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Advances in wearable sensing and mobile computing have
enabled the collection of health and well-being data outside
of traditional laboratory and hospital settings, paving the
way for a new era of mobile health. Meanwhile, artificial
intelligence (AI) has made significant strides in various
domains, demonstrating its potential to revolutionize
healthcare. Devices can now diagnose diseases, predict heart
irregularities and unlock the full potential of human cognition.
However, the application of machine learning (ML) to mobile
health sensing poses unique challenges due to noisy sensor
measurements, high-dimensional data, sparse and irregular
time series, heterogeneity in data, privacy concerns and
resource constraints. Despite the recognition of the value of
mobile sensing, leveraging these datasets has lagged behind
other areas of ML. Furthermore, obtaining quality annotations
and ground truth for such data is often expensive or
impractical. While recent large-scale longitudinal studies have
shown promise in leveraging wearable sensor data for health
monitoring and prediction, they also introduce new challenges
for data modelling. This paper explores the challenges and
opportunities of human-centred AI for mobile health, focusing
on key sensing modalities such as audio, location and activity
tracking. We discuss the limitations of current approaches and
propose potential solutions.
1. Introduction
Advances in the ways to collect and process health monitoring
data can transform our society from multiple dimensions such
as better access to preventive healthcare, low-cost diagnosis and
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long-term monitoring. An overwhelming majority of today’s medical services collect such data in

laboratory settings. While an average person visits a doctor only around 5 times a year [1] these
measurements provide sparse snapshots of one’s health. On the other hand, recent advances in
wearable sensing and mobile computing, along with their wide adoption, have created new pathways
for the collection of health and well-being data outside of laboratory and hospital settings, in a
longitudinal fashion. Apart from filling the gaps of traditional clinical data, these devices open up new
research and commercial directions for large-scale lifestyle monitoring. For example, millions of people
worldwide use personal devices to track their physical activity and sleep, with increasingly more
sophisticated predictive capabilities [2]. The penetration of mobile devices has introduced scale: many
more individuals can now be reached and assessed. For example, in a hospital environment, mobile
experience sampling enabled the collection of 11 381 survey responses over a 12-month period from 304
physicians and nurses, completed with minimal initial training [3]. Mobile sensors enable researchers to
collect not only the explicit reports of the participants, but also the context in which these answers were
provided. Indeed, a survey of 110 experience-sampling papers concluded that a total of 70 studies
(63.6%) passively or actively collected sensor data from the participants’ study device [4].

At the same time, artificial intelligence (AI) has taken a huge step forward across domains ranging
from object recognition in images [5], to winning against the best players in the games of Go, Atari
and chess [6], or outperforming experts in breast cancer screening [7]. The widespread popularity and
dramatic improvements in predictive modelling came from mature open-source scientific software
libraries, easier data crowdsourcing and labelling, and the re-purposing of specialized hardware like
graphics cards. In this article, we discuss how the adaptation of machine learning (ML)1 to mobile
sensing-based human health applications is moving towards a new era of mobile health.

Sensors in wearable and mobile devices such as accelerometers, electrocardiograms (ECGs), global
positioning systems (GPSs), gyroscopes and microphones monitor our location, sleep, steps, eating
and working habits in the real world. Their continuous tracking produces huge datasets with the
potential to create a holistic understanding of the most important components of our everyday health
[8]. Results from a variety of fields, for example, physical activity [9], disease diagnosis [10] and
mental health disorders [11], have consistently shown solid evidence that mobile health can be
potentially employed for human health monitoring in the future.

Although the value of mobile sensing2 has been recognized, it has not been kept up with other
application areas of machine learning. For instance, over the last decade devices such as Fitbit or the
iPhone have been collecting multi-modal sensor data at an unprecedented temporal resolution.
However, effectively leveraging these datasets presents many challenges. Some of the obstacles lie in
(i) the noisy measurements of the sensor data which are hard to model due to their correlation over
time or their nonlinear structure [13]; (ii) the high-dimensional raw data or engineered feature
representations that are difficult to handle using conventional AI algorithms [14]; (iii) sparse and
irregular-sampled time-series data; (iv) heterogeneity in different data types [15], etc. These all lead to
these data being frequently overlooked for scientific and medical research. Further, obtaining quality
annotations and ground truth is costly or even impossible at this granularity. The most established
research and clinical practice for annotation is still based on pen-and-paper self-reports and surveys
which are time-consuming and also incomplete and scarce [16].

While mobile health research data traditionally have a small number of participants and limited-sized
measurements, recently there have been several large longitudinal studies like the UK Biobank [17], the
Apple Study [18], the Fenland Study [19], Utsureko [20] and EmotionSense [21] with tens of thousands of
participants using wearable sensors. These large studies have started showing their potential too; for
example, an elevated resting heart rate (RHR) from over 200 000 Fitbit users was used to predict
influenza-like illness in the USA [22]. However, these large studies introduced new challenges for data
modelling. Statistical methods developed for small datasets often fail in these cases [23]. Additionally,
how to understand and effectively model the longitudinal data over time to achieve reliable
monitoring and forecasting of individuals’ health status is of great potential for more flexible and
convenient health delivery. Despite these successes witnessed in mobile health, there are also
1In this paper, we use the terms ML and AI interchangeably, with ML describing the development of algorithms and statistical models
such as feature engineering or unsupervised learning, and AI describing the systems or machines in general that perform tasks
requiring human intelligence.
2We define mobile sensing as data from connected sensors which are used to characterize behaviours related to health. Other terms used
in the literature are personal sensing, digital phenotyping and context sensing, with different albeit overlapping connotations. We point the
interested reader to the discussion in [12].
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Figure 1. Established use of sensors and emerging applications of mobile health. An illustration of established and emerging
applications that mobile sensing enables. For example, the same models that are used in speech recognition can be re-
purposed for voice-based biomarker discovery (e.g. through coughing). Likewise, GPS and motion sensors can be used for early
diagnosis of dementia or even all-cause mortality.
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inevitably a multitude of implications and limitations existing due to modelling, such as privacy
concerns, human-introduced biases, practical deployment in clinical practice, and improved usability
and user experience for human–computer interfaces.

