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INTRODUCTION
Compared to traditional photon radiation therapy, proton 
therapy has demonstrated a reduction in patients’ side-
effects and unplanned hospitalizations while achieving 
comparable tumor control.1,2 Protons offer the physical 
advantage of stopping just after depositing highest dose, 
sparing healthy tissues beyond the tumor volume.3 One 

of the critical factors that dominates the quality of proton 
treatment planning is the accuracy of the dose calcula-
tion algorithm. Dose calculation algorithms, which may 
be analytical4 or Monte Carlo-based,5–7 require the rela-
tive stopping power (RSP) or mass density of materials to 
simulate transport phenomena within patients. Conven-
tional treatment planning systems use CT numbers to 
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Objective Mapping CT number to material property 
dominates the proton range uncertainty. This work aims 
to develop a physics-constrained deep learning-based 
multimodal imaging (PDMI) framework to integrate 
physics, deep learning, MRI, and advanced dual-energy 
CT (DECT) to derive accurate patient mass density 
maps.
Methods: Seven tissue substitute MRI phantoms were 
used for validation including adipose, brain, muscle, 
liver, skin, spongiosa, 45% hydroxyapatite (HA) bone. 
MRI images were acquired using T1 weighted Dixon and 
T2 weighted short tau inversion recovery sequences. 
Training inputs are from MRI and twin-beam dual-energy 
images acquired at 120 kVp with gold/tin filters. The 
feasibility investigation included an empirical model and 
four residual networks (ResNet) derived from different 
training inputs and strategies by PDMI framework. PRN-
MR-DE and RN-MR-DE denote ResNet (RN) trained with 
and without a physics constraint (P) using MRI (MR) 
and DECT (DE) images. PRN-DE stands for RN trained 
with a physics constraint using only DE images. A retro-
spective study using institutional patient data was also 

conducted to investigate the feasibility of the proposed 
framework.
Results: For the tissue surrogate study, PRN-
MR-DE, PRN-DE, and RN-MR-DE result in mean 
mass density errors: −0.72%/2.62%/−3.58% for 
adipose; −0.03%/−0.61%/−0.18% for muscle; 
−0.58%/−1.36%/−4.86% for 45% HA bone. The retrospec-
tive patient study indicated that PRN-MR-DE predicted 
the densities of soft tissue and bone within expected 
intervals based on the literature survey, while PRN-DE 
generated large density deviations.
Conclusion The proposed PDMI framework can generate 
accurate mass density maps using MRI and DECT images. 
The supervised learning can further enhance model effi-
cacy, making PRN-MR-DE outperform RN-MR-DE. The 
patient investigation also shows that the framework can 
potentially improve proton range uncertainty with accu-
rate patient mass density maps.
Advances in knowledge: PDMI framework is proposed 
for the first time to inform deep learning models by 
physics insights and leverage the information from MRI 
to derive accurate mass density maps.

https://doi.org/10.1259/bjr.20220907
mailto:xiaofeng.yang@emory.edu
mailto:atchar_sudhyadhom@dfci.harvard.edu


2 of 12 birpublications.org/bjr Br J Radiol;96:20220907

BJR Chang et al

material property curves calibrated by the stoichiometric 
method8 to convert Hounsfield units (HUs) to material RSP 
or mass densities from CT images. However, this approach 
is based on fitting data to a bilinear model which is limited in 
how mass densities are categorized for different tissue types,9,10 
and materials with different compositions may result in the 
same attenuation measured by CT scanners. To account for this 
uncertainty in HU-to-RSP or HU-to-mass-density conversion, a 
2.5–3.5% proton range margin is usually adapted for treatment 
planning.11,12

Dual-energy computed tomography (DECT) can effectively 
characterize tissues and detect lesions.13 The parametric maps 
inferred from DECT images, such as the effective atomic number 
and relative electron density, can be used to derive proton RSP for 
analytical dose calculation.14,15 Virtual monochromatic images 
(VMIs) derived from DECT can also increase image quality and 
reduce beam-hardening artifacts compared to CT images from 
a polychromatic spectrum.16 VMI can provide images with less 
noises16 and metal artifacts17–19 than the images acquired from a 
CT machine with polychromatic energy spectra. In more recent 
work by Medrano et al,20 they developed an RSP prediction 
method based on the sinogram domain that achieved bony-
tissue uncertainty of 0.8%. In general, accurate proton RSP maps 
can be acquired from DECT images,21 and this approach leads 
to more accurate proton dose calculation than the method using 
conventional CT imaging.22,23 Wohlfahrt et al24 recommended 
patient-specific DECT-based RSP prediction for treatment plan-
ning. They concluded that intrapatient adipose and soft tissue 
diversity were 5.6 and 9.8% by taking the difference of 97.5th and 
2.5th RSP percentiles weighted by CT voxel ratios of each indi-
vidual tissue, and the mean RSP deviation was 1.2% between the 
Hounsfield look-up table and patient specific RSP map.

