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Healthy aging is associated with structural and functional network changes in the brain, which have been linked to deterioration in
executive functioning (EF), while their neural implementation at the individual level remains unclear. As the biomarker potential of indi-
vidual resting-state functional connectivity (RSFC) patterns has been questioned, we investigated to what degree individual EF abilities
can be predicted from the gray-matter volume (GMV), regional homogeneity, fractional amplitude of low-frequency fluctuations (fALFF),
and RSFC within EF-related, perceptuo-motor, and whole-brain networks in young and old adults. We examined whether the differences
in out-of-sample prediction accuracy were modality-specific and depended on age or task-demand levels. Both uni- and multivariate
analysis frameworks revealed overall low prediction accuracies and moderate-to-weak brain–behavior associations (R2 < 0.07, r < 0.28),
further challenging the idea of finding meaningful markers for individual EF performance with the metrics used. Regional GMV, well
linked to overall atrophy, carried the strongest information about individual EF differences in older adults, whereas fALFF, measuring
functional variability, did so for younger adults. Our study calls for future research analyzing more global properties of the brain, different
task-states and applying adaptive behavioral testing to result in sensitive predictors for young and older adults, respectively.
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Introduction
Healthy, cognitive aging is associated with significant structural
changes in the brain like cortical thinning, volumetric shrinkage,
and decline in white-matter integrity (Park and Reuter-Lorenz
2008; Reuter-Lorenz and Park 2014) as well as changes in the
functional network architecture (Spreng and Turner 2019). These
brain changes are thought to be accompanied by a decline in
cognitive capacities, in which information processing in several
cognitive tasks becomes less efficient, especially in demanding
tasks that tap into executive functioning (EF) (Park et al. 2002; Park
and Reuter-Lorenz 2008). By contrast, performance appears to
remain rather stable in tasks taxing semantic abilities (Salthouse
1996; Park et al. 2002), implicit memory, or general knowledge
(Park et al. 2002). Therefore, the effects of aging on the brain, and
also implications on the behavioral performance, are quite het-
erogeneous. Overall, previous studies indicate that the cognitive
system is highly adaptive and dynamic (Greenwood 2007; Park
and Reuter-Lorenz 2008), which implies that modifications of the
neural architecture, such as functional reorganization, occur to
maintain sufficient levels of cognitive functioning.

EF abilities are relevant for goal-directed thought and adap-
tive behavior in complex environments and are thus critical for
everyday life. Rather than being defined as a single process, EF
is a multidimensional construct that involves diverse cognitive
abilities. Different lines of research suggest 3 core subcompo-
nents: inhibitory control, working memory, and cognitive flexi-
bility (Lehto 1996; Miyake et al. 2000; Alvarez and Emory 2006;
Diamond 2013). Inhibitory control has been linked to controlling
one’s attention, thoughts, or emotions to attain higher-order or
long-term goals. Working memory is associated with holding

content in mind and working with it. For instance, when incor-
porating new information in plans or considering alternatives.
Finally, cognitive flexibility is important in the context of changing
one’s perspective or adapting to changing rules/demands. At the
neural level, EF has been linked to a distributed set of brain regions
that have been unified into the so-called multiple-demand net-
work (intraparietal sulcus, inferior frontal sulcus, dorsolateral
prefrontal cortex [DLPFC], anterior insula/frontal operculum, pre-
supplementary motor area [pre-SMA], and anterior cingulate cor-
tex [ACC]), and also to other brain areas, depending on specific
task demands (Teuber 1972; Duncan and Owen 2000; Duncan
2010; Miyake and Friedman 2012; Camilleri et al. 2018).

Earlier studies found age-related differences in EF performance
to be partially accounted for by changes in resting-state func-
tional connectivity (RSFC) within brain networks associated with
EF (Steffener et al. 2009; Langner et al. 2015; Hausman et al. 2020),
and they were able to predict EF abilities of previously unseen
individuals from RSFC (Reineberg et al. 2015; He et al. 2021). How-
ever, in our companion study (Heckner et al. 2023), investigating
the same dataset and applying the same data analysis strategy
as in the current study, but focusing on network specificity, we
demonstrated overall low prediction accuracies (as indicated by
the root mean squared error [RMSE], mean absolute error [MAE],
and correlation coefficient [Pearson’s r]) for individual EF perfor-
mance levels from within-network RSFC. Furthermore, we did not
identify any network specificity, that is, EF performance was not
better predicted from an EF-related brain network than from EF-
unrelated networks (i.e. a perceptuo-motor network and a whole-
brain approach). The overall low prediction accuracies and brain–
behavior associations (coefficients of determination R2 ≤ 0.04)
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raised the question of whether the associations found are indeed
meaningful. Together with previous research (Finn 2021; Finn
and Bandettini 2021), these findings challenged the notion that
biomarkers for individual EF performance can be identified using
RSFC patterns.

Since the effects of cognitive aging as well as the behavioral
consequences appear quite heterogeneous, magnetic resonance
imaging (MRI) metrics capturing different aspects of brain struc-
ture and function may need to be applied. A commonly used
metric derived from resting-state fMRI, regional homogeneity
(ReHo), has been shown to be sensitive to age differences during
rest (Wu et al. 2007) and offered a better prediction accuracy of
crystallized intelligence compared to RSFC (Larabi et al. 2021).
ReHo measures the local similarity of a voxel’s time series to its
neighboring voxels and is based on the assumption that mean-
ingful brain activity is represented in clusters of neighboring
voxels rather than single voxels (Zang et al. 2004). It has been
discussed as local connectivity that is necessary to induce global
connectivity (Jiang and Zuo 2016). Another metric derived from
resting-state fMRI is the fractional amplitude of low-frequency
fluctuations (fALFF), which reflects the relative contribution of
low-frequency fluctuations within a specific frequency band to
the whole frequency range (Zou et al. 2008) and can thus be
taken as a measure of functional within-subject brain variability.
Previous studies have identified a negative association between
age and functional brain variability as measured via fALFF. These
changes were associated with cortical atrophy, measured through
cortical thickness or gray-matter volume (GMV), and a decline
in inhibitory control (Hu et al. 2014; Vieira et al. 2020). GMV is a
well-established and widely used method for quantifying regional
brain morphology, which has been shown to be linked to cogni-
tive aging, atrophy, and performance in tasks taxing executive
functioning (e.g. Good et al. 2001; Gunning-Dixon and Raz 2003;
Oh et al. 2014). Its wide use throughout the literature offers the
advantage of comparability with other studies and results in the
field.

