples.

As the induced current and voltage are highly associated with
the sensing performance of TENG-based tactile sensor, both
types of signal output are compared. First, the repeatability of
signals is examined as shown in Figure S4a,b (Supporting Infor-
mation), where voltage signals exhibit better repeatability with
smaller deviations from the average signal (black dotted line in
each subplot) while current signals are distributed irregularly
and far from the cluster center. Further analysis in the two-
dimensional space (Figure S4c,d, Supporting Information) re-
veals that the voltage signals are better clustered with clearer
boundaries among different touch modalities compared to the
current signals. Besides, ten linear SVM classifiers were imple-
mented to classify these data, resulting in an average accuracy
of 94.278% and 95.579% for voltage and current signals, respec-
tively. The separability and dispersion are then calculated using
the criteria defined in the previous section, resulting in [3.636,
11.877] and [3.528, 11.267] for voltage and current signals, re-
spectively. To eliminate the influence of different dimensions, we
normalized the results by transforming [94.278%, 3.636, 11.877]
and [95.579%, 3.528, 11.267] into [0, 1, 1] and, [1, 0, 0] respectively.
This indicates that voltage signals receive a total criterion score
of two, while current signals receive one. Therefore, voltage-type
signals are a better choice as the sensor’s output in the proposed
design.

Second, the distribution density of electrodes in the proposed
design can affect the complexity of signals, which can be reflected
by subtle peaks. To figure out the impact of electrode density
on classification results, the tactile performance with sparse and
dense distribution of electrodes is investigated. Clustering results
in Figure S5 (Supporting Information) reveal that data from ar-
rangements with sparse electrode pairs were more distinguish-
able among different classes. Scores for the sparse and dense ar-
rangements are calculated, resulting in [96.975%, 3.695, 14.759]
and [95.958%, 3.528, 11.542], respectively. This illustrates that a
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Figure 3. Optimization of fabrication parameters assisted by machine learning methods. a) Different shapes and sizes of microstructures on the top
layer of PDMS surface. Scale bars: 100 μm. b) Calculation of the average classification accuracy by SVM classifiers. c) Calculation of the separability
and dispersion of data after the dimensionality reduction. d) Schematic of six dynamic touch modalities. Dimensionality reduction results of the data
collected from sensors with e) fingerprint-like and f) grid-like microstructures, respectively. Dimensionality reduction results of the data collected from
sensors with microstructures of different sizes at g) 300, h) 200, and i) 100 μm, respectively. j) Output of the parameter-optimized sensor to six touch
modalities.

denser arrangement of electrodes allows more sensitive subtle
peaks in the signals, but it also generates more superimposed
peaks, leading to the difficulty in signal recognition by an ML al-
gorithm. After normalization, the scores were [1, 1, 1] and [0, 0, 0],
resulting in total criterion scores of three and zero, respectively.
Therefore, the sparse arrangement of electrode pairs is selected
in the proposed design.

After evaluating the types of output signals and the density
of electrodes, the output comparison of surface microstructures
with different shapes and intervals textured by laser is further in-
vestigated. Similar to the natural grooves on finger skin, rugged
microstructures on top layer of PDMS are designed to reduce the
disturbance of viscous effect on signal quality, resulting in the
further enhancement of data discrimination. To validate it, two
microstructures commonly applied on tactile sensors were stud-

ied, including fingerprint-like and grid-like shapes with different
groove intervals (Figure 3a). Via comparing the voltage output of
six touch modalities, Figure S6 (Supporting Information) illus-
trates that data from the fingerprint-like structure show a concen-
trated distribution around the average values, while data from the
grid-like structure exhibit more instability. Besides, the results of
dimensionality reduction shown in Figure 3e,f indicate that the
data of the fingerprint-like structure present a stronger separabil-
ity with a much more concentrated distribution within classes,
compared to that of the grid-like structure. The calculated scores
based on the proposed criteria for the fingerprint-like and grid-
like structures are [96.50%, 4.227, 14.958] and [95.056%, 3.725,
11.783], respectively. After normalization, the scores are trans-
formed into [1, 1, 1] and [0, 0, 0], respectively, indicating that the
fingerprint-like structure is more appropriate for the sensor.
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Table 1. Summarization of the comparison results during the optimization
process.