This paper discusses the challenges and opportunities of human-centred AI for mobile health,
through case studies in some key mobile sensing modalities such as audio, location and activity
tracking, as shown in figure 1. We particularly focus on these areas considering their popularity
within both research and commercial applications. Additionally, these three modalities rely on sensors
commonly found in the majority of mobile and wearable devices, unlike biosignal collection devices
such as ECG chest straps or EEG headsets. Moreover, they typically involve passive sensing,
minimizing the need for active user participation as opposed to camera-based vision techniques.
These advantages have led to extensive research in these three modalities [24–26], suggesting their
potential for future large-scale population screening and monitoring. However, we acknowledge other
emerging areas such as radio sensing or biosignals in §2.5. Further, we explore the underlying
limitations of current approaches, which are common across various modalities, and delve into
potential solutions for these challenges.
2. AI for mobile health—case studies
Data analysis techniques typically are specific to the sensing modality and application at hand. However,
they all follow the same general structure involving three main stages: data pre-processing, feature
extraction and modelling. The pre-processing step can involve data cleaning, transformation and
augmentation. The pre-processing also involves segmenting the continuous stream of data according
to the specific application. The segments can simply be the sliding windows on the data stream or it
can be more complex to describe and extract, for example, cough sounds detected and extracted from
long noisy audio streams [27] prior to cough based modelling or trips extracted from continuous GPS
traces [28]. Features are then extracted from the segments. Both human designed and learnt features
have been explored and we discuss them separately for different modalities. If multiple modalities are
analysed in a study, feature representations are fused [15]. ML techniques are then used for model
development [29,30]. Multi-modal fusion can also be carried out at this stage, generally by fusing
model outputs from different modalities [31].

Let us now take a deep dive into the three most popular sensing modalities in mobile health studies,
namely, audio, location and motion sensors, and a brief look at the other modalities, including Bluetooth,
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Figure 2. From devices to modelling and applications. An overview of the data processing pipeline for mobile health applications,
including mobile and wearable devices, data types, modelling and applications. Three data types are stated: audio, location and
motion sensing.
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Wi-Fi, etc. For each modality we start with its popular applications showing its potential to be used in
mobile health applications, followed by a discussion of the common ways it is recorded, and finally
detailing its mobile health applications.
2.1. Audio
Audio sensing at scale. Audio, as one of the most natural human communication signals, contains rich
information. The speech and audio processing community has explored the potential of audio data for a
wide range of industry applications, e.g. virtual assistants with automatic speech recognition [32],
biometric system safety with speaker verification or voice antispoofing [33], etc. Recently, audio has
also been analysed for health problems, including both mental and physical health, such as emotion
detection [34–36], depression detection [37–39], Alzheimer’s and dementia detection [40–42], etc.
Despite its wide application and great potential, most of them were carried out using data collected in
the laboratory or a controlled environment. Only limited work has explored the potential of audio
within the mobile health context in free-living environment. With the rapid development of mobile
technologies such as smartphones, tablets and wearables, it allows for greater flexibility in data
collection, processing and transmitting, offering the potential for healthcare support, delivery and
intervention in a more flexible, scalable and prompt way.
2.1.1. Data
Data types. An overview of audio signals for health-related applications is shown in figure 2. A variety of
different types of audio sounds can be easily collected from mobile phones and wearbles (e.g.
smartwatch, earbuds) in daily life. Speech, as one of the dominant sounds, contains rich information
that can infer human mental health and physical health [34,39]. Breathing and cough are two types of
sounds that contain clinically relevant information and highly related to pulmonary health [10,43]. In
addition, other types of sounds (e.g. eating sounds recorded via microphones) can also be informative
for obesity health.

In addition to the normal airborne sound, bone conducted sounds collected via wearables have also
been analysed for health application, which is generally collected via earables or sensors placed near
neck. Chen et al. [44] collected sound signals from a small acoustic sensor placed at the neck to
estimate heart rate (HR) and conduct heart sound classification. One other study [45] has investigated
acoustics in the ear canal, measuring in-ear pulse wave velocity using heart signal as reference and
the other detecting respiratory sounds [46]. Amft et al. [47] collected chewing sounds acquired with a



royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:230806
5
microphone located inside the ear canal and used it to classify different kinds of food. Some example

datasets can be found in table 1.
Clinical relevance. It was proven that changes in affective state and cognitive effects associated with
depression have altered the mechanisms involved in speech production [57,58]. Lung disease is also
expected to alter the sound generation mechanism. These changes will provide valuable information
to identify between the healthy and non-healthy conditions. Some studies have analysed the
significance and correlation of different audio features with mental disorder or physical disease.
Though they may not be directly estimated using data collected using mobile devices, the findings
should reveal certain information. Acoustic properties of speech in terms of formants and power
distribution were found to be best discriminators to distinguish between depression and suicidality
individuals and healthy individuals [59]. Many other studies also obtained the similar findings, and
details can be found in a review paper [60]. Voice biomarkers have also been analysed for recovery
from acute respiratory illness [61]. The findings suggest that jitter, shimmer and spectral contrast
within certain frequency bands show consistent trends for recovering participants, and can be
informative to distinguish them from healthy users as well. Slightly different conclusions might
be made for different studies due to the data variability and data size, but the general conclusion of
the clinical relevance of audio sounds to health and the distinguishable information between still holds.

2.1.2. Modelling
Statistical analysis. Prior to model development for mobile health applications, effective sound data
types or data quality needs to be guaranteed. Dubey et al. [62] studied speech data collected from
a smartwatch’s built-in microphone in a controlled environment, and targeted on remotely monitoring
of PD patients’ speech and voices exercises to improve the communication effectiveness of speech
therapy outside the clinic. The study analysed and compared speech characteristics in terms of the
loudness and fundamental frequency to that collected using traditional recording methods, and
showed comparable results demonstrating the quality of audio data collected through smartwatches.
A continuous mobile sensing app is developed to monitor students’ life on stress, sleep, activity,
mood, sociability, mental well-being and academic performance. Audio data, as one of the modalities,
are recorded using smartphones. Significant correlations are obtained between conversation duration
and/or frequency computed from audio data and PHQ-9 depression scores, flourishing scale and
perceived stress scale (PSS) [63]. One other study [64] also analysed the audio quality of speech
and respiratory sounds (e.g. cough, sneezing, etc.) collected from smartwatches in the wild, and
demonstrated that the quality is good enough for humans to be able to detect speech and respiratory
sounds. It also suggests the difficulty in extracting these sounds automatically from collected audio
due to a wide variety of background noise. A multi-modal sensor platform for knee joint health
assessment is also developed, which includes the joint sounds collected through multi-microphones
[65]. The significant acoustic emissions were found to occur at similar joint angles for repeated
exercises, suggesting the reliability of the audio sounds for knee activities. These statistical analysis or
proof-of-concept results demonstrate the potential of audio sounds collected through different mobile
devices for health monitoring.
ML techniques. Different ML techniques ranging from traditional methods such as support vector
machines (SVMs) to deep learning techniques have been employed. Many studies using wearables such
as smartwatches and earables only involve limited number of participants, where conventional ML
techniques are suitable to avoid overfitting. Logistic Regression, Decision Tree and Random Forest have
been employed for chewing sounds detection [47,51], eating behaviour monitoring [66], stress detection
[67], etc. SVM is also a competitive technique for classification, and has been validated for stress
detection [67], sleep event detection [30], cognitive impairment detection [68].