As our recent companion paper questioned RSFC’s potential as
a biomarker for individual EF abilities, the aim of the current study
was to investigate and systematically compare further widely
investigated functional and structural brain metrics for their
potential as a biomarker for EF performance. For this purpose,
we defined an EF network (EFN) in the brain by integrating the
results of previous neuroimaging meta-analyses (Rottschy et al.
2012; Langner et al. 2018; Worringer et al. 2019), each encom-
passing diverse facets of EF. We further included a perceptuo-
motor (Heckner et al. 2021) and a whole-brain network (Power
et al. 2011) for prediction, as EF-unrelated control networks. Then,
we examined to what degree individual abilities in the 3 main
EF subcomponents (i.e. inhibitory control, cognitive flexibility,
and working memory) could be predicted from GMV, RSFC, ReHo,
and fALFF within these networks in young and older adults,
respectively. For each to-be-predicted EF performance score, we
separately sought to predict performance in a high-demand (HD)
task (representative of increased EF demand) and a low-demand
(LD) EF control condition. We implemented a linear approach
using partial least squares regression (PLSR) for prediction, as
previous studies revealed comparable prediction accuracies for
a nonlinear approach (random forest) or connectome-based pre-
dictive modeling (Finn et al. 2015; Shen et al. 2017; Heckner et al.
2023). Overall, we investigated (i) whether one of the structural
or functional metrics (GMV, RSFC, ReHo, and fALFF) outperforms
the others in predicting EF; (ii) if this pattern changes depending
on the network, task-demand level, or age group; and (iii) if

young and older adults differ in their predictability depending
on the structural or functional metric, network, or task-demand
level.

Methods
Sample
Whole-brain magnetic resonance images of 116 healthy young
adults (age range = 20–40 yr, mean age = 26.67, SD = 5.80, 64
females) and 111 old adults (age range = 60–80 yr, mean
age = 68.19, SD = 5.66, 72 females) were obtained from the publicly
available enhanced Nathan Kline Institute-Rockland Sample
(eNKI-RS; Nooner et al. 2012). These age bins were chosen to
maximize the age variance for studying age-related differences
in the association between brain features and behavioral target
variables. We excluded participants with acute and/or severe
psychiatric or neurological disorders in the past or when
currently taking medication presumably affecting brain activity.
The reanalysis of the data was approved by the local ethics
committee of the Medical Faculty at the Heinrich Heine University
Düsseldorf. All participants underwent the same protocol.
The sample used was the same as in our companion paper
(Heckner et al. 2023). The specific sample used is available upon
request.

Neuroimaging data acquisition and processing
Brain images were acquired on a Siemens TimTrio 3T MRI scanner
(Siemens Medical Systems, Erlangen, Germany). T1-weighted
structural images were obtained using a MPRAGE sequence
(TR = 1.9 s, TE = 2.52 ms, flip angle = 8◦, in-plane resolution = 1.0 ×
1.0 × 1.0 mm3) and were further analyzed using SPM12 (Wellcome
Trust Centre Neuroimaging, London, https://www.fil.ion.ucl.ac.
uk/spm/) and the CAT12 toolbox (Gaser et al. 2022). Whole-brain
resting-state fMRI data were obtained using blood oxygen level–
dependent (BOLD) contrast (gradient-echo echo planar imaging
[EPI] pulse sequence, TR = 1.4 s, TE = 30 ms, flip angle = 65◦, voxel
size = 2.0 × 2.0 × 2.0 mm3, 64 slices, 404 volumes). Participants
were instructed to keep their eyes open and maintain fixation on
a central dot. Physiological and movement artifacts were removed
from the RS data by using FIX (FMRIB’s ICA-based Xnoiseifier,
version 1.061 as implemented in FSL 5.0.9; Griffanti et al. 2014;
Salimi-Khorshidi et al. 2014), which decomposes the data into
independent components and identifies noise components using
a large number of distinct spatial and temporal features via
pattern classification. Unique variance related to the identified
artifactual components is then regressed from the data. Data
were further preprocessed using SPM12 and in-house MATLAB
scripts. After removing the first 4 functional dummy volumes, the
remaining EPI volumes were corrected for head movement by a
2-pass affine registration procedure. First, images were aligned to
the initial volume and, subsequently, to the mean of all volumes.
The mean EPI image was then coregistered to the gray-matter
probability map provided by SPM12 using normalized mutual
information and by keeping all EPI volumes aligned. Next, the
mean EPI image of each participant was spatially normalized
to Montreal Neurological Institute (MNI)-152 space using the
“unified segmentation” approach (Ashburner and Friston 2000).
The resulting deformation parameters were then applied to all
other EPI volumes.

Brain networks
We used 3 different networks for our prediction analyses, which
were the same as in our companion study (Heckner et al. 2023):
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Fig. 1. Nodes of meta-analytically defined A) executive function and B) perceptuo-motor networks, and C) Power et al.’s coordinates of putative functional
areas. Taken with permission and modified from Heckner et al. (2023), copyright © 2023 Oxford University Press.