Fabrication parameters Accuracy Separability Dispersion

Output signal Voltage 94.278% 3.636 11.877

Current 95.579% 3.528 11.267

Electrode arrangement Sparse 96.975% 3.695 14.759

Dense 95.958% 3.528 11.542

Microstructure shape Fingerprint-like 96.500% 4.227 14.958

Grid-like 95.056% 3.725 11.783

Microstructure density 100 μm 98.033% 4.044 12.535

200 μm 93.533% 3.581 12.670

300 μm 94.558% 3.561 11.283

Furthermore, the performance of fingerprint-like microstruc-
ture is found to be affected by the interval between adjacent
grooves (Figure S7a, Supporting Information). During the co-
design process, two sensors are first fabricated with groove in-
tervals of 200 and 300 μm, respectively and the data correspond-
ing to six touch modalities are collected. The proposed criteria
are used to calculate their scores, resulting in [93.533%, 3.581,
12.670] and [94.558%, 3.561, 11.283] for 200 and 300 μm, respec-
tively (Figure S7b,c, Supporting Information). Similar results are
observed in Figure 3g,h. It suggests that a smaller interval be-
tween grooves leads to the better performance of sensor. There-
fore, a fingerprint-like pattern with a groove interval of 100 μm
is produced on the sensor’s surface, which almost reaches the

processing limit of this IR laser system. Compared to sensors
with the larger intervals of 200 and 300 μm, the sensor with a
fingerprint-like interval of 100 μm exhibits better repeatability,
contributing to a more concentrated clustering within classes
(Figure 3i; Figure S7d, Supporting Information). The clearer
boundaries among different classes also indicate higher separa-
bility of its raw data. This sensor achieves scores of [98.033%,
4.044, 12.535]. After normalization, scores of [1, 0.902, 1], [0.042,
1, 0], and [0, 0, 0.228] are obtained for groove intervals of 100, 200,
and 300 μm, respectively. As a result, the total scores are calcu-
lated as 2.902, 1.042, and 0.228, indicating that a groove interval
of 100 μm is the optimal selection.

In summary, to enhance the performance of TENG-based
tactile sensor, a set of evaluation criteria is developed and ap-
plied to select the desired type of output signals and opti-
mize the fabrication parameters. Comparison results are sum-
marized in Table 1. After evaluation, voltage-based signals are
selected as the sensor output. Meanwhile, sparsely distributed
electrode pairs and fingerprint-like microstructures with the
smaller interval contribute to the enhancement of sensor per-
formance. Figure 3j exhibits the output of sensor with the opti-
mized parameters on six touch modalities, enabling a remark-
able classification accuracy of 99.58% by a tuned linear SVM
classifier.

Benefiting from the high recognition accuracy of tactile sen-
sor optimized by machine learning, the recognizable signal dif-
ferences of finger sliding at four different directions on the de-
vice surface are observed (Figure 4a,b). A critical feature of free-
standing TENG is that the proximity of an arbitrarily charged

Figure 4. Optimized tactile sensing performance in handwriting applications. The outputs in the form of a) open circuit voltage and b) short circuit
current of the tactile sensor by sliding a finger at four directions. Insets are the enlarged peaks extracted from the original results in corresponding
contact directions. c) Schematic of handwriting demonstration by attaching the device on fingers. d–h) Handwriting results of different English words
and sentences based on the proposed tactile sensor.