With more flexible data collection using smartphones and cloud servers, many smartphone-based
studies collect audio data on a relatively large scale. Deep learning techniques have been widely
employed as they generally show superior performance over traditional ML techniques with
adequate and high-quality data. Different neural network structures have been validated for
COVID-19 detection. A convolutional neural network (CNN) based network structure is validated
using a combination of crowdsourced voice, cough and breathing sounds [10,49]. The system is
developed and validated using a total of 2478 participants and yields 0.71 in terms of ROC-AUC,
suggesting the potential of crowdsourced audio for COVID-19 detection. A residual network
(ResNet) [29] is also employed for COVID-19 detection using cough and breathing sounds. Long
short-term memory (LSTM) [69], gated recurrent units (GRUs) [70] and neural ODE processes [71]



Table 1. Example datasets for audio, mobility and motion data.

dataset samples participants data types labels

audio Coswara [48] 2030 — breathing, cough,

speech

COVID-19,

smoking status

COVID-19 sounds [49] 53 449 36 116 breathing, cough,

speech

COVID-19,

smoking status,

language

RECOLA [50] 34 34 speech arousal, valence

(emotion)

E-DAIC [39] — 275 speech PHQ-8

(depression)

ADReSS challenge [40] 4076 156 voice/speech Alzheimer’s versus

non-AD, MMSE

score

chewing events [51]a — 5 chewing sound eating activities

mobility COVID-19 Community

Mobility Reports [52]

— aggregated aggregated data on

the change in mobility

trends during COVID-19

—

mobile phone mobility

data [53]

— aggregated aggregated movement

between regions during

COVID-19

—

motion GLOBEM dataset: multi-

year datasets for

longitudinal human

behaviour modelling

generalization [54]

— 497 (700

user-years)

activity (steps, sleep),

location, call logs,

bluetooth, screen

depression,

personality, well-

being and more

Multi-Ethnic Study

of Atherosclerosis

(MESA) [55]

2 200 000 1817 polysomnography

(PSG), actigraphy

(activity)

sleep–wake

classification

FitRec [56] 253 020 1104 heart rate, speed, GPS workout route

prediction, heart

rate prediction
aData for chewing events are not publicly available.
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are also beneficial for COVID-19 detection and especially for COVID-19 progression prediction and
forecasting, as they capture the temporal information over time in either the short term or the long term.
Variations on the network structures or training strategies have also been investigated, such as the
attention mechanism [72] and self-supervised learning schemes [73]. Deep learning has also been
employed for lung health detection. A pre-trained CNN based network of MobileNet is employed to
detect respiratory disease, and achieves an F1 score of 0.912 on healthy versus unhealthy, 0.870 on
obstructive versus non-obstructive and 0.813 on COPD versus asthma classification [74]. Two types of
lung sounds, namely, wheeze and crackle, are detected by semi-supervised deep learning [75].
2.1.3. Applications
Audio sounds contain rich health-related information and different types of audio sounds additionally
reveal complementary information. It can be used for both mental and physical health detection and
monitoring.
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Mental health is important in daily life and affects a variety of human behaviours including thoughts,

mood and actions. The increasing burden of mental disorders significantly impacts health and major
social, human rights and economic consequences in all countries of the world. Automatic detection
and monitoring of mental health could provide prompt diagnosis and reduce the burden. Depression,
as one of the leading mental disorders, has been studied using audio sounds [76]. Other mental
disorders have also been investigated using audio sensing, including bipolar [66], schizophrenia [77],
autism [78]. Stress and mood which are highly correlated to mental health have also been studied
using audio sounds [67,76].

Physical health studies were mainly carried out for respiratory disease and sleep health. COVID-19 has
been studied using different audio sounds, including voice, breathing and cough sounds [10,29,79,80].
Breathing patterns are extracted from audio signal to monitor sleep apnoea [81], and another study
explored the potential of breathing rate by leveraging smartphones for sleep monitoring, which
detects sleep events including snore, cough, turn over and get up [30]. Some studies used the
microphone of smartphones to quantify the flow and volume of air inspired and expired by the lungs
during breathing, which reflects the degree of airflow obstruction in clinically associated pulmonary
disorders such as COPD and asthma [82,83]. Heart rate and breathing rate are also estimated from in-
ear microphones, and demonstrated the potential of earables for health monitoring [44,84]. This
suggests new pathways for cardiovascular health monitoring using wearables. Eating behaviours are
also analysed using audio collected from smartwatches and earables [47,51,85]. While audio-based
applications have seen significant advancements, deploying them in real-world settings, especially for
audio-based COVID-19 detection, remains challenging [86]. This primarily stems from difficulties
acquiring high-quality data during the pandemic, managing variations in recording environments and
devices, accounting for symptom differences associated with various virus strains, which can cause
distinct audio variations, etc.

2.2. Mobility
Localization sensors are ubiquitous in mobile phones and wearable devices. They can measure user
mobility in different spatial to temporal resolutions ranging from continuous tracking using GPS to
intermittent recording of connected cell tower locations. Tracking locations and analysing mobility has
contributed to many day-to-day applications, for example, traffic management and forecasting [87,88],
routing individuals [89] and delivery packages [90], recommender systems [91], dynamic load
balancing systems for cellular networks [92], to name a few. These applications have used techniques
ranging from statistics to deep learning, and more theoretical computational geometry and algebraic
topology.

Mobility naturally captures the lifestyle of individuals and thus related health information; for
example, the type of restaurant a person visits reveals food habit and hence correlated health
problems. In spite of its potential to unlock secrets of human health conditions, mobility has seen
limited applications for mobile health primarily due to lack of large relevant datasets. Here, we first
discuss the types of mobility data followed by popular features and finally health applications.

2.2.1. Data types

Location of a device can be captured in various ways differing in spatial and temporal resolutions,
associated privacy risks and resource requirements for the collecting device.

GPS sensors report the latitude and longitude of the tracked device with the aid of positioning
satellites. While GPS localization is highly accurate (within a few metres), it requires clear line of sight
to at least three satellites all the time; its accuracy reduces significantly in regions with obstruction.
Moreover, it consumes a lot of battery power and its continuous precise recordings are often privacy
invasive. Thus, popular mobile phone ecosystems like Android, iOS have recently put extra
precautions for application developers to use this sensor.

Call data record (CDR) records the location of the base station (the cell tower a phone is connected to).
It has coarse temporal resolution as the tracking generally takes place when a person uses call, messaging
or data service. As a cell tower usually serves a large area its accuracy is of the order of hundreds of
metres. Its coarse spatial and temporal resolution makes it less privacy invasive. Wi-Fi access points
also can offer similar localization service with increased spatial and temporal resolution. While CDR is
suited for outdoor localization for its wide adaptation, Wi-Fi localization is suited for indoor
localization for its higher resolution and availability in indoor spaces.