(i) An EF-related network (EFN) based on the maximum con-
junction of the 3 pertinent meta-analyses investigating work-
ing memory (Rottschy et al. 2012), cognitive action regulation
(Langner et al. 2018), and multitasking (Worringer et al. 2019).
The resulting network comprised 50 nodes (i.e. brain coordi-
nates). (ii) An EF-unrelated, perceptuo-motor network that inte-
grated visual, auditory, and motor processes and comprised 59
nodes (Heckner et al. 2021). (iii) A whole-brain network as a
control. We employed Power et al.’s (2011) graph of putative func-
tional areas, which includes 264 nodes. All networks are displayed
in Fig. 1.

Brain metrics
Considering our multimodal approach, we computed metrics
for structural (GMV) and functional (RSFC, ReHo, and fALFF)
modalities for every node in each network. Network nodes covered
a sphere with 6-mm radius around each peak coordinate. Apart
from the whole-brain network based on Power et al. (2011),
peaks of meta-analytic convergence were extracted using the
SPM Anatomy Toolbox version 3 (Eickhoff et al. 2005, 2007) and
were manually checked so that they would not overlap with
each other or exceed the cortex when spheres were added. A
gray-matter mask, including subcortical regions, was used to
ascertain which nodes comprised gray matter (https://zenodo.
org/record/6463123#.YlltJsjMJ3h).

Gray-matter volume
Structural T1-weighted images were preprocessed and analyzed
using SPM12 and the CAT12 toolbox. Within a unified segmenta-
tion model (Ashburner and Friston 2000), images were corrected
for bias-field inhomogeneities; the brain tissue was classified into
gray matter, white matter, and cerebrospinal fluid, and the images
were spatially normalized to the MNI template using DARTEL
(Ashburner and Friston 2011). Then, the segmented images were
nonlinearly modulated using the Jacobian determinant derived
from the normalization process to adjust them to the amount
of expansion and contraction applied during normalization. GMV
values were then obtained for each voxel in a given node as
computed in CAT12 and were then averaged across the node.

Resting-state functional connectivity
The variance explained by the mean white matter and cere-
brospinal fluid signal was removed from the time series to reduce
spurious correlations. Subsequently, the data were band-pass
filtered with the cut-off frequencies of 0.01 and 0.1 Hz.

There were no significant correlations between the target vari-
ables (i.e. task scores) and sex in either subgroup. The correla-
tion between within-scanner movement (derivative of root mean
square variance over voxels) and age was significant in the older
subgroup. However, we refrained from additionally correcting
for movement (i.e. removing movement-related variance that is
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partially shared with age). In our companion study, we addition-
ally computed RSFC without global signal regression and with
statistically removing the influence of the 6 head movement
parameters (x, y, z translations and α, β, γ rotations) derived from
realignment, their squared values as well as their derivatives to
control for possible age-specific effects of global signal regres-
sion and movement. Importantly, both corrections did not alter
the results, except for the main effect of age after movement
correction, which was, however, qualified by the crossed age ×
task-demand-level interaction and was therefore not interpreted.
As such, movement regression may have removed age-related
variance from the BOLD signal time series (Heckner et al. 2023)
and was therefore not applied here.

In each network, RSFC was computed by first extracting the
BOLD signal time courses of all voxels within each network node
expressed as the first eigenvariate. Then, pair-wise functional con-
nectivity was computed as Fisher’s Z-transformed linear (Pearson)
correlation between the first eigenvariate of the time series of
each network’s nodes.

Regional homogeneity
ReHo represents the homogeneity of a voxel’s time series with
respect to its nearest local neighbors’ time courses (Zang et al.
2004) and is computed through Kendall’s coefficient of concor-
dance (KCC; Kendall and Gibbons 1990). Thus, each voxel was
assigned a KCC value based on its time series homogeneity toward
its nearest neighbors and was then averaged across the node.

Fractional amplitude of low-frequency fluctuations
fALFF was computed as the ratio between power spectrum in the
frequency range (0.01–0.1 Hz) and spectral power in the entire
frequency range. Therefore, the time series of each voxel was
transformed to the frequency domain without band-pass filtering.
Then, the square root was calculated at each frequency range of
the power spectrum. Per voxel, the sum of power in the 0.01–0.1 Hz
frequency range was divided by the summed power spectrum
across the entire frequency range (Zou et al. 2008). t-tests compar-
ing the age groups with respect to their behavioral performance
in all 3 EF tasks and 2 conditions as well as descriptive statistics
can be found in our previous paper (Heckner et al. 2023).

Behavioral measures
Executive function target variables were obtained from the eNKI-
RS and comprised a HD and LD (i.e. control) condition for each of
3 classical EF tasks (i.e. working memory, inhibitory control, and
cognitive flexibility). All tasks used were previously evaluated and
were shown to have moderate to high reliability (Delis et al. 2001;
Homack et al. 2005; Gur et al. 2010). Performance distributions per
age group can be found in the supplement (see Figs. S1–S6).

Working memory
Working memory ability was quantified using reaction times (RT)
of correct responses of the 1-back (HD) and 0-back (LD) conditions
of the Short Letter-N-Back Test, which is part of Penn’s Com-
puterized Neurocognitive Battery (Gur et al. 2010). In this test,
participants are required to press a button if the letter on the
screen is the same as the one presented in N trials before.

Inhibitory control
Inhibition performance was measured using RT of the incon-
gruent (HD) and congruent (LD) conditions of the Color Word
Interference (CWI) Test, which is part of the Delis-Kaplan
Executive Function System (D-KEFS; Delis et al. 2004). Here,

participants are asked to name the ink color of a written word
but inhibit the response to the word naming a color (same or
different as the ink) itself.