Adv. Sci. 2023, 10, 2303949 © 2023 The Authors. Advanced Science published by Wiley-VCH GmbH2303949 (6 of 9)



www.advancedsciencenews.com www.advancedscience.com

Figure 5. Dynamic decoding feedback of muiti-point contact by assembling a tactile sensor on a robotic finger. a) Concept illustration of a recognition
feedback system simulating finger perception. b) Close-loop flow chart of a robotic sensing system that mimics human skin perception. c) Schematic
of braille numbers from 0 to 9. d) Real-time signals of ten braille numbers processed by a high-pass filter. e) Dimensionality-reduced clustering results
of ten braille numbers. f) A 1D CNN model with 128 filters used for data classification. g) Classification results of ten braille numbers after 320 cycles
of data acquisition. h,i) Real-time data acquisition process of an 11-digit braille phone number realized by a smart robotic finger. j) Real-time signal
feedback and display of recognition results of the braille phone number on a graphical user interface.

object can easily cause a significant increase in open circuit volt-
age, while a continuous, weak variation of subtle signals is in-
duced by the sliding process. Notably, these hidden peaks dis-
played in insets represent the dynamic friction process. Based
on the aforementioned ML-assisted selection of the readout sig-
nals, the open-circuit voltage achieves higher scores for the sep-
arability and dispersion of data than that of short-circuit current.
Thus, the handwriting of different letters is identified under volt-
age measurement to realize character recognition (Figure 4c).
Figure 4d–h present the real-time recognition of English words
and sentences using the sensor. For different words and sen-
tences, it is easy to distinguish them by observing the signal fea-
tures. However, for the same word in uppercase and lowercase,
like “ZJU” and “zju”, it is a bit difficult to recognize them only re-
lying on the voltage signals. Thus, to further optimize the capabil-
ity of signal recognition, additional ML algorithms are required
for computational analysis.

To mimic the superior tactile behavior of human skin, the pro-
posed tactile sensor is integrated onto a robot finger for braille
recognition (Figure 5a). With the addition of ML algorithms, the
robot-sensor system works at a closed loop of sensing, extracting,
computing, and decoding information (Figure 5b). Compared to
the handwriting applications, braille recognition is more chal-

lenging due to the recognition mode shifts from a single-point
contact to a multi-point contact in a dynamic process. Initially,
touch signals of ten braille numbers are collected via the robot
hand (Figure 5c). Through preprocessing by a high-pass filter,
the subtle signals induced by sliding process are extracted. In the
process of data acquisition, great shape similarity in these braille
numbers leads to the recognition difficulty of corresponding sig-
nals via visual discrimination (Figure 5d). This is also illustrated
by the overlaps among clusters in the dimensionality-reduced re-
sults (Figure 5e). Thus, a one-dimensional CNN model is utilized
to automatically perform feature learning and classification after
data acquisition (≈320 times per number) (Figure 5f). Attributed
to the powerful non-linear fitting capability of CNN, an average
classification accuracy of 96.12% is achieved (Figure 5g). As can
be seen, most of the braille numbers achieve a classification ac-
curacy over 95% (i.e., digit 1, 2, 4, 5, 6, 7, 9), while the lower ac-
curacies are observed in the digit 0, 3, 8. This tiny performance
difference probably results from the force control accuracy and
repetition accuracy of the manipulator during data acquisition.
Such phenomena may also affect the accuracy of online recog-
nization of braille numbers, resulting in a classification accuracy
of 93.33% in online decoding process (Video S1, Supporting In-
formation).
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An additional experiment was performed to evaluate the sen-
sor’s recognition accuracy before the removal and after reinstalla-
tion. The data collected before the detachment were synthesized
as datasets Strain and S1

test, which were used to train and subse-
quently test the classifier, respectively. Another dataset denoted as
S2

test was collected after the sensor’s detachment and reinstallation
to evaluate the system comprising the tactile sensor and the pre-
trained classifier. As shown in Figure S8 (Supporting informa-
tion), data collected from different Braille numbers are separate
distinguishably while data of the same number are clustered to-
gether. This implies that the wearing variability does not change
the sensor’s capability of distinguishing different textures. Be-
sides, a training accuracy of 99.25% for Strain, a test accuracy of
96% for S1

test, and a test accuracy of 87.5% for S2
test were achieved,

respectively. Notably, a decline in classification accuracy is ob-
served after the sensor’s detachment and reinstallation. This is
attributed to the alteration in data distribution, but this issue can
be effectively addressed via just collecting a small scale of new
data and fine-tuning the classifier.