Meanwhile, MRI demonstrates favorable soft tissue contrast 
relative to CT and its utility in radiation oncology has seen a 
significant increase over the past decade. Synthetic CT-based 
MRI-only proton therapy has been investigated, and while 
others have concluded that an MRI-only treatment planning is 
feasible, but inaccurate bone delineation has the potential to lead 
to significant uncertainty.25 Sudhyadhom26 proposed a method 
to directly determine material mean ionization potential (I) from 
MRI. Using this method, Scholey et al27 predicted RSP by using 
the Bethe-Bloch formula with material I and relative electron 
densities (based on the CT stoichiometric method) from MRI 
and CT separately, and achieved RSP uncertainty within 1% for 
soft tissues. It would be of great interest to develop a model that 
can directly assimilate MRI and DECT information to generate 
material properties.

However, a fixed form of the linear model is used for the DECT-
based stoichiometric method28,29 to fit data, and it is non-trivial 
for the model to utilize MRI directly. It typically requires exten-
sive time and effort to gain the mechanistic understanding neces-
sary to develop a new model that can simultaneously assimilate 
MRI and DECT data. Alternatively, modern machine learning 
(ML) methods can deploy models with flexible forms to effec-
tively discover the underlying correlations between MRI/CT 

images and material characteristics. Su et al30 demonstrated that 
ML models could generate RSP mapping with the uncertainty 
of ~3% for cortical bone from DECT images. In Scholey et al,31 
they show that ML from low energy CT to higher energy CT 
(kVCT to MVCT) may be useful in the accurate generation of 
RSP maps with error reductions primarily due to improvements 
in electron density. RSP accuracy in that study was limited by a 
lack of compositional (elemental or molecular) information as 
available in DECT32,33 or MRI.26

Many conventional ML methods favor the principle of Occam’s 
razor: simplicity leads to the optimal model because of its gener-
alizability and interpretability.34 However, the strategy may not 
be applicable when dealing with a substantial amount of data.35 
In contrast, neural networks have been proven universal approx-
imators,36 and modern deep learning (DL) models with hierar-
chical structures can learn complex patterns from data.

In the present work, we propose a physics-constrained DL-based 
multimodal imaging (PDMI) framework to predict patient mass 
density maps from MRI and DECT images. To evaluate the 
feasibility of the proposed method for clinical applications, we 
explore conditions by which DL models can benefit from the 
PDMI framework to infer material mass density maps accurately 
and effectively from MRI and DECT images.

METHODS AND MATERIALS
Tissue substitute phantoms and data acquisition
Five tissue substitute phantoms were created following the 
recipe by Scholey et al,27 including adipose, muscle, skin, and 
spongiosa. We also added 45% hydroxyapatite (HA) bone as 
that’s a typical composition of “standard” bone (whereas spon-
giosa is less dense and contains fat). The phantoms were made 
by homogeneous mixtures of deionized water, gelatin from 
porcine skin (surrogate of protein), porcine lard (surrogate of 
fat), and HA. A small amount of sodium dodecyl sulfate (SDS) 
was added to the phantoms with water and lard to promote 
mixing and enhance homogeneity. Scholey et al27 investigated 
each mixture to ensure that their physical characteristics were 
similar to actual biological tissues for the respective modality. 
Table  1 gives mass percent compositions of each mixture for 
tissue surrogates.

Two additional fresh animal tissue phantoms were made from 
ex vivo porcine blood with either porcine brain (brain phantom) 
or porcine liver (liver phantom). To determine the elemental 
compositions of these phantoms, multiple small brain and 
liver samples were weighed, dehydrated, crushed, and sent off 
for combustion analysis to determine their elemental compo-
sitions. These results, along with the known amount of blood 
(assumed to have the same elemental composition as water) and 
hydrated tissue comprising the brain and liver phantoms, were 
then used to compute the elemental compositions of the animal 
tissue phantoms. The mass densities of each tissue substitute and 
animal tissue phantom were measured by a high-precision scale 
(HK-3200A, Mars Scale Corporation, Canada) and volumetric 
pipettes. Table  2 summarizes each tissue surrogate’s measured 
mass density and physical properties.

http://birpublications.org/bjr
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Tissue substitute phantoms were scanned with a Siemens 
SOMATOM Definition Edge scanner using a head-and-neck 
(HN) TwinBeam dual-energy (TBDE) protocol with a CT dose 
index (CTDIvol, 32cm) of 8.6 mGy and effective milliampere-
seconds (mAseff) of 400. TBDE protocols acquire images at 120 
kVp with gold (Au) and tin (Sn) filters, and we refer to images 
from low- and high-energy spectra as DECT HighE and DECT 
LowE images. DECT parametric maps were generated from 
Siemens Syngo.Via including relative electron density and VMI 
of 80 keV. A Siemens MAGNETOM Aera 1.5 T scanner was used 
to acquire MR images of the phantoms using a 3D T1 weighted 
Dixon VIBE sequence, generating water-only (T1DW) and fat-
only (T1DF) images, and a 3D T2 weighted short tau inversion 
recovery SPACE sequence (T2-STIR).