Table 2. Popular features extracted from mobility data.

feature short description

length of trips trips are defined specific to applications, for example, movement between two stay points, or

using a single mode of transport, etc.

distance from home home location is often absent in the data for privacy reasons. It is often inferred using heuristics

like the location at night

different places visited characterized by the count of unique ones or the frequency distribution represented with entropy

radius of gyration deviation from the centroid of the collection of places visited (S): ð1=jSjÞPl[S kl � Ck22,
where C is the centroid location of S

entropy-based measures entropy of the distribution of the places visited

POI-based features variance in the type of POIs, relative frequencies, etc.
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Check-in data record when a person logs visits to venues, for example posts in social media, such as
Twitter, Foursquare, Facebook, etc. Check-ins have low temporal granularity and less scaling power to a
large population. However, they can capture longitudinal lifestyle with limited data size.

Collocation information is often more important than the location itself, for example, in the study of
infectious disease spread. While this can be inferred from the above types of data, it can also be
recorded directly by tracking proximity to other devices using Bluetooth or RFID.
2.2.2. Features

Unlike many other sensing modalities (e.g. audio), features from mobility data are not standardized. This
is primarily because complex spatio-temporal mobility data are hard to describe in a succinct unique way
and different applications need to take varied perspectives.

Simple features characterizing individual trips or the spatial spread of movements are commonly
used in the literature (table 2). Techniques to extract features differ based on the type of data at hand;
for example, one needs to extract the interesting parts of a GPS trace prior to extracting the features,
namely the stay points (where the person stayed beyond a certain duration) and the movement
between stay points. Such pre-processing steps are common across applications and often offered as a
framework [93].

Health applications typically benefit from interpretable features to build explainable models.
Healthwalks [94] builds such a framework that takes user location traces, associated points of interest
and user social demographics as input and automatically generates combinations of features using a
deterministic automaton (DFA). The effectiveness of the generated features is shown using an eight
class disease classification. The disease categories include healthy, mental, dental, neurological,
orthopaedic illness, etc.

While the above features are useful in many applications, recently researchers have been using
tools from algebraic topology [95] and geometry [96] to map trajectories to points in Euclidean
space to make them amenable to ML tools. Further, progress is being made for using trajectories
in the ML algorithms [97,98]. However, health applications are yet to take advantage from
these progresses.
2.2.3. Applications

Health applications for mobility data range from individual health monitoring and diagnosis to
augmenting public health decisions. In the following, we discuss different health applications that use
mobility information. We divide the applications into three categories: (i) where mobility affects the
disease progression in a population, (ii) where the disease changes mobility patterns in individuals
that lead to digital biomarkers for diagnosis and (iii) where monitoring mobility helps in planning
and managing health related resource provisioning.

The analysis pipeline differs across applications. The typical pipeline shown in figure 2 applies to the
applications in the second and third category. Applications in the first category mostly use collocation
data and generally use the data directly without extracting features.
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Disease spreading by mobility. Infectious diseases such as COVID-19 and H1N1 are spread primarily

by human contacts. The effect of mobility for transmitting such diseases has long been studied, for
example in Spanish flu [99]. Due to COVID-19 the study of human mobility and its connection to
spreading infectious diseases has surged naturally.

Mobility-based disease spread modelling. While traditional disease spread models like SEIR (susceptible
exposed infected recovered) assume contacts between random pairs of individuals, incorporating
mobility in the model increases its predictive power. For example, Schwabe et al. [100] proposed
mobility marked Hawkes model combining Hawkes process to model the transmission dynamics of
the disease and a regularized Poisson regression to incorporate mobility covariates extracted from
telecommunication data. The model outperforms the other models in forecasting the infections in the
future for 5–21 days in Switzerland.

Mobility interventions. According to the scale of movement, mobility has different effects on disease
spreading, for example, fine-grained mobility within a local geographical region in terms of venues
visited and number of face-to-face meetups affect the growth rate and demographic patterns of
infections in that region. On the contrary, movement between countries or large geographical regions
may spread a new disease or a variant to a different country or region. While both are important to
study in regard to infectious diseases, fine-grained mobility is popularly captured and studied using
mobile devices and is discussed in the article.

As infectious diseases spread via mobility, the most popular non-pharmaceutical interventions to
reduce their spread have naturally been lockdowns. Several studies across different countries have
shown their effectiveness [101,102]. Using disease simulation on aggregated inter-province movement
counts in China as derived from Baidu location based services [101] has shown that the travel
restrictions in Wuhan introduced on 23 January 2020 had reduced the number of cases exported
internationally by 70–80% until mid February 2020. CDR data are also useful to draw similar
conclusions—analysing the data for the most affected counties in the USA [102] found that the
decreased mobility strongly correlates (Pearson correlation coefficients above 0.7) with decreased
COVID-19 case growth rates.

Although mobility restrictions are effective in flattening the curve they immediately affected the
economy and societal functions [103]. While designing the optimal lockdown policy has attracted
theoretical interest [104], a more practical approach is to provide a tool for evaluating the possible
effects of different intervention strategies [105]. People and venues have non-uniform effect in
spreading a disease, e.g. large gatherings act as super-spreaders. Strategies to reopen an economy
from lockdowns has been studied [106,107] using check-in data, Wi-Fi association logs and GPS
traces. The primary conclusions are that to reduce the disease spread and retain social activities,
reopening strategies need to consider the mobility of the people, for example, protect the most mobile
people or restricting large gatherings.

Mobility and other diseases. While in the above we reviewed COVID-19 related studies for their timely
relevance, mobility restrictions had been used and studied in the past, for example to stop the spread of
Ebola in Sierra Leone [108], H1N1 influenza [109], etc. Also contact tracing in the context of disease
spreading has long been studied [110]. Apart from the above infectious diseases, mobility has been
shown to play a major role in spreading other diseases like malaria [111]—people travelling to
different cities carry the parasite and infect the mosquitoes there and in turn the population.
Mobility to aid diagnosis. Several health problems correlate with mobility behaviour changes.
Such behavioural changes are useful in predicting or diagnosing a health problem passively. This
method of diagnosis is inherently less costly to deploy at large scale than traditional survey and clinical
test based methods simply due to pervasive presence of mobile phones and wearable devices in
the population.

Mobility as a potential digital biomarker. Spatial navigation patterns are affected by dementia and are
considered as one of the earliest symptoms [112]. Pervasive localization sensing in personal devices and
progress in related AI techniques have enabled the recent trend in research to use everyday movement
data to characterize dementia. One study [113] tracked seven patients and eight healthy people for eight
weeks using GPS tracking devices. It was found that the destinations for the dementia patients (with
95% accuracy) are more predictable than the control population (with 92% accuracy). Features extracted
from driving trajectories are found to have potential to become digital biomarkers for Alzheimer’s
disease (AD) [114]. Using the data from 75 without and 64 people with preclinical AD, the authors built
a random forest classifier for identifying preclinical AD patients with F1 score as 0.82. The most
important driving based features were average jerk, number of night trips and radius of gyration.
Further it has been shown that Alzheimer’s patients have significantly different outdoor mobility
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behaviour than control population even in early stage [115]: patients explore spatially less compared to

controls. A patient’s mobility patterns differ when accompanied by carers.
Individual mobility behaviour changes in fever, influenza or mental stress situations [116].