To validate the feasibility for practical applications, this smart
robot hand equipped with the sensitive tactile sensor is applied
to decode 11-digit phone numbers in real time. After printing a
group of braille phone numbers, the robot hand is programmed
to continuously perceive each number and provide real-time sig-
nal feedback, together with the display of recognition results on a
graphical user interface (GUI) (Figure 5h,i). The GUI is designed
for the number output after identification and output visualiza-
tion (Figure 5j; Video S2, Supporting Information). With this ca-
pability, such the smart robotic hand is able to call emergency
contact for people with disabilities as well as affords high poten-
tials as prosthetics for rapid and accurate recognition just like
human hands.

3. Conclusion

In summary, we introduced a TENG-based flexible tactile sen-
sor that enables ML-assisted device design in output signal se-
lection and fabrication parameter optimization. After setting the
evaluation criteria, the parameter values of output signal, dis-
tribution density of electrodes as well as diverse surface carved
microstructures are compared and selected according to the sta-
tistical analyses of six contact modalities. Based on the compre-
hensive evaluation of fabrication parameters and machine learn-
ing co-designed tactile performance, the classification accuracy
of ≈99.58% is obtained, which is higher than that before param-
eter optimization (≈95.579%). Given the optimal tactile sensing
performance, the tactile sensor is successfully applied for hand-
writing recognition of various English letters and sentences. Fur-
thermore, via applying a customized CNN model to extract fea-
tures and estimate the decision boundaries, the classification
accuracy of ten braille numbers is achieved at 96.12%. To im-
itate human perceptual feedback, a smart robot hand assem-
bled with sensors accomplishes the task of dynamic identification
of an 11-digit braille phone number. This work provides guid-
ances to purposively construct the sensor based on an inverse
design strategy, which challenges the intuition-driven sensor
design.

4. Experimental Section
Materials: Polyimide (PI) films (50 μm) were purchased from Dupont

(USA). Fluorinated ethylene propylene (FEP) films were supplied by a com-
pany named Floroplastic Materials (China). Polydimethylsiloxane (PDMS)
precursors and curing agents were obtained from Dow corning (sylgard
184, USA).

Fabrication of LIG/PDMS-Based Tactile Sensor: The interdigital LIG
electrodes were fabricated by laser patterning (power: 7.24 J cm−2) on a PI
substrate utilizing an infrared (IR) laser system at a wavelength of 10.6 μm.
Then, the LIG/PI film was uniformly spin-coated with PDMS precursors
at a speed of 800 rpm min−1 for 2–3 times. After vacuum treatment and
solidification at 90 °C for 30 min, the LIG patterns could be well trans-
ferred onto the PDMS surface (thickness: ≈180 μm). Next, the surface of
LIG/PDMS was treated by oxygen plasma, followed by the alignment of a
FEP film. Finally, the tactile sensor was obtained by encapsulating PDMS
on the top of the FEP film.

Characterizations: Surface morphology of porous LIG was character-
ized by a scanning electron microscope (SEM) (Hitachi, SU3500, Japan).
A Raman spectrometer ((LabRAM Soleil, HORIBA, Japan) was applied
to analyze the Raman spectra of LIG/PI and LIG/PDMS. A linear motor
(DA60-B1-T60-C010-0.2, Dynamikwell Technology, China) was used to ap-
ply different stimuli for the characterization of triboelectric performance.
The open circuit voltage and short circuit current were collected by an elec-
trometer ((Keithley 6514, Tektronix, USA). For the data collection in two
applications, the open circuit voltage was obtained via a portable Arduino
board.