Table 3 summarizes the acquisition parameters used to acquire 
DECT and MR images. Figure 1 depicts the axial view of phantom 
images acquired from MRI and DECT scans. The dimension of 
each phantom was 5.7 × 5.7 × 12.9 cm3, and each phantom was 
placed in a cylindrical water container with a diameter and height 
equal to 16.83 cm and 25.4 cm. MRI T1 and T2 scans contain 208 
× 288 × 176 and 256 × 256 × 208 voxels, and DECT scans include 
512 × 512 × 545 voxels.

A retrospective HN patient study was conducted for a proof-
of-concept test of the proposed framework due to the lack of 
ground-truth mass density maps. The HN patient was scanned 
with identical MRI and DECT imaging protocols as the phantom 
study. Since patient images were heterogeneous, MRI images 
were first rigidly registered to DECT images, and then deform-
able image registration was applied using VelocityTM (Varian 
Medical Systems, Palo Alto), a multimodality image registration 

software. Ultimately, MRI images were resampled to match the 
resolution of DECT images, which includes 512 × 512 × 470 
voxels with a voxel size of 0.977 × 0.977 × 1 mm3.

Physics-constrained deep learning-based 
multimodal imaging framework
The PDMI framework relies on supervised learning to train DL 
models that can infer material mass densities from MRI and 
DECT images. Figure 2 shows the PDMI framework to generate 
material mass density maps from MRI and DECT images and 
validate the phantom results through a proton experiment. The 
model inputs from MRI include T1DF, T1DW, and T2-STIR, 
while the inputs from DECT images are HighE, LowE, ρe, and 
80-keV VMI. The HighE and LowE are images acquired from 
TBDE protocols using a 120 kVp X-ray spectrum with tin (Sn) 
and gold (Au) filters. The ρe, and 80-keV VMI are derived from 
Siemens Syngo.Via, and they are relative electron density maps to 
that of water and virtual monochromatic images obtained from 
the 80-keV spectrum.

We used PyTorch37 to implement residual networks (ResNet) 
in the proposed framework. Figure 2(a) illustrates the training 
workflow that involves two branches (Figure 2(a31)→(a32) and 
Figure 2(a31)→(a33)) to train DL models with different loss func-
tions. Figure 2(a33) shows a conventional mass density loss func-
tion (‍Lρ‍) defined by mean square error with ground truth mass 
density (ρmeas) from the physical measurement of mass density 
for tissue substitute phantoms. Unlike conventional DL training, 
Figure 2(a32) shows the proposed physics-constrained loss func-
tion (‍Lρhysics‍) using physics insights without requiring ground 
truth mass density, which requires separate measurement that 

Table 1. Mass percent compositions of mixtures for tissue substitute phantoms

Tissue surrogate Water Gelatin (Protein) Lard (Fat) Hydroxyapatite SDS
Adipose 100

Muscle 74.78 19.97 5.0 0.25

Skin 75.0 25.0

Spongiosa 26.61 11.83 47.43 12.81 1.32

45% HA bone 55.0 45.0

HA, hydroxyapatite; SDS, sodium dodecyl sulfate.

Table 2. Physically measured mass densities (ρmeas), mean excitation energies (I), and elemental mass percent compositions for 
tissue substitute phantoms

Tissue surrogate ρmeas (g/cm3) I (eV) H C N O Na P S Ca

Adipose 0.936 61.9 12.37 77.70 0.16 9.77

Brain 1.028 77.3 10.96 6.02 0.73 82.24 0.05

Muscle 1.064 76.7 10.37 12.44 3.06 73.86 0.02 0.25

Liver 1.065 77.2 10.60 8.98 2.05 78.25 0.12

Skin 1.077 77.5 10.09 10.55 3.82 75.26 0.28

Spongiosa 1.091 76.1 9.79 42.50 1.88 37.96 0.11 2.37 0.28 5.11

45% HA bone 1.417 108.5 6.24 67.48 8.32 17.96

HA, hydroxyapatite.
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can introduce additional uncertainty. The physics insights can 
be quantified from a well-established physics-based models to 
constrained DL models. Section 2.2.2. describes how we tightly 
integrate physics insights (Eq. (4)) into DL training in this work. 
Figure 2(a43) shows the experiment setup for proton measure-
ment (see Section 0) that can be used to validate the accuracy of 
DL models. The measured RSP can be derived through proton 
experiment, and then the reference mass density can be obtained 
by Eq. (7). The model uncertainty can be evaluated for physics-
constrained ResNet (PRN) in Figure  2(a41) and conventional 
ResNet (RN) in Figure 2(a42). Figure 2(b) depicts the workflow 
for patient applications. Patients’ DECT and MRI images will be 
input to the pre-trained and validated ResNet models (RN and 
PRN) from Figure 2(a). Then, the ResNet will generate the corre-
sponding mass density map to support potential proton Monte 
Carlo dose calculation for treatment planning.

