Skip to main content
. 2023 Nov 15;12:giad094. doi: 10.1093/gigascience/giad094

Table 2:

Average classification accuracy for the rLDA classifier using as input MLP, ECC, or ECP. Data for each tumor are split into 80/20 train–test splits and classification accuracy is reported as the mean over 100 repetitions of splitting, training, and testing.

CD68+ vs. FoxP3+ CD8+ vs. FoxP3+ CD8+ vs. CD68+ CD8+ vs. CD68+ vs. FoxP3+
MPL - ECC - ECP MPL - ECC - ECP MPL - ECC - ECP MPL - ECC - ECP
T_A 0.491 - 0.967 - 0.964 0.642 - 0.973 - 0.967 0.630 - 0.840 - 0.830 0.427 - 0.858 - 0.859
T_B 0.760 - 0.892 - 0.869 0.787 - 0.986 - 0.985 0.671 - 0.942 - 0.945 0.604 - 0.868 - 0.865
T_C 0.863 - 0.906 - 0.896 0.747 - 0.847 - 0.842 0.653 - 0.584 - 0.614 0.640 - 0.628 - 0.627
T_D 0.683 - 0.926 - 0.918 0.829 - 0.990 - 0.988 0.476 - 0.779 - 0.779 0.492 - 0.779 - 0.775
T_E 0.820 - 0.886 - 0.883 0.736 - 0.929 - 0.920 0.534 - 0.735 - 0.743 0.502 - 0.702 - 0.683
T_F 0.623 - 0.899 - 0.925 0.476 - 0.842 - 0.847 0.765 - 0.909 - 0.921 0.408 - 0.845 - 0.847
T_G 0.886 - 0.932 - 0.927 0.897 - 0.970 - 0.975 0.446 - 0.696 - 0.692 0.581 - 0.738 - 0.746
T_H 0.524 - 0.890 - 0.898 0.735 - 0.930 - 0.929 0.714 - 0.882 - 0.877 0.502 - 0.844 - 0.859
T_I 0.859 - 0.912 - 0.931 0.883 - 0.908 - 0.909 0.484 - 0.470 - 0.474 0.597 - 0.619 - 0.614
T_J 0.608 - 0.763 - 0.750 0.750 - 0.835 - 0.872 0.850 - 0.882 - 0.892 0.536 - 0.653 - 0.670
T_K 0.376 - 0.868 - 0.804 0.523 - 0.918 - 0.914 0.455 - 0.857 - 0.845 0.261 - 0.718 - 0.679
T_N 0.410 - 0.527 - 0.563 0.432 - 0.662 - 0.745 0.643 - 0.690 - 0.713 0.294 - 0.388 - 0.460
T_O 0.702 - 0.954 - 0.952 0.644 - 0.806 - 0.772 0.546 - 0.672 - 0.684 0.429 - 0.639 - 0.632