Data Collection: Data collection was involved in two cases, including
the ML-guided sensor design and recognition of braille numbers. For the
former, participants were instructed to perform six dynamic touch modal-
ities (100 times each). An electrometer was used to measure and record
the induced signals in the current/voltage form, followed by a band-pass
filter to reduce noise. As described in Figure S3 and Algorithm S1 (Sup-
porting Information), an anchor sample for each touch modality was first
selected, and a similarity matching algorithm was used to search for the
remaining samples, resulting in 600 samples per class as a dataset. This
process was repeated several times according to the iterations of fabrica-
tion parameter optimization. That is to say that an exclusive dataset was
collected for each parameter. Considering that it was the data quality to
be assessed, all the data in a dataset were used to train the SVM classi-
fiers to obtain the average training accuracy without dividing them into
training/test subsets.

In the braille recognition application, a robot arm (UR5, Universal
Robots) equipped with the sensor was used to collect data. Each braille
number (0–9) was captured by a portable board (Arduino Uno) based
on a sliding-touch process for 320 times, corresponding to 320 samples.
Given that signals induced by braille bulges were expressed by small picks,
a high-pass filter was used to eliminate the effects caused by proximity.
The same similarity-matching algorithm was used to extract data samples
to compose a dataset, with 280 samples for training and 40 for testing.
To evaluate the effect of wearing variability, data were collected following
the same setup and procedure. As a result, 400 samples (40 samples per
Braille) were gathered as training data (denoted as dataset Strain) and 200
samples (20 samples per Braille) as test data (denoted as dataset S1

test).
Subsequently, the sensor was detached from the robotic finger and rein-
stalled, and new data were gathered, giving rise to 200 samples (20 sam-
ples per Braille) as new test data (denoted as dataset S2

test).
ML Models: The SVM classifiers employed in the pre-defined criteria

were implemented in Python with a scikit-learn package. A total of ten clas-
sifiers were constructed, with a regularization parameter ranging from 0.1
to 1.0. A one-dimensional CNN model was developed in Python under the
PyTorch framework. The CNN consisted of five convolution layers followed
by batch normalization and rectified linear unit (ReLU) activation function
each. The features encoded by the CNN were downsampled by an adaptive
average pooling layer to a constant length before being fed into a multi-
layer perceptron classifier, which allowed for various-length inputs. This
model was trained using the adaptive moment estimation (Adam) opti-
mizer for 100 epochs with a learning rate of 0.001 and a batch size of 128.
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It was subsequently used for inference on the test set and real-time appli-
cations.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.

Acknowledgements
This research was supported by the National Natural Science Foundation
of China (Grant No. 52105593 and 51975513), STI 2030—Major Projects
(2022ZD0208601), the Major Research Plan of National Natural Science
Foundation of China (Grant No. 51890884), and the “Pioneer” and “Lead-
ing Goose” R&D Program of Zhejiang (2023C01051, 2023C03007).

Conflict of Interest
The authors declare no conflict of interest.

Author Contributions
Y.L. and D.K. contributed equally to this work. Y.L., D.K., G.Y., and K.X. con-
ceived the idea and designed the research. G.Y., G.P., H.L., and K.X. pro-
vided suggestions on device design and applications. Y.L. carried out the
device fabrication, characterizations, and demonstrations. D.K. performed
the data acquisition and analysis. R.W. carried out the manipulation of
robotic arm in applications. Y.L., D.K., and K.X. wrote the manuscript. All
the authors discussed the results and commented on the manuscript.

Data Availability Statement
The data that support the findings of this study are available from the cor-
responding author upon reasonable request.