Deep learning model and training data
ResNet is used in Figure 2(a31) due to its accuracy in learning 
from data through hierarchical modelling.38 The ConvA in 
Figure  2(a31) denotes the convolutional layer with channel 
numbers, kernel size, stride number, and padding size of 64, 7, 2, 
and 3, while the parameters are 64, 3, 1, and 0 for another convo-
lutional layer (ConvB). Each residual block includes two convo-
lutional and one residual layers. The convolutional layers include 
channel numbers of 64, 128, 256 for residual block A1/B1, A2/

Table 3. DECT and MRI acquisition parameters

Scanner

Siemens 
SOMATOM 

Definition Edge
Collimation 64 × 0.6 mm

Voxel size 0.977 × 0.977 × 0.5 mm3

Field of view 500 mm

X-ray tube voltage 120 kVp with Au and Sn 
filters

Scanner Siemens MAGNETOM 
Aera 1.5T

T1 3D DIXON VIBE 
voxel size

1.247 × 1.247 × 1.2 mm3

TR 7.76 ms

TE 2.39 ms

T2 3D STIR SPACE 
voxel size

1.016 × 1.016 × 1.1 mm3

TR 3500 ms

TE 248 ms

3D, three-dimensional; DECT, dual-energy CT; STIR, short tau 
inversion recovery; TE, echo time; TR, repetition time.

Figure 1. Transversal representation of tissue substitute phantom images acquired from (a1–a4) T1DW MRI, (b1–b4) T1DF MRI, 
(c1–c4) T2-STIR, (d1–d4) high-energy spectrum imaging of twin-beam DECT (DECT HighE), and low-energy spectrum imaging of 
twin-beam DECT (DECT LowE). The dimensions of squared phantoms are 5.7 × 5.7 × 12.9 cm3, and the sizes of the cylindrical water 
containers are 16.83 cm and 25.4 cm in diameter and height. DECT, dual-energy CT; HA, hydroxyapatite; T1DW, T1 weighted Dixon 
water-only; T1DF, T1 weighted Dixon fat-only; T2-STIR, T2 weighted short tau inversion recovery.

http://birpublications.org/bjr
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Figure 2. PDMI framework for material mass density inference including (a) model training and validation and (b) patient appli-
cation. At training phase, model inputs are (a11) MRI and (a12) DECT images. (a31) DL models used in the framework. ResNet was 
implemented where ConvA, ConB, and Residual Blocks represent different convolutional components. (a32) Physics-constrained 
loss and (a33) conventional mass density loss for training. Material mass densities generated by (a41) conventional RN and (a42) 
PRN. (a43) Validation experiment to obtain measured RSP for tissue substitute phantoms using a 150 MeV proton spot and Zebra 
(IBA Dosimetry, Germany). For patient application, (b1–b4) inference of mass density map for patient applications using MRI and 
DECT images as inputs for PRN and RN. DECT, dual energy CT; DL, deep learning; PDMI, physics-constrained deep learning-based 
multimodal imaging; PRN, physics-constrained ResNet.
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B2, and A3/B3, while the stride numbers and padding sizes are 
2 and 1 for all convolutional layers in each residual block. The 
kernel sizes are 3 and 2 for residual block A1-A3 and B1-B3. The 
ResNet in Figure 2(a31)/(b3) has identical model structures, and 
Figure  2(b3) is for patient application that the model parame-
ters are trained based on the calibration data used at the training 
phase as depicted by Figure 2(a). The Adam optimizer39 is used 
for training ResNet.

The ResNet networks trained by the physics-constrained loss and 
conventional loss are named physics-constrained ResNet (PRN) 
and conventional RN. We also add a suffix, “-MR-DE” or “-DE,” 
to PRN and RN to indicate whether the model is trained with 
MRI and DECT images or DECT-only images. For instance, 
PRN-MR-DE presents the ResNet trained with the physics-
constrained loss using MRI and DECT images. ReLU40 is the 
activation function used in the network.

MATLAB was used to pre-process the DICOM image files from 
MRI and CT for training, and all image files were normalized 
within the range of [−1, 1] based on each imaging modality. 
Circular volumes of interest (VOIs) were manually contoured 
for each tissue surrogate with diameters of 40 and 28 pixels for 
MRI and DECT images. Data from each VOI were subsequently 
arranged in a one-dimensional (1D) array to form a DL input 
matrix with the size of nvox×ninp where nvox and ninp denote the 
total voxels within VOI from each material and input images 
such as T1DF, T1DW, T2-STIR, HighE, LowE, ρe, and 80-keV 
VMI for PRN-MR-DE. The nvox contained 444,465 and 226,590 
voxels for training and testing from each VOI on MRI and DECT 
images for seven materials. Since the DL training was based on 
1D data, there was no need to perform image interpolation.

Mass density and physics-constrained loss 
functions
The PDMI framework is based on supervised learning DL to 
find the underlying correlations behind the data. This inverse 
modelling is ill-posed, and it can be solved by optimizing the loss 
function defined by Eq. (1), which includes conventional mass 
density (‍Lρ‍) and physics-constrained (‍Lphysics‍) losses. For ﻿‍δ‍=1, 
physics-constrained training is performed, and conventional 
training is used when ﻿‍δ‍=0.

