Skip to main content
. 2023 Nov 15;12:giad094. doi: 10.1093/gigascience/giad094

Table 1:

Average classification accuracy for the LDA classifier using as input MLP (Multiparameter Persistence Landscape), ECC, or ECP. Data for each tumor are split into 80/20 train–test splits and classification accuracy is reported as the mean over 100 repetitions of splitting, training, and testing.

CD68+ vs. FoxP3+ CD8+ vs. FoxP3+ CD8+ vs. CD68+ CD8+ vs. CD68+ vs. FoxP3+
MPL - ECC - ECP MPL - ECC - ECP MPL - ECC - ECP MPL - ECC - ECP
T_A 0.584 - 0.938 - 0.941 0.672 - 0.994 - 0.988 0.669 - 0.894 - 0.856 0.486 - 0.896 - 0.886
T_B 0.794 - 0.917 - 0.922 0.88 - 0.992 - 0.992 0.54 - 0.943 - 0.962 0.568 - 0.921 - 0.940
T_C 0.723 - 0.947 - 0.904 0.7 - 0.884 - 0.859 0.605 - 0.811 - 0.699 0.505 - 0.842 - 0.755
T_D 0.811 - 0.960 - 0.933 0.899 - 0.986 - 0.985 0.644 - 0.802 - 0.807 0.613 - 0.862 - 0.874
T_E 0.732 - 0.941 - 0.940 0.644 - 0.867 - 0.869 0.593 - 0.806 - 0.688 0.511 - 0.842 - 0.719
T_F 0.738 - 0.655 - 0.933 0.644 - 0.619 - 0.830 0.73 - 0.709 - 0.850 0.511 - 0.578 - 0.824
T_G 0.771 - 0.788 - 0.858 0.782 - 0.791 - 0.904 0.675 - 0.614 - 0.609 0.599 - 0.673 - 0.659
T_H 0.710 - 0.651 - 0.885 0.682 - 0.747 - 0.955 0.628 - 0.695 - 0.891 0.555 - 0.659 - 0.845
T_I 0.733 - 0.788 - 0.737 0.758 - 0.716 - 0.679 0.540 - 0.693 - 0.713 0.548 - 0.716 - 0.493
T_J 0.727 - 0.642 - 0.767 0.535 - 0.678 - 0.857 0.602 - 0.808 - 0.868 0.449 - 0.507 - 0.699
T_K 0.510 - 0.872 - 0.770 0.570 - 0.784 - 0.816 0.502 - 0.823 - 0.877 0.404 - 0.594 - 0.635
T_N 0.493 - 0.457 - 0.570 0.512 - 0.658 - 0.632 0.577 - 0.507 - 0.760 0.342 - 0.462 - 0.370
T_O 0.948 - 0.830 - 0.840 0.788 - 0.602 - 0.754 0.532 - 0.484 - 0.598 0.550 - 0.431 - 0.615