Behavioural changes are reflected in total communication, interactions with respect to time of day (e.g.
late night, early morning), diversity and entropy of face-to-face interactions and movement. These are
quantified using co-location and communication data tracked using Bluetooth proximity, call logs and
Wi-Fi connections from the participants’ mobile phones. Finally the health status of an individual is
predicted with a Bayesian network classifier, without having actual health measurements from the
subjects. GPS traces also produce similar conclusions [117]—significant correlation exists between
mobility trace characteristics and the depressive moods of individuals.

Other predictive applications. Apart from diagnostic inference at snapshots, navigation lifestyle analysis
is helpful in studying longitudinal disease progression [118]. The study exploits the causal relationship
between chronic diseases and daily habits captured by check-ins. The points of interest (POIs) are
first embedded into 100 dimensional vectors according to their transition patterns capturing their
semantic meanings. Categories of the POIs are then clustered using a Gaussian mixture model in a
predefined number of clusters. The main insight here is that in a city region the distribution of POI
categories is a good predictor of the distribution of progression of chronic diseases. Authors have
used collaborative topic modelling to find the latent factor to model the interaction between
regions and POI categories and used the same latent factorization to model the region–disease
progression interaction.

It is possible to predict hospitalization using mobility behaviour [119]. The study recorded CDR data
from over a thousand participants for almost two months. The hospitalization data were collected using
surveys. The study used radius of gyration, distribution entropy of visited locations, area of green spaces
in the neighbourhood and POI densities near the places visited. Interesting findings include that less
mobile people with less visit diversity, and who visit fewer sports facilities are more likely to visit
hospitals; fast food store significantly affects health of younger people.

Analysing causality between health status and mobility. However, one should be careful while using the
correlation between mobility behaviour and health status; for example, older people visit parks more
often but have worse health status than younger people. Thus a correlation analysis without
considering age will lead to a negative correlation between park visits and health status. Causal
relation between mobility and health status has also been analysed [120]. The proposed causal
framework is based on propensity score matching. The framework is extended to health prediction
models selecting causal features resulting in a robust model.
Health resource provisioning. Access to resources heavily affects health outcome be it the facilities for
health being in the neighbourhood or critical machines in a hospital. In many such scenarios the effect
can be better understood and managed by studying the locations of the facilities and their users.

Access to outdoor facilities. Poor physical access to health facilities causes reduced uptake of
preventive health services and is likely to affect low-income households the most. A study [121]
used cell tower location data from 14 million subscribers tracked for a year in rural Kenya to find
the correlation between the mobility of the people, access to healthcare and uptake of two preventive
healthcare interventions: childhood immunizations and antenatal care. They characterized the
mobility of a person with a single measure, radius of gyration that captures both the frequencies and
distances that one travels. They found that long travel times to health facilities strongly correlate with
increased mobility in geographically isolated areas. Furthermore, they have shown that the mobile
phone-derived measures of mobility can predict which regions are lacking preventive care.

An app was developed [122] for elderly people to locate an accessible and adequate healthcare centre
that can attend to their needs. The app uses phone GPS or the cell tower location to track the user location
and searches for the nearest facility from a database.

The relation between body weight and lifestyle is intuitive and has been researched using surveys
and census data. Burgoine et al. [123] tracked school children for a week with GPS devices and found
that greater school walkability was associated with significantly lower mean BMI. Greater home
walkability was associated with increased BMI, as was greater school access to green space.

Access to indoor facilities. Indoor positioning is being used in hospitals to track medical devices and
staffs for better resource management, enhancing patient experience, and repair and maintenance
management [124,125]. Further indoor positioning is used to protect visually impaired, elderly people
from collisions [126]. It uses RFID to identify and track passive RFID tags by analysing the received
backscatter signals. By extracting the RSSI and phase profiles as fingerprints it estimates the distance
to obstacles without observations of eyes and thus guiding the users to move in the domain safely.
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2.3. Motion for physical activity and fitness

Measuring physical activity at scale. Large scale studies of physical activity and well-being leveraging
mobile devices’ built-in accelerometers have shown promise as global physical activity surveillance
tools, demonstrating, for example, inequalities across different countries after analysing data from over
700 000 people [2]. Another analysis of exercise patterns in a global social network of 1.1 million
runners demonstrated that exercise is ‘contagious’, whose effect depends on gender and relative levels
of activity [127]. Ten million users of a weight monitoring app were used to show that people are more
likely to lose weight when they had more friends of the opposite sex [128]. Weight loss was the subject
of other studies of over 1 million participants [129], which showed that power users demonstrated the
greatest weight loss. The relationship between physical activity and cardiovascular disease (CVD) was
studied for 50 000 people in [130], finding that lower overall activity but more frequent transitions
between active and inactive periods was associated with similar CVD to higher overall activity but with
fewer transitions. Mobile and wearable sensors allow for continuous and ubiquitous monitoring of an
individual’s physical activity profiles, which, when combined with cardio-respiratory information,
provide valuable insights into that individual’s health and fitness status [131]. Hence, the possibility of
measuring individuals’ physiological characteristics in free-living conditions is of great interest for
research, clinical and commercial applications. In particular, physical activity is characterized by both
movement and the associated cardiovascular response to movement (e.g. heart rate increases after
exercise and the dynamics of this increase are dictated by fitness levels [132]); thus, leveraging these
two signals concurrently likely produces better representations than either signal taken in isolation. For
instance, heart rate (HR) responses to exercise have been shown to be strongly predictive of CVD,
coronary heart disease (CHD) and all-cause mortality [133]. In healthy individuals, HR responses to
activity are defined by an increase in HR that is concurrent to the increasing intensity of the activity
[134]. More recently, the Apple Watch has introduced cardio-respiratory fitness (CRF) features [135]
while large population-scale studies showed that these HR responses can predict VO2max [136].

2.3.1. Data

Challenges in modelling wearable data. The advent of wearable technologies has given individuals the
opportunity to unobtrusively track everyday behaviour. Given the rapid growth in adoption of Internet-
enabled wearable devices, sensor time-series comprise a considerable amount of user-generated data
[137]. However, extracting meaning from these data can be challenging, since sensors measure low-
level signals (e.g. acceleration) as opposed to the more high-level events that are usually of interest
(e.g. arrhythmia, infection or obesity onset). Most wearable devices, particularly those that are wrist-
worn, incorporate accelerometry sensors, which are very affordable tools to objectively study physical
activity patterns [17]. However, since wearables are used in daily, unconstrained environments,
activities such as drinking coffee or alcohol, as well as stress, may confound simple heuristics.