Keywords
human–machine interactions, laser-induced graphene, machine learning,
tactile sensor, touch decoding

Received: June 15, 2023
Revised: August 15, 2023

Published online: September 22, 2023

[1] S. Chen, Y. Wang, L. Yang, F. Karouta, K. Sun, Nano-Micro Lett. 2020,
12, 136.

[2] S. Tkachev, M. Monteiro, J. Santos, E. Placidi, M. B. Hassine, P.
Marques, P. Ferreira, P. Alpuim, A. Capasso, Adv. Funct. Mater. 2021,
31, 2103287.

[3] H. Luo, Y. Lu, Y. Xu, G. Yang, S. Cui, D. Han, Q. Zhou, X. Ouyang, H.
Yang, T. Cheng, K. Xu, Nano Energy 2022, 103, 107803.

[4] J. Shin, B. Jeong, J. Kim, V. B. Nam, Y. Yoon, J. Jung, S. Hong, H. Lee,
H. Eom, J. Yeo, J. Choi, D. Lee, S. H. Ko, Adv. Mater. 2019, 32, 1905527.

[5] K. Xu, Y. Lu, T. Yamaguchi, T. Arie, S. Akita, K. Takei, ACS Nano 2019,
13, 14348.

[6] S. Cui, Y. Lu, D. Kong, H. Luo, L. Peng, G. Yang, H. Yang, K. Xu, Opto-
Electron. Adv. 2023, 6, 220172.

[7] J. Oh, S. Kim, S. Lee, S. Jeong, S. H. Ko, J. Bae, Adv. Funct. Mater.
2021, 31, 2007772.

[8] J. Lee, D. Kim, H. Sul, S. H. Ko, Adv. Funct. Mater. 2020, 31, 2007376.
[9] K. Tao, Z. Chen, J. Yu, H. Zeng, J. Wu, Z. Wu, Q. Jia, P. Li, Y. Fu, H.

Chang, W. Yuan, Adv. Sci. 2022, 9, 2104168.
[10] J. Zhao, T. Bu, X. Zhang, Y. Pang, W. Li, Z. Zhang, G. Liu, Z. L. Wang,

C. Zhang, Research 2020, 2020, 1398903.
[11] C. Zhang, W. Zhou, D. Geng, C. Bai, W. Li, S. Chen, T. Luo, L. Qin, Y.

Xie, Opto-Electron. Adv. 2021, 4, 20006101.
[12] S. Pyo, J. Lee, K. Bae, S. Sim, J. Kim, Adv. Mater. 2021, 33, 2005902.
[13] L. Zhang, J. Pan, Z. Zhang, H. Wu, N. Yao, D. Cai, Y. Xu, J. Zhang, G.

Sun, L. Wang, W. Geng, W. Jin, W. Fang, D. Di, L. Tong, Opto-Electron.
Adv. 2020, 3, 19002201.

[14] M. Wang, H. Zhang, H. Wu, S. Ma, L. Ren, Y. Liang, C. Liu, Z. Han,
Bio-Des. Manuf. 2023, 6, 243.

[15] K. Xu, Y. Lu, K. Takei, Adv. Funct. Mater. 2021, 31, 2007436.
[16] M. Wang, T. Wang, Y. Luo, K. He, L. Pan, Z. Li, Z. Cui, Z. Liu, J. Tu, X.

Chen, Adv. Funct. Mater. 2021, 31, 2008807.
[17] Y. Luo, Y. Li, P. Sharma, W. Shou, K. Wu, M. Foshey, B. Li, T. Palacios,

A. Torralba, W. Matusik, Nat. Electron. 2021, 4, 193.
[18] F. Wen, Z. Sun, T. He, Q. Shi, M. Zhu, Z. Zhang, L. Li, T. Zhang, C.