Cognitive flexibility
For quantifying cognitive flexibility, we used RT of the number and
letter switching and sequencing conditions of the Trail Making
Test (TMT), which is part of the D-KEFS. In this test, participants
are asked to connect consecutive targets of 1 type (e.g. numbers;
LD) or of 2 types (numbers and letters; HD) in an alternating
fashion.

Raw performance scores for all tasks were z-transformed, and
outliers with >3 times the standard deviation below or above the
mean were removed.

Prediction
Individual z-transformed performance scores were then predicted
from within-network GMV, RSFC, ReHo, and fALFF using PLSR
(Krishnan et al. 2011). PLSR is similar to a supervised principal
component regression (based on eigen-decomposition) and is thus
advantageous when dimensionality reduction is beneficial for the
analysis. In contrast to principal component regression, dimen-
sionality reduction in PLSR is supervised (i.e. it uses information
about the target variables), yielding the advantage that the result-
ing latent variables are all related to the target variables. After
dimensionality reduction, a linear regressor was applied to the
transformed data.

For prediction, a 10-fold cross-validation was performed for
which the data were split into 10 sets, 9 of which were used for
training, while the 10th was held back as a test set and was sub-
sequently used for prediction of the unseen data. This was done
with each set being the test set once. In total, 100 repetitions of
this 10-fold cross-validation were computed to ensure robustness.
Prediction accuracy was assessed via RMSE, MAE, and Pearson’s r.

Prediction accuracy, as indicated by RMSE for the 100 repe-
titions, was then submitted to a 2 (age group) × 3 (network) ×
2 (task-demand level) × 4 (modalities) mixed-measures ANOVA
(P < 0.00005, Bonferroni-adjusted for the 10 × 100 cross-validation
scheme) to further assess age differences in prediction accu-
racy, modality specificity, and the impact of task-demand level.
Therefore, prediction results for LD (i.e. 0-back, CWI congru-
ent, and TMT consecutive) and HD (i.e. 1-back, CWI incongru-
ent, and TMT switch) conditions were averaged into LD and HD
compound scores, respectively. When Mauchly’s test of spheric-
ity was significant, Greenhouse–Geisser corrected results were
interpreted.

To further corroborate the ANOVA main effects, machine-
learning-adjusted t-tests for significant differences were com-
puted (Nadeau and Bengio 2003). To account for violating the
independence assumption in a paired Student’s t-test, here, the
variance estimate is adjusted by training and sample size.

Results
Prediction
The averaged prediction results from the test set as indicated
by RMSE are displayed in Fig. 2 and as indicated by Pearson’s r
are displayed in Table 1. Additional accuracy measures, including
RMSE and MAE, can be found in Tables S1–S6.

Mixed-measures ANOVA
To further assess age differences in prediction accuracy as well
as network specificity and the impact of the task-demand level,

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad338#supplementary-data
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Fig. 2. Prediction accuracies expressed as RMSE for CWI LD congruent condition, CWI HD incongruent condition, TMT LD consecutive condition, TMT
HD switch condition, 0-back, and 1-back for old (dark) and young (light) adults from prediction within the executive function network, perceptuo-motor
network, and Power’s graph of putative functional areas.

we submitted the prediction accuracies as given by RMSE values
for each of the 100 repetitions to a 2 (age group) × 3 (network)
× 2 (task-demand level) × 4 (modalities) mixed-measures ANOVA
(P < 0.00005, Bonferroni-adjusted for the 10 × 100 cross-validation
scheme).

In a first step, prediction results for LD (i.e. 0-back, CWI congru-
ent, and TMT consecutive) and HD (i.e. 1-back, CWI incongruent,
and TMT switch) conditions were averaged into LD and HD com-
pound scores, respectively. The ANOVA yielded significant main
effects for the factors modality, network, task-demand level, and
age group. These effects were qualified by 2-way, 3-way, and a
4-way interaction among all factors (see Table 2).

The complementary machine-learning-adjusted t-tests con-
ducted to corroborate the main effects did not confirm the main
effects of age and task-demand level. Network differences were
only significant for perceptuo-motor versus Power networks, but
not for EF versus perceptuo-motor and EF versus Power networks,
respectively. All modality differences, but fALFF versus GMV, were
significant (see Table S7).

We obtained the following results from the 2-way interac-
tions. While prediction accuracy in older participants was signifi-
cantly better for LD than HD task conditions, prediction accuracy
in younger participants was better for HD than LD conditions
(see Fig. 3A and Table 3). Regarding network differences, predic-
tion accuracy for LD conditions was best for the whole-brain
approach, as compared to the perceptuo-motor network and the
EFN, whereas for HD conditions, it was best for the EFN (see Fig. 3B
and Table 3). Furthermore, in older adults, prediction accuracy
was best for the EFN, relative to the whole-brain and perceptuo-
motor networks. Conversely, for younger adults, prediction accu-
racy was generally best for the whole-brain network (see Fig. 3C
and Table 3).

For LD conditions, prediction accuracy was generally best for
fALFF, as compared to RSFC, GMV, and ReHo, while for HD condi-
tions, prediction accuracy was generally best for GMV (see Fig. 3D
and Table 3). For ReHo and fALFF, prediction accuracy was gener-
ally best for the EFN, while for RSFC, prediction accuracy was best
for the whole-brain network and for GMV for the perceptuo-motor
network (see Fig. 3E and Table 3). For older adults, prediction
accuracy was generally the highest for GMV, as compared to fALFF,
RSFC, and ReHo, while for younger adults, prediction accuracy was
best for fALFF (see Fig. 3F and Table 3).