2.3.2. Modeling

Modelling wearable signals with ML. ML models have been only recently applied to this task. To
approximate VO2max without the need for a dynamic test, non-exercise models aim to provide a viable
alternative to CRF assessment for widespread use in many healthcare settings. These are usually
traditional regression models and incorporate variables like sex, age, body mass index (BMI), RHR and
self-reported physical activity to infer VO2max [138]. However, the validity of such estimation is still
much lower than what can be achieved with dynamic exercise testing [139]. Wearable devices, such as
activity trackers and smartwatches, increasingly provide opportunities for non-intrusive objective
monitoring of biological signals such as HR and movement during free-living, potentially enabling
more precise prediction of VO2max without the need to conduct a specific exercise test [140]. A recent
large-scale analysis used data from Fenland Study (N = 11 059), along with its longitudinal cohort
(N = 2675), and a third external cohort using the UK Biobank Validation Study (N = 181) who
underwent maximal VO2max testing, to show that the combination of wearables and other biomarkers
as inputs to neural networks yields a strong correlation to ground truth in a holdout sample (r = 0.82,
95% CI: 0:80–0:83) [136]. It also detects fitness change over time (e.g. after 7 years). Notably, the model’s
latent space can also be used for fitness-aware patient subtyping paving the way to scalable
interventions and personalized trial recruitment. These results demonstrate the value of wearables for
fitness estimation that today can be measured only with laboratory tests.
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Recent advances in deep learning architectures for sequential modelling based upon wearable and

mobile sensing have been used for health predictions and recommendations [141]. For example, FitRec,
an LSTM-based approach to modelling HR and activity data for personalized fitness recommendations,
was able to learn activity-specific contextual and personalized dynamics of individual user HR profiles
during exercise segments [56]. This approach is helpful but requires prior segmentation of activities,
which can be a constraint when applying these techniques in free-living, unconstrained conditions.
Recent work using self-supervised learning has shown promise in the same data modalities such as
ECG data [142,143]. Further, we recently developed a self-supervised model which exploits the multi-
modal data of modern wearables to learn meaningful representations which generalize to several
outcomes with transfer learning [144]. The model maps activity data to future HR responses and can be
used as a feature extractor for wearable data. The value captured by the learned embeddings was
showcased through strong performance at inferring physiologically meaningful variables ranging from
anthropometrics to fitness, outperforming unimodal autoencoders and common biomarkers. For
instance, the embeddings achieved an AUC of 0.68 for cardio-fitness prediction and an AUC of 0.80 for
physical activity energy expenditure. Obtaining these outcomes in large populations can be valuable
for downstream health-related inferences that would normally be costly and burdensome.

The emergence of large foundation AI models including large language models (LLMs) holds a
promise to revolutionize this area. Self-supervised learning uses existing data to learn meaningful
patterns by artificially creating predictive tasks such as predicting the next value or filling the gaps. In
the context of health signals, these tasks can range from predicting the arrow of time, to contrastive
learning and masking [145,146]. Masking, in particular, has emerged as a universal prediction task in
LLMs where widely successful models such as ChatGPT are trained to predict the next word. Very
recent work has demonstrated that by prompting LLMs with wearable time-series data and applying
few-shot tuning, they are capable of making meaningful inferences on numerous health tasks for both
clinical and wellness contexts [147].

2.3.3. Applications

Fitness as a key application. A concept that is particularly central to physical activity is that of CRF, an
important modifiable marker of cardiovascular health embodied by a strong inverse relationship with the
incidence of CVD, type 2 diabetes, cancer, mortality and other adverse health outcomes [131]. Clinical
evidence shows that CRF is not only potentially a stronger predictor of mortality than well-established
risk factors like hypertension, type 2 diabetes, high cholesterol or smoking, but that using CRF to
complement these traditional risk factors significantly improves the precision of risk prediction models
for adverse CVD health outcomes [148]. Beyond its implications in medicine, CRF is frequently used
in sports as an indicator of endurance capacity, having strong predictive value for other sport-related
performance traits [148].
Challenges in collecting fitness ground truth. The gold-standard measure of CRF is the maximal oxygen
uptake (VO2max), which measures the maximal rate at which an individual can consume oxygen during
exercise. VO2max is assessed through an exercise test to exhaustion while respiratory gas exchange is
measured, with the assessment only deemed a true maximal result if several test criteria are met.
These criteria include levelling-off of oxygen uptake and HR and the surpassing of thresholds for the
respiratory exchange ratio. This type of assessment requires trained staff and expensive laboratory
settings with specialized equipment and often test criteria for maximal effort are not met [149]. Given
these logistical constraints and the inherent risk of maximal exercise testing, scalability of fitness
assessment in large populations has been limited, meaning relatively little is known about population
levels of fitness, or their possible changes over time. Despite some promising studies which attempt to
infer VO2max from data collected during free-living conditions, these mostly stem from small-scale
cohorts with less than 50 participants and use contextual data from treadmill activity, which again
limits their application in real-world contexts [150].

2.4. Motion for mental health

2.4.1. Data

Data and outcomes. Mood and general mental wellbeing have been associated with several clinical
outcomes. Self-reported sadness was found to be an indicator of depression [151], while self-reported
happiness is linked to longevity [152], personality traits [153] and reduced mortality risk [154]. The
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experience sampling method (ESM) or ecological momentary assessment (EMA)—which involves asking

participants to report their behaviours or environment on repeated occasions over time—has long been
used as a mechanism to longitudinally assess the mental health of individuals by prompting them to
report their mental state using questionnaires, traditionally administered using pen and paper and
also via the Web. Psychologists have used different tools or scales to measure mood. These include
the positive and negative affect schedule (PANAS) [155], a self-report questionnaire of two 10-item
scales that measures both positive and negative affect; and the Affect Grid scale [156], a two-
dimensional grid, where the x-axis indicates the feeling in terms of its positiveness or negativeness
and the y-axis indicates its intensity. Independently of the scale used, timely and accurate mood
reporting is important to anticipate clinical outcomes. To this end, smartphones and wearable devices
have enabled timely delivery of experience sampling [157], allowing a near real-time detection of
clinical outcomes and relapses.

2.4.2. Modeling

ML for mental health. Regarding ML models, the majority of related literature has applied some kind of
supervised learning, such as logistic regression or SVMs, which cannot capture nonlinear combinations of
features. For a more extensive view of the field, we point the interested reader to a comprehensive review
on ML for mental health [158]. Some recent works employ recurrent neural networks [20], feed-forward
layers [159], multi-task learning [160] and autoencoders to fill in missing sensor data [161], or to learn
better representations [162]. Further, binary prediction is quite common in the mood prediction
literature, where mood is simplified to a binary state [21], so that, for instance, extreme depression is
binned in the same class as moderate unhappiness. Since neutral mood might be uninformative and
make the predictions harder, authors often omit the middle-scoring 40–60% of reports. Instead, recent
work explored fine-grained mood prediction through regression and clustering [163], as well as novel
multi-dimensional formulations of the Affect Grid through multi-task learning [164].