	﻿‍ L =
(
1− δ

)
× Lρ + δ × Lphysics‍ � (1)

Eq. (2) defines a conventional mass loss function that requires 
measured material mass density (ρmeas) as the targets. The ρDL, N, 
and i denote the predicted mass density from DL models, total 
number of voxels, and ith voxel.

	﻿‍
Lρ = 1

N

N∑
i=1

∥ρi,DL − ρi,meas∥22
‍
 
�

(2)

Meanwhile, the PDMI framework also adapts physics insights 
to form physics-constrained loss functions given by Eq. (3), 
where yphysics insight and ymeas denote the physics insights and 
corresponding measured quantities of the physics insights, 

respectively. We select yphysics insight as the empirical HU model 
from the stoichiometric calibration method,8 and ymeas becomes 
the CT numbers in this study.

	﻿‍
Lphysics =

1
N

N∑
i=1

���yi, physics insight − yi,meas
���
2

2‍�
(3)

Eq. (4) gives the empirical HU model with the assumption 
that HU = 1000(µ/µw-1) where µ and µw are linear attenua-
tion coefficients of the material and water. The kph, kcoh, and 
kincoh are energy-dependent coefficients associated with the 
photon-electric, coherent, incoherent effects, respectively. These 
constants can be determined from the stoichiometric calibration 
method8 with least-square fitting. In this work, the estimated kph, 
kcoh, and kincoh coefficients are 9.094 × 10−6, 1.064 × 10−3, and 
5.988 × 10−1.

 

	﻿‍
yphysics insight ≡ HU80keV = 1000

[
ρ̃
kphz̃3.62+kcoh ẑ1.86+kincoh
kphz3.62w +kcoh ẑ1.86w +kincoh

− 1
]

‍� (4)

By defining ‍
∼z ≡ z3.62‍ and ‍z≡ z1.86‍, the material zn values can 

be derived by Eq. (5)28 where n is 3.62 or 1.86. The i, ω, Z, and A 
denote ith element, weight fraction, atomic number, and atomic 
mass number. The z3.62 and z1.86 are 7.522 and 7.115 for water.

	﻿‍

zn =



∑
i

ωi
Zi
Ai∑

i
ωi

Zi
Ai

Zni




1
n

‍�

(5)

The relative electron density derived using the DL model output 
(‍
∼
ρ ‍) is defined by Eq. (6) with the electron density of water (ρe,w) 

equal to 3.343 × 1023 e-/cm3.

	﻿‍
∼
ρ ≡

ρDL
∑
i
ωi

Zi
Ai

ρe,w ‍�
(6)

The value of ρDL is queried from DL models during each training 
iteration that allows Eq. (4) to be updated and the physics loss 
given by Eq. (3). The target is 80-keV VMI for the physics-
constrained training because the image provides the optimal 
image-noise and beam-hardening ratios.15,16

Validation experiment: proton RSP measurement 
for tissue substitute phantoms
A 150 MeV proton spot delivered by Varian ProBeam System 
(Varian Medical Systems, Palo Alto) was used to determine the 
measured RSP of seven tissue substitute phantoms including 
adipose, brain, muscle, liver, skin, spongiosa, and 45% HA bone. 
The dimension of each phantom container was 5.7 (width) x 5.7 
(height) x 12.9 (length) cm3 Figure 2(a43) illustrates the setup 
for the experiment with Zebra (IBA Dosimetry, Germany) to 
measure proton 80% distal range (R80). The water equivalent 
thickness (WET) was computed by taking differences between 
R80 measurements with and without phantoms. WET values 
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were divided by the physical width of phantom containers to 
obtain measured RSP for each material given in Table 2.

The Bethe-Bloch equation can be rearranged as Eq. (7) to obtain 
the reference mass density (ρref) using measured RSP (RSPmeas) 
where me, c, β, and I are the electron mass, speed of light, proton 
(150 MeV) velocity relative to the speed of light, and mean 
ionization potential of materials. The mean ionization potential 
of water (Iwater) is 75 eV.41 Table 4 gives the measured RSP, refer-
ence mass densities, and other material characteristics defined by 
Eq. (5) for each phantom.

	﻿‍

ρref = RSPmeas





∑
i
ωi

Zi
Ai

ρe,w
·

ln
[
2mec2β2

I
(
1−β2)

]
− β2

ln
[

2mec2β2

Iwater
(
1−β2)

]
− β2





−1

‍�

(7)

Empirical model for DECT parametric mapping
Eq. (8) shows the empirical model42 to estimate material mass 
densities using DECT parametric maps of relative electron 
density (ρe) and effective atomic number (Zeff) obtained from 
Siemens Syngo.Via. This linear fitting model is not valid for low-
density material such as an inflated lung, so a constant value of 
0.26 g/cm3 is used when materials’ relative electron densities are 
lower than 0.37. We implemented the empirical model in Matlab 
R2021b and compared it to ResNet models trained by the PDMI 
framework.