Post-hoc pairwise comparisons revealed that prediction accu-
racy (i.e. RMSE) was better for older than younger participants
(see Fig. 4A and Table 4). Prediction accuracy was better for HD
as compared to LD (see Fig. 4B and Table 4) conditions across
networks, modalities, and age groups. Across the demand level,
networks, and age groups, prediction accuracy was best for fALFF
as compared to GMV, RSFC, and ReHo (see Fig. 4C and Table 4).
Prediction accuracy was best for the Power nodes as compared to
the EFN and perceptuo-motor network (see Fig. 4D and Table 4).
The EFN and perceptuo-motor network did not differ significantly.

Discussion
The current study investigated and systematically compared to
what extent the regional brain morphology (GMV) and 3 different
functional brain metrics (RSFC, ReHo, and fALFF) predict the
individual differences in EF abilities and whether these brain–
behavior associations are modality- and/or age-specific. For this
purpose, we defined 3 brain networks: an EF-related network, a
perceptuo-motor network linked to visual, auditory, and motor
processing, and a whole-brain network. We predicted individual
EF performance scores of 3 critical EF subcomponents (i.e.

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad338#supplementary-data


11002 | Cerebral Cortex, 2023, Vol. 33, No. 22

Table 1. Prediction results as indicated by Pearson’s r according to brain modality, brain network and target variable for the young and
old subgroup.

CWI_LD CWI_HD TMT_LD TMT_HD 0-back 1-back

GMV
EFN

Old .19a .19a .13 .24a .01 .22a

Young −.09 .10 .18a −.01 −.18 .10
PercMot

Old .15 .21a .08 .27a .08 .19a

Young −.08 .08 .25a −.02 −.06 .12
Power

Old .18a .24a .11 .20a .07 .12
Young −.07 .11 .26a .08 −.16 .02

RSFC
EFN

Old .10 −.12 .04 .22a .04 −.13
Young −.04 −.02 .02 −.27 .10 .01

PercMot
Old .01 −.06 −.21 −.06 .11 .15
Young .05 −.01 .06 −.22 −.02 −.04

Power
Old .13 .03 .11 −.15 −.05 .10
Young .12 .05 .19a .12 −.15 −.07

ReHo
EFN

Old .04 .12 −.07 .07 .05 .02
Young −.04 .12 −.15 −.26 .12 .12

PercMot
Old −.17 .09 −.07 −.10 .16a −.18
Young −.07 .10 −.10 −.22 .01 −.11

Power
Old .03 .09 −.07 −.12 .16 −.04
Young −.01 −.14 −.02 −.23 .10 .10

fALFF
EFN

Old −.02 .06 .01 −.13 .14 .08
Young .06 .09 −.15 .00 .07 .10

PercMot
Old −.06 .04 −.14 −.04 .18a .05
Young .06 .09 −.18 .03 .04 .06

Power
Old −.14 .01 .04 −.15 .18a .05
Young .04 .07 −.10 .04 .07 .08

Note. EFN = Executive Function Network, PercMot = Perceptuo-Motor Network, GMV = Gray-Matter Volume, RSFC = Resting-State Functional Connectivity,
ReHo = Regional Homogeneity, fALFF = Fractional Amplitude of Low-Frequency Fluctuations, CWI = Color-Word Interference, TMT = Trail Making Test, LD =
Low-Demand, HD = High-Demand. aP < 0.05.

working memory, inhibitory control, and cognitive flexibility) from
within-network GMV, RSFC, ReHo, and fALFF. Finally, we submitted
the prediction results to a 2 (age group) × 4 (modalities) × 3
(network) × 2 (task-demand level) mixed-measures ANOVA to
assess the effects of modality and age. While prediction accuracy
was overall rather low to moderate, it was better for HD than LD
task conditions. This difference was especially pronounced for
fALFF and GMV. However, this effect might be driven by the age ×
task-demand-level interaction, as prediction accuracy for younger
adults was better for HD (vs. LD), whereas for older adults, it was
better for LD (vs. HD) conditions. Prediction accuracy for younger
adults was best with fALFF, while for older adults, the highest
accuracy was achieved with GMV.

Prediction of EF abilities
In line with our companion study (Heckner et al. 2023), as well
as published guidelines for prediction analyses (Scheinost et al.
2019; Poldrack et al. 2020), we assessed our prediction results
with RMSE, MAE, as well as Pearson’s correlation coefficient (r)

as these scores offer different, yet complementary, information
about the accuracy of predictive models and the association
between brain metrics and behavioral target variables. Here,
we will discuss prediction accuracy as measured with RMSE
(<0.8) and the respective Pearson’s r correlation coefficient
(note that cognitive performance was z-scored). As mentioned
above, prediction accuracies and brain–behavior associations
were moderate at best, and this was also evident from the
explained variance of the prediction models, as measured with
the coefficient of determination R2 (Scheinost et al. 2019). In
our study, the explained variance did not exceed 6%. Whole-
brain RSFC was, for example, only able to explain 3.7% of the
variance in the TMT LD condition for younger adults (r = 0.19).
GMV within the EFN was able to explain 3.7% of the variance
in the TMT HD condition for older adults (r = 0.24). Similarly,
but using the perceptuo-motor network, 5.2% variance was
explained for the same target for older adults (r = 0.27) and only
2.1% targeting TMT LD condition in the young (r = 0.25) was
explained. Additionally, using GMV from whole-brain features,
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Table 2. ANOVA results.