2.4.3. Applications

Multiple applications of motion data for mental health have been proposed from both research and
commercial ventures. For instance, StudentLife [63] combined sensing and self-reports to assess the
impact of student workload on stress, whereas Snapshot [160] tracked their mood and sleep. Others
focused on detecting depression by tracking medication, sleep patterns and actions [20], location [11]
or keypress acceleration [165]. On a larger scale, Utsureko [20] and EmotionSense [21], two independent
smartphone applications for mood monitoring through self-reports, were used by more than 24 000
and 17 000 users, respectively. On the other hand, Evidation Health, a private company, offers users
money for contributing their sensor data along with self-reported surveys.

2.5. Other modalities
Other widely adopted sensing modalities for mobile health can be grouped into two main streams: (i)
biosignal sensors and (ii) radio frequency (RF) sensing. The focus of this paper is on movement,
location and audio, but we also want to acknowledge that there are other data modalities and sources
that can be useful for health sensing.
Biosignals. The two most widely adopted sensor data types are ECG and photoplethysmography (PPG)
[166–168]. ECG sensors are generally placed on the chest to measure the electrical activity generated by
heart muscle contractions directly. They can collect reliable cardiac information for heart monitoring, e.g.
abnormal heart rhythms, and detection of atrial fibrillation. PPG sensors are an alternative non-invasive
way to monitor heart rates, which shine light on the skin surface and measure the changes in blood
circulation. This information is valuable and can be used to infer the abnormality in heart rates. Due
to their non-invasive and easy-to-carry nature, PPG sensors have been widely employed on
smartwatches, such as the Apple Watch, to monitor cardiovascular health [169]. However, they may
still have their own limitations, such as being bulky to use in daily life (e.g. ECG sensors in a chest
strap), inaccurate measurement under motions (e.g. PPG sensors), sensitivity to environmental
conditions, high power consumption, etc. [170]. Apart from these two types of sensors, there are also
other more complex sensing modalities such as electroencephalography (EEG) and electrooculography
(EOG) [171], e.g. for sleep monitoring, but they are less employed in consumer wearable and mobile
devices, rather in only clinical devices that limit their employment.
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RF signals. Bluetooth and Wi-Fi signals on mobile devices are two of the main RF signal types for mobile

health. Many mobile apps have been developed using such technology to understand outbreak
epidemiology, individual screening and contact tracing [172–174]. Many of these apps use Bluetooth
and Bluetooth Low Energy to infer proximity between people. Multiple governments worldwide and
industries have released contact tracing apps for mobile phones. For example, Singapore implemented
a mobile phone application, TraceTogether, which pushes notifications to devices in close proximity as
2m apart and sharing information [175]. Some similar apps in different countries have also been
employed for COVID-19 tracing [176,177].

However, due to false negatives in detecting face-to-face contacts, digital contact tracing may not be
as effective as its manual counterpart—a study [178] estimated that digital tracing alone can reduce the R
number (average number of people infected by a single infectious person) by 44% whereas manual
tracing of all contacts can reduce R number by 61%. Further, the apps lack in transparent
quantification of individual advantage in obeying the app’s advice [179]. Moreover, people without
economic privilege have a limited capacity to self-isolate at home, which undermines the effectiveness
of these approaches.

Both Bluetooth and Wi-Fi signals have been widely used for indoor localization particularly for older
age groups, in assisting their living quality and also the emergency response [180,181]. Wi-Fi signal is one
of the key modalities for human activity recognition and gesture recognition [182]. As Wi-Fi can travel
through almost any indoor corner, human body movement or gesture changes can lead to small
changes in signal propagation, and thus can be used to detect activities. Recently, RF signal has also
been extended for sleep posture monitoring [183], which transmits the radio signals and observes
their reflections from the surroundings. It provides non-contact sleep monitoring solutions.
3. Implications and limitations
3.1. Limitation for current state of AI
Interpretability. A significant hurdle that hinders the wide-scale adoption of AI systems in healthcare is
the lack of interpretability, making it challenging for users and medical practitioners to trust these
systems. Despite previous attempts to address the challenges surrounding model interpretability, most
solutions have been implemented post hoc (such as the attention mechanism) focusing on explanations
in certain domains, such as vision [184]. For instance, while sequential deep learning can generate
fairly accurate predictions when dealing with motion sequences or audio features in longitudinal time
series, it remains difficult to interpret how the model makes such judgments based on historical
samples. Another potential solution for enhancing interpretability is adopting uncertainty-aware
modelling approaches. These enable the prediction of uncertainty associated with the final outcome
predictions, thereby providing confidence levels for users to either trust or distrust the systems. One
study [185] employed ensemble learning for sound-based COVID-19 detection to infer the uncertainty
of the model predictions and showed that false predictions often yield higher uncertainty, enabling us
to suggest to users with certainty higher than a threshold to repeat the audio test on their phones or
to take clinical tests if digital diagnosis still fails. Furthermore, active learning methods could enable
the selection of uncertain samples or users for further analysis such as an additional review by
domain experts (physicians) [186]. Evidence also suggests that while deep learning can identify
spurious correlations, it often fails to determine causation, which can be essential in a clinical context
[187]. Medical practitioners need to understand the causal factors influencing outcomes rather than
merely observing correlations. There is an emerging trend away from solely favouring straightforward
ML systems like linear regression or SVMs to ensure explainability or overlooking interpretability in
favour of performance gains using opaque deep learning models. New opportunities are blossoming
in the realm of interpretability, not only encompassing previously discussed areas but also highlighting
the potential of integrating domain knowledge from clinicians into modelling approaches [188].
Adaptation and personalization. Data are persistently accumulated over time while monitoring an
individual’s health. Owing to factors like ageing or disease progression (e.g. deterioration), the
attributes of such data can shift, a phenomenon referred to as the data distribution shift. Models
trained on data gathered from a specific temporal cutoff may underperform in later data collection.
Consequently, updating these models with new data becomes vital. Additionally, different individuals
may exhibit varying symptoms or responses to the same treatment. This requires meticulous attention
for systems designed around individual needs, making a case for improved personalization [189].
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Such systems can adapt and cater to the heterogeneity among users, further enhancing the effectiveness

