Table 2:
Average classification accuracy for the rLDA classifier using as input MLP, ECC, or ECP. Data for each tumor are split into 80/20 train–test splits and classification accuracy is reported as the mean over 100 repetitions of splitting, training, and testing.
| CD68+ vs. FoxP3+ | CD8+ vs. FoxP3+ | CD8+ vs. CD68+ | CD8+ vs. CD68+ vs. FoxP3+ | |
|---|---|---|---|---|
| MPL - ECC - ECP | MPL - ECC - ECP | MPL - ECC - ECP | MPL - ECC - ECP | |
| T_A | 0.491 - 0.967 - 0.964 | 0.642 - 0.973 - 0.967 | 0.630 - 0.840 - 0.830 | 0.427 - 0.858 - 0.859 |
| T_B | 0.760 - 0.892 - 0.869 | 0.787 - 0.986 - 0.985 | 0.671 - 0.942 - 0.945 | 0.604 - 0.868 - 0.865 |
| T_C | 0.863 - 0.906 - 0.896 | 0.747 - 0.847 - 0.842 | 0.653 - 0.584 - 0.614 | 0.640 - 0.628 - 0.627 |
| T_D | 0.683 - 0.926 - 0.918 | 0.829 - 0.990 - 0.988 | 0.476 - 0.779 - 0.779 | 0.492 - 0.779 - 0.775 |
| T_E | 0.820 - 0.886 - 0.883 | 0.736 - 0.929 - 0.920 | 0.534 - 0.735 - 0.743 | 0.502 - 0.702 - 0.683 |
| T_F | 0.623 - 0.899 - 0.925 | 0.476 - 0.842 - 0.847 | 0.765 - 0.909 - 0.921 | 0.408 - 0.845 - 0.847 |
| T_G | 0.886 - 0.932 - 0.927 | 0.897 - 0.970 - 0.975 | 0.446 - 0.696 - 0.692 | 0.581 - 0.738 - 0.746 |
| T_H | 0.524 - 0.890 - 0.898 | 0.735 - 0.930 - 0.929 | 0.714 - 0.882 - 0.877 | 0.502 - 0.844 - 0.859 |
| T_I | 0.859 - 0.912 - 0.931 | 0.883 - 0.908 - 0.909 | 0.484 - 0.470 - 0.474 | 0.597 - 0.619 - 0.614 |
| T_J | 0.608 - 0.763 - 0.750 | 0.750 - 0.835 - 0.872 | 0.850 - 0.882 - 0.892 | 0.536 - 0.653 - 0.670 |
| T_K | 0.376 - 0.868 - 0.804 | 0.523 - 0.918 - 0.914 | 0.455 - 0.857 - 0.845 | 0.261 - 0.718 - 0.679 |
| T_N | 0.410 - 0.527 - 0.563 | 0.432 - 0.662 - 0.745 | 0.643 - 0.690 - 0.713 | 0.294 - 0.388 - 0.460 |
| T_O | 0.702 - 0.954 - 0.952 | 0.644 - 0.806 - 0.772 | 0.546 - 0.672 - 0.684 | 0.429 - 0.639 - 0.632 |