 

	﻿‍
p
(

g
cm3

)
=

{
−0.1746 + 1.176ρe
0.26

ρe ≥ 0.37
ρe < 0.37

‍
 
�

(8)

Evaluation
To evaluate the performance of the PDMI framework, we compare 
the proposed physics-constrained DL model to conventional DL 
and empirical models. The implemented ResNet can take inputs 
from both DECT and MRI (MR-DE) or merely DECT (DE). We 
refer to the ResNet models trained by the physics-constrained 
loss function (Eq. (3)) as PRN-MR-DE and PRN-DE. The ResNet 
models trained by the conventional loss function (Eq. (2)) are 

denoted as RN-MR-DE and RN-DE. The empirical model is 
given by Eq. (8).

The mean percentage error (MPE) is the evaluation metric to 
quantify model accuracy for tissue surrogate phantom analyses 
with the reference mass densities from proton measurement. Eq. 
(9) defines MPE where x, REF, i, and N denote the voxel quantity, 
reference values, ith voxel, and total voxels.

	﻿‍
MPE = 1

N

N∑
i=1

(
xi − xi,REF

xi,REF

)
× 100%

‍�
(9)

RESULTS
The PDMI framework allows ResNet to be trained with a physics-
constrained loss or a conventional mass density loss. The investi-
gated models include ResNet trained with a physics-constrained 
loss using MRI and DECT images or DECT-only images (PRN-
MR-DE or PRN-DE) and ResNet trained with a conventional 
mass density loss using MRI and DECT images or DECT-only 
images (RN-MR-DE or RN-DE).

Inference of material mass densities for tissue 
substitute phantoms
MPE results for the empirical, conventional, and physics-
constrained models are shown in Table 5, with lowest MPE value 
for each phantom in bold. PRN-MR-DE yields the lowest MPE 
values for most phantom materials. The additional MRI data 
adapted by PRN-MR-DE improve the model accuracy for all 
phantoms compared to PRN-DE. For example, PRN-MR-DE 
improves the errors from PRN-DE by 1.9 and 1.08% for adipose 
and skin. In the case where RN-MR-DE results in considerable 
uncertainty, the physics-constrained training usually can regu-
larize ResNet to deliver lower model errors. For instance, PRN-
MR-DE reduces the errors from RN-MR-DE by 2.86 and 4.28% 
for adipose and 45% HA bone. The empirical model achieves the 
optimal error of −0.62% for adipose.

Figure  3 shows the boxplot of different models’ mass density 
distributions for each phantom. RN-DE yields an unreasonable 
density range for adipose, since the upper bound reaches 1.2 g/
cm3. When the reference mass densities of adipose and 45% HA 
bone are not included in interquartile ranges by RN-MR-DE, the 

Table 4. Material characteristics for tissue substitute phantoms

Tissue surrogate RSPmeas ρref (g/cm3) ‍∼z ‍ ‍z ‍
Adipose 0.979 0.947 5.902 5.502

Brain 1.014 1.020 7.445 7.023

Muscle 1.056 1.067 7.406 6.954

Liver 1.054 1.063 7.421 6.993

Skin 1.067 1.082 7.447 7.004

Spongiosa 1.076 1.093 9.711 7.673

45% HA bone 1.344 1.476 13.152 11.025

HA, hydroxyapatite.
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physics-constrained training can regularize the model responses. 
For instance, PRN-MR-DE predicts the median adipose and 
45% HA bone values close to the reference. The empirical model 
delivers median values within interquartile ranges for most 
phantoms except skin and spongiosa. RN-MR-DE results in 
the optimal median value prediction for spongiosa. For most 
phantoms, the median values predicted by PRN-MR-DE are the 
closest to the reference compared to other models.

Retrospective head-and-neck patient analysis
Figure  4 depicts a retrospective density map prediction using 
HN patient images. Figure 4(a1)–(a2) show the patient anatomy 

acquired from MRI and DECT scans. Figure 4(b1)–(b4) illustrate 
the density maps generated from different models. Figure 4(c1) 
portrays the line profile from the red line in Figure 4(a1)–(a2) 
across regions of spine vertebrae. At voxel 22 and 91, PRN-DE 
estimates the mass density equal to 0.95 g/cm3, while the 
empirical model and PRN-MR-DE predict the value of 1.04 g/
cm3. Based on the MRI image from Figure  4(a2), these two 
voxels correspond to soft tissue, and a typical mass density of 
soft tissue should range from 1.04 to 1.07 g/cm3 according to 
ICRU 44.43 Figure 4(c1) also shows that the densities of cervical 
vertebrae at voxel 56 are: 1.69 g/cm3 from the empirical model 
and RN-MR-DE; 1.97 g/cm3 from PRN-DE; 1.80 g/cm3 from 

Table 5. Comparisons of mass densities between the reference and different models

Phantom

MPE

Empirical model

Conventional Physics-constrained

RN-DE RN-MR-DE PRN-DE PRN-MR-DE
Adipose −0.62% 7.65% −3.58% 2.62% −0.72%

Brain −0.37% 0.37% 0.49% 0.34% −0.29%

Muscle 0.09% −0.93% −0.18% −0.61% −0.03%

Liver 0.27% −0.71% 0.34% −0.68% 0.22%

Skin 0.56% 0.51% −0.13% 1.24% 0.16%

Spongiosa 1.02% 1.20% 0.05% 3.83% 3.13%

45% HA bone −0.78% −5.72% −4.86% −1.36% −0.58%

HA, hydroxyapatite; MPE, mean percentage error; PRN, physics-constrained ResNet.