of disease monitoring and healthcare interventions. Although existing methodologies like continual
learning or transfer learning may present potential avenues for adaptation and personalization such as
for electronic health record [190], their exploration and application in the context of mobile health
remain relatively underdeveloped.
Fairness and robustness. Fairness ensures that algorithmic decisions do not create discriminatory or
unjust results when comparing different demographics (e.g. race or sex). Real-world cases of ‘unfair’
ML algorithms abound, such as skin lesion classification models underperforming when assessing
black patients, compared to white patients. At the same time, people of colour are consistently
misclassified by health sensors such as oximeters as they were validated on predominantly white
populations [191]. Applying ideas from ML fairness could possibly solve some of these problems;
however, sensing data and models have certain particularities. For example, they typically deal with
small-scale studies, proof-of-concept datasets often collected in the laboratory or in the wild. Contrary
to the tabular format of such datasets, sensing data are mostly sequential in nature, with biases being
harder to surface. In other words, while it is relatively straightforward to distinguish a person’s skin
tone given a picture, it is much harder to do so from oximetry measurements, necessitating the
collection of supplementary metadata, such as demographics. Specifically, we should consider groups
relevant to a particular scenario or deployment setting. For example, in a depression screening
application, gender could be relevant as a sensitive attribute due to reported gender differences in the
disorder’s signals [192]. Similarly, data validation methods can facilitate fairness and robustness and,
therefore, should also be applied across sensitive attributes. For example, visualization tools such as
the What-If Tool [193] and FairLens [194] can help surface any potential data outliers and help correct
them before they creep into models. More technically, the literature is increasingly interested in
approaches that mitigate biases. Considering that most outcomes in mobile health sensing are
numerical (regression tasks), Agarwal et al. [195] introduced two definitions of fairness in regression:
statistical parity, which requires the prediction to be statistically independent of the sensitive attribute,
and bounded group loss, in which the prediction error is restricted to any sensitive group to remain
below some predefined threshold. Despite recent efforts within the mobile and ubiquitous computing
community [196], fairness and robustness are still underexplored with regard to mobile health
sensing. Robustness to distribution shifts can also be dealt with using domain adaptation or
personalization techniques that are tailored to individuals and learn from their unique preferences (see
previous paragraph).

3.2. Limitation for mobiles and wearables
Resource constraint. As larger models like GPT4 and other LLMs become more prevalent due to their
improved capabilities, we can expect specialized foundation models tailored to healthcare applications
[197]. These applications are increasingly relying on domain-specific models at the moment. This task-
agnostic shift, however, presents a mounting challenge in deploying these systems on resource-limited
devices such as smartphones and wearable devices, especially when considering aspects like memory
capacity and battery life. Some efforts have been made on both the software and hardware to
optimize deep learning inference, from model pruning and compression techniques that reduce model
size and complexity to parallel network computations [198]. However, when it requires fine-tuning or
retraining the models on edge devices, it becomes a challenge. This limits its applications in various
contexts, e.g. personalizing the model with more new user data input, or making continual adaptation
with new data. Thus, the focus is shifting towards efficient deep learning training on edge devices.
Instead of transmitting local device data to a server (a process that is bandwidth-intensive and raises
privacy issues), the emphasis is on distributed training methods. Typically, there is one central server
paired with multiple edge devices. The breakthroughs in efficient deep learning training revolve
around optimizing training update frequencies between local and server devices, determining which
part of the model needs an update, and so forth [199]. Despite progress and even with advanced
transformers [200], hurdles related to latency, energy consumption and compute resource management
persist. Although the existing studies have not been tailored for mobile health, they share similar
challenges. Hence, determining how to train and deploy deep learning models with the full potential
of such resource-limited wearable devices merits thoughtful exploration.
Data and label quality. Very few phones and wearable devices have medical-grade sensors and are
costly. The majority of devices on the market have a cheap sensor which produces noisy data or is
easily interfered with by motion artefacts. This requires specific attention in data processing or model



royalsocietypublish
16
design. Proper denoising techniques before passing data for modelling or specific model structures such

as multi-task learning have been validated to denoise the signals or eliminate motion artefacts. Moreover,
sensor data might be missing during motions, or data are sampled at irregular time intervals in a
longitudinal way. These characteristics may require additional mechanisms in AI algorithms to handle
effectively. On the other hand, label quality should also be carefully examined before modelling. To
make the study scalable, some labels are collected in a crowdsourced way, by self-reporting. Therefore,
either further automation in the label quality check or manual check is required.
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3.3. Limited validation of the methodology
Limited datasets. Data collection is time-consuming and cost-intensive. Most mobile health apps are
validated only using a limited number of participants. For example, Apple’s CRF feature is publicly
validated on 221 participants [135] while non-commercial methods use population-scale data from
more than 11 000 participants [136]. Considering the large user bases of such products, we need to
find better methods to leverage free-living with small-scale laboratory-collected data.
Lack of validation standardization for deployment.New drugs or treatments undergo strict certification
and regulatory screenings before they become available to the public.Most commonly, the vendors conduct
randomized controlled trials in order to rule out side effects and validate the efficacy thereof. In mobile
health, validation is still a thorny issue. Data remain siloed within organizations and companies and
most of the time treated as a ‘moat’, or a competitive advantage of each company. The few mobile health
products that become available are labelled as ‘well-being’ apps so as to bypass the strict regulatory
screening for medical devices. Mobile health sensing is an emerging area that should adopt more
rigorous evaluation protocols from the medical AI community [201].
3.4. Privacy and security
Last, sensing signals from mobile phones often contain privacy-sensitive information. For example,
continuously recorded audio from phones will reveal personal conversations, and mobility data can
leak sensitive location visits and meetups. However, not every sensing modality poses the same
threat; for example, motion data are comparatively less privacy sensitive. On the other hand, mobility
data expose sensitive personal information. Moreover, security has always been a significant challenge
in mobile health applications. Several studies have identified security challenges that affect the
development of secure mobile health applications. For example, out of 20 000 apps from Google Play
studied in [202] it was revealed that 45% of the apps rely on unencrypted communication, and as
much as 23% of personal data (e.g. location information and passwords) are sent on unsecured traffic.

Both privacy and security are popular topics of research and several approaches have been proposed
including anonymity frameworks [203] to more recently proposed differential privacy [204], and
blockchain-based solutions [205]. More recently ML on decentralized data in terms of federated
learning has shown promise to preserve privacy while building useful models out of the data
[206,207]. Another popular way to mitigate privacy risks is to use on-device computation. For
example, consider a location-tracking diagnostic application. A potential model using datasets
acquired from multiple individuals with consent. Then the classifier can be deployed in an
individual’s phone to run the inference on the user’s sensitive location data without sharing it with a
third party.

While security and privacy in mobile health applications are of particular importance, we point the
reader to other material that is available [208,209].
4. Conclusion
This paper has thoroughly examined the possibilities and challenges associated with human-centred AI
for mobile health sensing, specifically focusing on three primary sensing modalities: audio, mobility and
motion data. It has provided a comprehensive coverage of various aspects, ranging from data collection
methods to modelling pipelines, and explored potential applications in depth. Furthermore, it has
critically addressed the limitations of current approaches and proposed potential solutions,
encompassing wearable devices, AI modelling and validation, while shedding light on privacy and
security concerns.
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The objective of this paper is to present a holistic perspective and offer valuable insights into the

realm of mobile health sensing. Its aim is to enhance the understanding of human-centred AI and
inspire advancements in interdisciplinary fields for future progress.
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