Lee, Adv. Sci. 2020, 7, 2000261.
[19] M. Wang, Z. Yan, T. Wang, P. Cai, S. Gao, Y. Zeng, C. Wan, H. Wang,

L. Pan, J. Yu, S. Pan, K. He, J. Lu, X. Chen, Nat. Electron. 2020, 3, 563.
[20] A. Moin, A. Zhou, A. Rahimi, A. Menon, S. Benatti, G. Alexandrov, S.

Tamakloe, J. Ting, N. Yamamoto, Y. Khan, F. Burghardt, L. Benini, A.
C. Arias, J. M. Rabaey, Nat. Electron. 2021, 4, 54.

[21] J. Xie, Y. Zhao, D. Zhu, J. Yan, J. Li, M. Qiao, G. He, S. Deng, ACS Appl.
Mater. Interfaces 2023, 15, 12551.

[22] Z. Wang, Z. Sun, H. Yin, X. Liu, J. Wang, H. Zhao, C. H. Pang, T. Wu,
S. Li, Z. Yin, X. F. Yu, Adv. Mater. 2022, 34, 2104113.

[23] Z. Ballard, C. Brown, A. M. Madni, A. Ozcan, Nat Mach Intell 2021,
3, 556.

[24] H. Yang, J. Li, K. Z. Lim, C. Pan, T. Van Truong, Q. Wang, K. Li, S. Li,
X. Xiao, M. Ding, T. Chen, X. Liu, Q. Xie, P. V. y. Alvarado, X. Wang,
P.-Y. Chen, Nat Mach Intell 2022, 4, 84.

[25] M. Zhang, J. Li, L. Kang, N. Zhang, C. Huang, Y. He, M. Hu, X. Zhou,
J. Zhang, Nanoscale 2020, 12, 3988.

[26] S. Zhang, A. Chhetry, M. A. Zahed, S. Sharma, C. Park, S. Yoon, J. Y.
Park, Npj Flex Electron 2022, 6, 11.

[27] H. Wang, Z. Xiang, P. Zhao, J. Wan, L. Miao, H. Guo, C. Xu, W. Zhao,
M. Han, H. Zhang, ACS Nano 2022, 16, 14679.

[28] K. Xu, Y. Fujita, Y. Lu, S. Honda, M. Shiomi, T. Arie, S. Akita, K. Takei,
Adv. Mater. 2021, 33, 2008701.

[29] Y. Lu, K. Xu, L. Zhang, M. Deguchi, H. Shishido, T. Arie, R. Pan, A.
Hayashi, L. Shen, S. Akita, K. Takei, ACS Nano 2020, 14, 10966.

[30] Y. Lu, Y. Fujita, S. Honda, S.-H. Yang, Y. Xuan, K. Xu, T. Arie, S. Akita,
K. Takei, Adv. Healthcare Mater. 2021, 10, 2100103.

[31] L. Yang, J. Yan, C. Meng, A. Dutta, X. Chen, Y. Xue, G. Niu, Y. Wang,
S. Du, P. Zhou, C. Zhang, S. Guo, H. Cheng, Adv. Mater. 2023, 35,
2210322.

[32] M. Wang, Y. Yang, J. Min, Y. Song, J. Tu, D. Mukasa, C. Ye, C. Xu, N.
Heflin, J. S. McCune, T. K. Hsiai, Z. Li, W. Gao, Nat. Biomed. Eng.
2022, 6, 1225.

[33] Y. Jung, J. Min, J. Choi, J. Bang, S. Jeong, K. R. Pyun, J. Ahn, Y. Cho, S.
Hong, S. Hong, J. Lee, S. H. Ko, Appl. Mater. Today 2022, 29, 101589.

[34] S. Wakabayashi, T. Arie, S. Akita, K. Nakajima, K. Takei, Adv. Mater.
2022, 34, 2201663.

Adv. Sci. 2023, 10, 2303949 © 2023 The Authors. Advanced Science published by Wiley-VCH GmbH2303949 (9 of 9)