Figure 3. Boxplot of mass density distributions generated by the empirical model, RN-DE, RN-MR-DE, PRN-DE, and PRN-MR-DE 
for tissue substitute phantoms including (a) adipose, (b) brain, (c) muscle, (d) liver, (e) skin, (f) spongiosa, and (g) 45% HA bone. 
The red line presents the reference mass densities. HA, hydroxyapatite; PRN, physics-constrained ResNet.
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PRN-MR-DE. Based on ICRP 70,44 the mass density of hydrated 
trabecular bone is about 1.87 g/cm3. Figure 4(c2) gives the line 
profile from the purple line in Figure 4(a1)–(a2). From the MRI 
image (Figure 4(a2)), the voxel 1–8 and voxel 9–13 correspond 
to adipose and soft tissue, and average mass densities for voxel 
over these two regions are: 0.93 and 1.03 g/cm3 from PRN-
MR-DE; 0.88 and 0.98 g/cm3 from PRN-DE. The expected mass 
density of adipose is 0.92 g/cm3 from ICRU 44. Figure 4(c2) also 
shows that the mass densities of the temporal bone at voxel 15 
are: 2.33 g/cm3 from PRN-DE; 2.15 g/cm3 from PRN-MR-DE; 
2.03 g/cm3 from the empirical model. Based on the literature,45 
99.7% of temporal bone data ranges from 1.63 to 2.22 g/cm3. 
Both Figure 4(c1)–(c2) display that PRN-MR-DE agrees with the 
trend of VMI HU profiles.

DISCUSSION
DECT has been clinically evaluated and investigated to derive 
accurate RSP maps, which can be adapted by commercial 

treatment planning systems for proton treatment planning. 
These approaches can be classified into physics-based22,28,46 and 
ML-based30 dual-energy models, and both approaches aim to 
support proton analytical dose calculation. Conventional ML 
methods require a separate measurement for phantoms’ RSP 
or mass density values as the ground truth to train ML models 
(Eq. (2)) such that the phantom measurement or manufacturing 
uncertainty from calibration phantoms is inherently rooted in 
the ML models, especially when an independent measurement 
is not possible due to phantom designs and vendor data must 
be used. For the first time, we propose a PDMI framework to 
embed physics insights into DL training and exclude the uncer-
tainty from material mass density measurement. The loss func-
tion defined by Eq. (3) does not require separate measurements 
for material mass densities; instead, the training target can be 
obtained by imaging the calibration phantoms. Eq. (4) correlates 
the images (ymeas) in Eq. (3) and model predicted mass density 
(ρDL) in Eq. (6) such that the physics-constrained loss function 

Figure 4. Images from (a1) 80-keV VMI and (b1) T1DW for the same patient. Mass density maps of a patient from an HN site gen-
erated by (b1) the empirical model (Eq. (8)), (b2) conventional ResNet trained by MRI and DECT (RN-MR-DE) images, (b3) PRN 
trained by DECT (PRN-DE) images, and (b4) PRN trained by MRI and DECT (PRN-MR-DE) images. (c1) The line profile of the red 
line from (a1)–(a2). (c2) The line profile of the purple line from (a1)–(a2). DECT, dual energy CT; PRN, physics-constrained ResNet; 
VMI, irtual monochromatic image; T1DW, T1 weighted Dixon water-only
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(Eq. 3) does not require separate measurement of material 
mass density. The proposed framework provides an alterna-
tive approach to leverage MRI to improve the uncertainty for 
radiotherapy.

The physics-constrained training does not require separate 
measurement of mass densities for calibration phantoms as the 
ground-truth targets; instead, the targets are CT numbers from 
VMI that can be consistently acquired from DECT images as 
the acquisition for DL model inputs. For instance, Table 5 indi-
cates that RN-MR-DE without physics training underestimates 
the mass densities for adipose and 45% HA bone by 2.86 and 
4.28%, compared to PRN-MR-DE with physics training. Addi-
tional MRI information can also improve the accuracy of mass 
density inference for DL models. For example, by training DL 
models with additional MRI images, conventional RN-MR-DE 
improve the errors by 4.07 and 1.15% for adipose and spongiosa, 
compared to RN-DE trained from DECT-only images. Although 
Table 5 shows that the empirical model achieves the minimum 
error for adipose, PRN-MR-DE still shows comparable results 
since the difference is 0.1%. Figure 3 depicts that PRN-MR-DE 
predicts the closest median values of mass density for most phan-
toms. PRN-MR-DE generally can reach the optimal error values 
for most tissue substitute phantoms.