ANOVA results F df P η2
p

Main effects
Modality 5,694.22 2.88, 569.45 0 .966
Network 79.76 2, 396 <0.001 .287
Demand level 8,387.54 1, 198 <0.001 .977
Age 1,373.24 1, 198 <0.001 .874

Two-way interactions
Age × modality 4,192.85 2.88, 569.45 0 .955
Age × network 231.43 2, 396 <0.001 .539
Age × demand level 36,476.45 1, 198 <0.001 .995
Modality × network 1,701.77 5.64, 1116.63 0 .896
Modality × demand level 1,514.61 2.80, 554.22 <0.001 .884
Network × demand level 173.28 2, 396 <0.001 .467

3-way interactions
Modality × network × age 54.16 6, 1188 <0.001 .215
Modality × network × demand level 115.27 5.46, 1080.37 <0.001 .368
Age × modality × demand level 368.65 2.80, 554.22 <0.001 .651
Age × network × demand level 117.33 2, 396 <0.001 .372

4-way interactions
Age × network × demand level × modality 32.16 6, 1188 <0.001 .140

Fig. 3. Interaction effects for A) age × demand level, B) demand level × network, C) age × network, D) demand level × modality, E) network × modality,
and F) age × modality.
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Table 3. ANOVA interaction effects displayed as mean and standard error.

Old Young LD HD

Age × modality

GMV .754 (.0004) .804 (.0005) .805 (.0004) .753 (.0003)

Demand × modality
RSFC .795 (.0003) .802 (.0006) .803 (.0003) .795 (.0003)
ReHo .803 (.0004) .818 (.0004) .816 (.0004) .805 (.0005)
fALFF .783 (.0003) .751 (.0004) .779 (.0003) .755 (.0003)

Age × network
EFN .781 (.0003) .799 (.0003) .804 (.0003) .776 (.0003)

Demand × networkPercMot .786 (.0003) .793 (.0003) .803 (.0003) .777 (.0003)
Power .784 (.0003) .789 (.0003) .795 (.0003) .778 (.0004)

Age × demand
LD .771 (.0003) .831 (.0003)
HD .797 (.0003) .757 (.0003)

GMV RSFC ReHo fALFF

Modality × network
EFN .778 (.0003) .820 (.0005) .800 (.0005) .763 (.0003)
PercMot .771 (.0004) .809 (.0004) .713 (.0005) .765 (.0004)
Power .788 (.0005) .767 (.0003) .818 (.0006) .773 (.0005)

Note. EFN = Executive-Function-related Network, PercMot = Perceptuo-Motor-related Network, Power = Power et al.’s (2011) graph of putative functional areas,
HD = High-Demand, LD = Low-Demand, GMV = Gray-Matter Volume, RSFC = Resting-State Functional Connectivity, ReHo = Regional Homogeneity, fALFF =
Fractional Amplitude of Low-Frequency Fluctuations.

Fig. 4. Main effects for age (A), task (B), modality (C), and network (D) (mean ± standard error).

1.5% variance in TMT HD condition was explained for older adults
(r = 0.20) and 2.7% in the TMT LD condition for the young (r = 0.26)
was explained.

Predictions based on ReHo were not able to explain any vari-
ance in the target variables. Within-EFN fALFF, on the other hand,
explained 2.1% of variance in the working memory LD condition
for older adults (r = 0.14) and explained 2.6% when predicting from
the whole-brain (r = 0.18). From these results, it is surprising to
note that, while prediction from within-network fALFF resulted in
the best overall prediction accuracy, only very little variance could
be eventually explained. GMV was able to explain variance in
more tasks and conditions. Nevertheless, the amount of explained
variance was overall still quite low (R2 < 0.06). Thus, the question
arises how to harmonize the findings of – on the one hand –

better prediction accuracies but – on the other hand – quite low
brain–behavior associations for features extracted from fALFF.
One possibility would be that within-subject functional brain
variability may be highly important, even necessary, for EF but
that interindividual differences in this variability, as reflected
by fALFF, do not scale with individual EF abilities, at least not
in the normal range of performance. More work is needed to
understand the neural mechanisms and functional meaning
of fALFF.

Summing up, age group, as well as task and demand levels,
show moderate modality specificity. Brain–behavior associations
were generally rather low but were more pronounced when pre-
dicting from structural as compared to functional features. These
findings bring into question whether it is feasible to predict
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Table 4. Post-hoc pairwise comparisons of ANOVA effects.

Post-hoc pairwise comparisons

Factor Mean (SE)group1 Mean (SE)group2 P

Age .784 (.0002)old .794 (.0002)young 5.30 × 10−91

Modality .779 (.0002)GMV .767 (.0002)fALFF 3.27 × 10−87

.779 (.0002)GMV .799 (.0002)RSFC 4.33 × 10−129

.779 (.0002)GMV .810 (.0003)ReHo 7.67 × 10−153

.799 (.0002)RSFC .767 (.0002)fALFF 3.75 × 10−166

.799 (.0002)RSFC .810 (.0003)ReHo 3.27 × 10−74

.767 (.0002)fALFF .819 (.0003)ReHo 4.48 × 10−161

Network .790 (.0002)EFN .790 (.0002)PercMot .583
.790 (.0002)EFN .787 (.0002)Power 5.01 × 10−25

.790 (.0002)PercMot .787 (.0002)Power 1.24 × 10−25

Demand level .777 (.0002)HD .801 (.0002)LD 4.84 × 10−180

Note. SE = standard error.

individual EF abilities from functional metrics at rest as well
as from a priori brain networks defined via group-level analy-
ses. Together with recent evidence from RSFC-based predictive
modeling (Heckner et al. 2023), the present results argue against
network specificity, but this time, even across different brain
feature modalities. Importantly, the results across both of our
studies stress the need for brain measures that are not just
somewhat associated with EF but can actually explain variance in
individual EF abilities. While brain–behavior associations found in
the present study are generally low, they are comparable to other
results in the field (Ferguson et al. 2017; Greene et al. 2018; He et al.
2021), calling for more informative measures or methods and for
a critical reevaluation of the predictive and explanatory values of
the models examined so far.

Modality specificity and age effects
The ANOVA yielded a main effect of modality on prediction
accuracy, and post hoc pairwise comparisons revealed significant
differences between all modalities. Overall, the best prediction
accuracy was achieved when predicting from fALFF, followed, in
descending order, by GMV, RSFC, and ReHo. However, this main
effect may be explained by the age × modality interaction. While
for younger adults, prediction was best from fALFF, followed,
in descending order, by GMV, RSFC, and ReHo; for older, it was
best from GMV, followed by RSFC, fALFF, and ReHo. RSFC’s better
prediction accuracy, however, may be explained by the modality
× network interaction. This interaction revealed that prediction
from RSFC was best for the whole-brain approach. One possible
explanation for this finding might be the greater feature space
gain for the whole-brain approach with 34,716 connections as
compared to 1,225 connections for the EFN. However, in our
companion study (Heckner et al. 2023), 10 random networks of
the same size as the EFN still resulted in a significantly better pre-
diction accuracy than the EFN and the perceptuo-motor network.
Therefore, it does not seem to be the sheer number of features
that is responsible for the prediction outcome. Lastly, all metrics
were better at predicting HD (vs. LD) task conditions. This effect
was especially pronounced for features extracted from GMV and
fALFF. Again, this main effect is qualified by the age × demand-
level interaction, which revealed the best prediction accuracies
for older adults for LD conditions, whereas for younger adults,
best prediction accuracies were achieved for HD conditions. As
such, the main effect of task demand appears to be driven by older
adults and should not be interpreted because of the underlying
crossed interaction.

Our results revealed that GMV and fALFF contained more
information on the individual EF performance than did the other
modalities and that this effect was age dependent. Regional GMV
is very well linked to global atrophy observed in advanced age. Pre-
vious research, however, has shown that the age-related decline
in GMV is especially pronounced in brain regions associated with
EF, such as fronto-parietal areas (Taki et al. 2004; Chee et al.
2006; Hu et al. 2014). Furthermore, the pattern of global decline
is thought to be rather consistent across older adults (bilateral
pre-SMA, supplementary motor area [SMA], insula, ACC, DLPFC,
inferior parietal lobule, and caudate; Bergfield et al. 2010; Giorgio
et al. 2010; Taki et al. 2011). In line with these findings, the
current results suggest that GMV may be a possible marker for
individual EF ability levels in older adults—although one must
keep in mind that prediction accuracies were still only small to
moderate.

For younger adults, the best prediction accuracy was achieved
with fALFF. Previous research suggested that low-frequency fluc-
tuations of the BOLD signal are spontaneous and reflect the
intrinsic connectivity of the brain (Biswal et al. 1995; Fox and
Raichle 2007). Thus, fALFF is understood as a measure of func-
tional within-subject variability that—similar to other measures
of brain variability—possibly reflects cognitive adaptability (i.e.
the ease of mental set reconfiguration) to task demands (Bolt et al.
2018; Uddin 2020). In young adults, the fALFF pattern appears to
be linked to behavior more closely, while in older adults, fALFF
does not seem to contain relevant information about individual
EF performance. Previous research has shown that an age-related
decrease in fALFF and GMV overlapped in prefrontal/frontal brain
regions, including pre-SMA, SMA, and DLPFC (Hu et al. 2014).
It was concluded that prefrontal brain regions, critical for EF,
show concurrent age-related changes in structure and function.
Earlier, it had been suggested that younger, faster participants
show a higher variability in brain activity (as assessed by SD)
across tasks and greater regional dedifferentiation of signal vari-
ability than older adults (Garrett et al. 2011). As variability may
provide the kinetic energy for brain networks to explore possible
functional architectures (McIntosh et al. 2010; Deco et al. 2011),
an intrinsically more variable brain might be able to configure
optimal networks for processing a given input toward a particular
behavioral goal more flexibly and efficiently (Garrett et al. 2011).

One reason for the rather low brain–behavior associations
achieved from within-network RSFC might be its uncon-
strained nature, as discussed in detail in our companion paper
(Heckner et al. 2023). Several recent studies have shown that
behavioral prediction from brain connectivity during tasks (or
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movie watching) may work somewhat better than from rest
(Greene et al. 2018; Sripada et al. 2020; Finn and Bandettini
2021; Kraljević et al. 2023). Tasks modulate functional brain
states and may thus offer important information about the
individual differences in the brain functional organization and
their association with behavior (Greene et al. 2018). ReHo, a
measure of local synchronicity/connectivity, is thought to induce
global connectivity (i.e. RSFC; Jiang and Zuo 2016). Therefore,
it would not be surprising if both local and global connectivity
measures may be affected by, for example, mind wandering or
thinking about a task during rest (Gregory et al. 2016). fALFF, on
the other hand, as a measure of local variability or adaptability,
reflecting the spontaneous, intrinsic connectivity of the brain,
may therefore be influenced to a lesser degree by unconstrained
thoughts during rest. Such a differential susceptibility to state
effects might possibly explain the lower prediction accuracies
observed for RSFC and ReHo and the superiority of fALFF even
though all metrics are based on brain activity during “rest” (i.e. in
a state without an externally driven task).