For the retrospective patient analysis, the line profiles in 
Figure  4(c1)–(c2) show that the mass density curves by PRN-
MR-DE agree with the trend of 80-keV VMI, and the density 
values for adipose, soft tissue, and bone are within a reasonable 
range published in literature.43–45 However, Figure 4(c1) shows 
that the empirical model tends to underestimate the mass density 
for cervical vertebrae. Figure 4(c2) displays that PRN-DE under-
rates the mass density for adipose and soft tissue and results in 
temporal density variations larger than the range found in the 
literature.45 These observations indicate that the additional MRI 
information can increase the accuracy of DL models. Meanwhile, 
RN-MR-DE without physics constraints could underestimate 
temporal density in some regions. For example, Figure  4(c2) 
depicts that RN-MR-DE predicts the temporal density of 1.59 g/
cm3 at voxel 18, outside 99.7% of the temporal density data.45 
ResNet trained without MRI images and physics insights exhib-
ited similar patterns between the phantom and retrospective 
patient studies. Without physics constraints, both models could 
underestimate the mass densities for low- and high-density 
materials.

Hünemohr et al47 concluded that the uncertainty of RSP was 
dominated by mass density prediction. Proton Monte Carlo 
dose calculation has been recommended for treatment planning 
when patient images involve heterogeneous tissues or surgical 
implants.48 Consequently, we aim to use physics insights to regu-
larize DL models and combine MRI and DECT data to derive 
accurate mass density maps. The proposed physics-constrained 
method is based on image domain training, and model accu-
racy can be compromised by image noise, artifacts, or calibra-
tion phantom inhomogeneities. The accuracy of the empirical 
model given by Eq. (8) is also impacted by the noise of relative 
electron density maps. Table  5 indicates that RN-MR-DE can 

deliver minimal spongiosa error due to the phantom inhomoge-
neity. In contrast, conventional DL model training corresponds 
each input image voxel to a constant material mass density so 
that conventional DL models can demonstrate effective noise 
suppression capability.

Model inference from data belongs to inverse problems, 
which are ill-posed,49 and the physics-constrained loss 
can potentially regularize DL models to remedy this ill-
posedness. However, additional biological equivalent and 
MRI-visible tissue substitute phantoms are essential to 
extend training data coverage and validate the robustness 
of DL models for clinical applications. Future investigation 
will likely include the development of biological equivalent 
and MRI-visible tissue substitute phantoms to cover the 
mass density distribution for most human tissues. Further-
more, MRI signal intensity is dependent upon T1 and T2 
relaxation time constants of the constituent hydrogen 
nuclei, or spins, within the water molecules in these calibra-
tion phantoms, which themselves vary based on molecular 
motion, size, and interactions between other spins and the 
surrounding lattice. For instance, cortical bone has a long 
T1 because water molecules are tightly bound to rigid HA 
crystals, which does not allow for motion near the Larmor 
frequency required for efficient T1 relaxation of a spin back 
to its surrounding lattice, and a very short T2 because there 
is efficient spin-spin relaxation among the tightly bound 
water molecules; these effects typically make cortical bone 
dark on T1- and T2 weighted MR images. While most of the 
tissue substitute phantoms demonstrate appropriate contrast 
on the T1DW, T1DF, and T2-STIR MR images, the 45% HA 
phantom does not display the same contrast as cortical bone. 
Although the 45% HA phantom is also dark on T1-STIR 
imaging, it is uncharacteristically bright on T1DW imaging. 
This is likely due to differences in the micro-structure of 
the HA phantom and in vivo cortical bone, which result in 
the water molecules in the phantom not as tightly bound to 
HA crystals as in bone. Meanwhile, customized MRI-visible 
phantoms usually are made with water, fat, or other organic 
matter, and this approach can introduce additional uncer-
tainty for phantom mass densities from volumetric and 
weight measurement and phantom preservation. Physics-
constrained training has the potential to be a promising tool 
to eliminate this uncertainty. Future investigation will like-
wise integrate the proposed PDMI framework into clinical 
workflows to evaluate dosimetry impacts50 for treatment 
planning with mass density maps generated from different 
models.

CONCLUSIONS
A PDMI framework was developed to demonstrate the feasibility 
of using MRI to improve patient mass density maps generated 
by DECT-only DL methods using tissue substitute surrogates. 
Physics-constrained training can regularize DL models and 
enhance model efficacy, especially when the measurement of mass 
densities for calibration phantoms includes significant uncer-
tainty. The retrospective patient density map showed that tissue 
mass densities obtained from the proposed physics-constrained 
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model were within expected intervals. The proposed framework 
has the potential to improve the quality of treatment planning 
for proton therapy through accurate material mass density maps 
derived from MRI and DECT images.
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