Differential susceptibility to state effects might have also con-
tributed to the relatively better prediction performance observed
for the within-network GMV, which was best for older adults and
second best for younger adults, as compared to the other brain
metrics. In particular, functional metrics might be overall more
susceptible to state effects and, thus, have a reliability disad-
vantage, relative to structural metrics. Hence, lower prediction
accuracies achieved for the functional metrics, especially RSFC
and ReHo, should not prematurely be marked as weak markers
for any individual performance differences but rather as a product
of state–trait interactions—which would make these metrics less
suitable for capturing stable, trait-level aspects of brain activity
that are thought to share variance with stable cognitive traits,
in particular when the amount of brain activity data available
per participant is relatively limited. For more conclusive answers,
future studies are needed that investigate the comparative relia-
bility of different functional and structural brain metrics as well
as the impact of age on this issue (see, e.g. Song et al. 2012, for
reporting on age-related RSFC reliability differences).

Similar to previous studies (Pläschke et al. 2020; Heckner
et al. 2023), prediction accuracy across modalities, networks, and
task-demand levels was better for older (vs. younger) subjects,
suggesting that brain–behavior associations become tighter with
advancing age. Possibly, such increased associations might be
due to overall age-related neural decline, such as brain atrophy
or white-matter degeneration, influencing network integrity
(Cabeza et al. 2016) and reorganization that is linked to EF
performance. However, this main effect is qualified by the
crossed age × demand-level interaction and should thus only
be interpreted with great caution.

Interestingly, we replicated this age × demand-level interaction
already reported in Heckner et al. (2023) across all structural
and functional modalities such that the prediction accuracy for
younger adults was consistently better when predicting HD (vs.
LD) conditions, while for older adults, the reverse pattern was
observed. One possible explanation is that age-related effects on
the network level might still be compensated for in LD conditions,
but they might not be compensated for in HD conditions taxing EF
abilities. This is in line with the compensation-related utilization
of neural circuits hypothesis of cognitive aging (Reuter-Lorenz
and Cappell 2008) and previous research showing that age-related
neurobiological decline comprises BOLD responsivity during task
state. Older adults might be able to compensate LD task condi-
tions but reach a ceiling at a certain level of processing demands

such that compensatory activation cannot be further increased in
HD conditions (Nagel et al. 2011). Hence, our results emphasize
the relevance of behavioral testing procedures that are more
adaptive to performance differences (e.g. because of compen-
satory efforts) in order to have tests that are sensitive enough
to capture meaningful brain–behavior associations across ability
levels (cf. Heckner et al. 2023). Interestingly, our results revealed
a trend toward better prediction accuracies as well as stronger
brain–behavior associations for TMT scores, as compared to CWI
and n-back performance, across demand level, networks, and age
groups for features extracted from GMV and RSFC. Although we
did not specifically aim to investigate prediction performance
depending on the individual EF tasks, the TMT might be a more
sensitive target variable in capturing the individual differences
in EF performance as compared to the other tests used. Possibly,
because the TMT measures different facets and stages of cognitive
processing and might therefore be sensitive to several changes in
cognition. This might, especially, be the case, when targeting LD
and HD conditions separately and not subtracted (i.e. HD − LD).

Overall, despite generally low prediction accuracies, our results
point out the superiority of GMV and fALFF in predicting individ-
ual differences in EF performance and indicate that this effect is
age dependent. While older adults’ EF performance was predicted
best by features extracted from GMV, younger adults’ EF perfor-
mance was predicted best by fALFF features. For older adults,
overall patterns, like global atrophy, seem to be most predictive of
EF performance in comparison to the other metrics applied. For
younger adults, fALFF appears to be most predictive of EF perfor-
mance. As a measure of neural variability, fALFF may reflect the
ease of exploring the best-suited network constellation for a given
task. Additionally, our results stress the importance of adaptive
testing in order to find meaningful brain–behavior associations.

Conclusion and outlook
The current study investigated and systematically compared
to what extent individual differences in EF performance can
be predicted from structural (GMV) as well as resting-state
functional (RSFC, ReHo, and fALFF) modalities. In addition, we
examined whether the pattern in prediction changes with age,
brain network, or task-demand level. Our results revealed overall
rather low-to-moderate prediction accuracies and brain–behavior
associations. Explained variance in the target variables did
not exceed 6%. These findings generally question the utility
of the brain metrics examined here for predicting individual
differences in EF abilities. However, our results did point out the
superiority of GMV and fALFF as compared to ReHo and RSFC
in predicting individual EF performance. One possibility could be
that individual differences in EF abilities are more strongly driven
by global brain characteristics that can be better assessed with
metrics for global atrophy or variability. Furthermore, our results
revealed an age-related modality specificity: For older adults,
structural measures of overall atrophy might be more infor-
mative, while for younger adults, functional measures of brain
variability seem to contain more information about individual
EF abilities.

The overall low-to-moderate prediction accuracy, as well as the
missing network specificity, questions the potential of the single
metrics to be applied as biomarkers for individual differences in
EF performance. Rather, our findings suggest that future research
may need to analyze more global properties of the brain, pos-
sibly combining different structural and functional metrics, to
result in more sensitive predictors for young and older adults,
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respectively. This also applies to adaptive behavioral testing as
our results revealed better prediction accuracies in LD (vs. HD)
task conditions for older adults, while for younger adults, pre-
diction accuracies were better for HD (vs. LD) task conditions.
Furthermore, it is important to consider the possible impact of the
feature space size, especially when comparing different metrics
(e.g. edge-level RSFC vs. node-level ReHo). A replication with a
different, larger sample as well as different cognitive states (i.e.
task performance, movie watching) and a continuous age distribu-
tion might prove useful for revealing more information contained
in the brain about individual mental abilities. Lastly, considering
the complexity of machine learning outputs and the increased
use and relevance of these approaches in the field of cognitive
neuroscience, developing appropriate methods for comparing the
outcomes of different models accounting for intrinsic dependen-
cies in the cross-validation scheme is strongly warranted.
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