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ABSTRACT: Protein−ligand interactions are essential to drug discovery and drug development efforts. Desirable on-target or
multitarget interactions are the first step in finding an effective therapeutic, while undesirable off-target interactions are the first step
in assessing safety. In this work, we introduce a novel ligand-based featurization and mapping of human protein pockets to identify
closely related protein targets and to project novel drugs into a hybrid protein−ligand feature space to identify their likely protein
interactions. Using structure-based template matches from PDB, protein pockets are featured by the ligands that bind to their best
co-complex template matches. The simplicity and interpretability of this approach provide a granular characterization of the human
proteome at the protein-pocket level instead of the traditional protein-level characterization by family, function, or pathway. We
demonstrate the power of this featurization method by clustering a subset of the human proteome and evaluating the predicted
cluster associations of over 7000 compounds.

■ INTRODUCTION
Whether a drug candidate is targeted at a single protein or
multiple proteins, the candidate must also be tested for
potential adverse (off-target) effects and toxicity. Targeted
assays are the conventional method to verify the interaction or
lack thereof between a new drug and subsets of specific human
pathways and proteins.1 Using several narrowly focused assays
to assess a new drug’s safety is a response to the complexity of
the human proteome. The expanse of proteins coupled with
the diversity of their roles and functions is a problem domain
too large for drug candidates to be tested in vitro against all
possibilities. On the computational side, screening large
numbers of drug−protein interactions necessitates high-
performance computers.2,3 However, even with large amounts
of computational power and specialized toxicity assays,
unforeseen drug−target interactions and their adverse
reactions are frequently detrimental to investigational new
drugs in clinical trials.4

In this work, we demonstrate, using the human proteome,
that a pocket-characterization-based approach can facilitate the
identification of a drug’s most likely targets. We break up 4331
human proteins into clusters of their pockets using similarities
in detected protein−ligand pockets instead of grouping

proteins by other characteristics such as function or sequence
similarity. That is, we focus on evaluating compounds against
protein pocket groups, formed by commonalities among the
ligands found to bind to those pockets, rather than whole-
protein groups, typically formed by commonalities among
pathways, families, or functions. Our method is designed to
receive a new compound and identify which groups of protein
pockets appear to be likely to interact with the compound. The
output is potentially useful on several fronts, from prioritizing
experimental assays to informing in silico drug design
optimization with regard to potential off-target interactions.

■ BACKGROUND
Describing ligands as keys that match a lock�a protein’s
binding pocket�is an often-used paradigm in computational
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chemistry.5 Drug repurposing, multitarget drugs, and off-target
binding analyses are areas that extrapolate from a single ligand
and protein pocket to a ligand binding to multiple proteins or
different ligands binding to the same protein.6,7 For multiple
ligands to bind to a similar protein pocket, they must share
some essential, core configuration of features.8 Conversely, for
a ligand to bind to multiple protein pockets, the pockets must
share some commonality favorable to that ligand. Such cases
are often termed “cross-reactivities” or “cross-sensitivities”,
where protein pockets that bind similar compounds will in turn
have a correlated likelihood of interacting with a similar new
drug.9 The traditional place to search for cross-reactivities is in
similar families, pathways, or proteins with similar functions.10

In this work, however, we focus on individual pockets, which
we believe provide greater specificity with regard to relevant
protein−ligand interactions while also recognizing relevant
commonalities across protein families, pathways, or function
categorizations.

To the best of our knowledge, this approach is the first
endeavor in the ligand-based clustering of human protein
pockets for the identification of potential small-molecule
interactions. This work is inspired by our previous study,11

which demonstrated that PDBspheres, a strictly structure-
based approach, can help protein function annotation efforts as
well as guide the inference of binding affinity scores from one
pocket−ligand pair to another pocket−ligand pair within
certain boundaries. Additional related previous work, catego-
rized by methods used for protein- and ligand-based clustering,
is summarized below.
Structure/Property-Based Protein Pocket Clustering.

Analyses based on individual pockets are more granular since a
single protein may have multiple pockets. Significant work has
been performed in this area, especially in clustering protein
pockets. Weskamp et al. leveraged shape and physiochemical
properties to create a global mapping of the cavity (pocket)
space and found that similarities in the cavity space are best
mapped to ligand binding similarities in comparison to
mapping proteins by amino acid sequence or by fold.12 Note
that the analysis depends only on pocket characteristics; ligand
characteristics (binding similarities) are used only for
validation. Our approach fuses the ligand and protein pocket
feature spaces.

Cavbase, a significant advance in protein pocket clustering,
provides a means for comparing pockets based on “pseudo-
centers”, which are projections of descriptors in 3D space.13

Kuhn et al. also applied principal component analysis (PCA)
to their Cavbase similarity matrix for clustering selected MAP
kinases. Our approach also applies PCA as a preprocessing step
but to the fused protein pocket and ligand feature space
mentioned above.

The CavitySpace database of potential ligand binding sites in
the human proteome includes binding site clusters created
with a “PMSmax” similarity, which captures shape and
chemical similarities between pockets.14,15 The authors
iteratively applied the Butina clustering algorithm16 at different
PMSmax thresholds. This approach places 31.6% of their
database’s 111,330 potential binding sites into one cluster, with
the conclusion that “the cavities cannot be classified well”.

It appears that the vast majority of protein pocket
featurization and clustering methods rely, as do these studies,
on protein features based on pocket structure and/or
physicochemical properties17−21�to the exclusion of features
based on known interacting ligands. A recent analog to this

work is the ProBis-Score22 scoring function’s identification of
template ligands for binding pockets. ProBis-Dock22−24

identifies template ligands using local surface similarities
from other binding sites in PDB. Similarly, in this work, we
gather PDB ligand IDs from structurally matched templates in
PDB. The ProBis-Dock software utilizes this information to
label 3D points in a binding site and as input for modeling
protein binding site flexibility in docking. On the other hand,
we use template-matched ligands to create a clustered
protein−ligand feature space which can be queried with either
a protein binding site or a small molecule of interest.
Pharmacophore Modeling. Pharmacophore modeling

includes a spectrum of approaches with applications in drug
discovery, lead optimization, target identification, and toxicity
prediction.25,26 Pharmacophores represent the chemical
interactions between a specific ligand or ligands and binding
site(s). Pharmacophores can be feature-based27 or molecular
field-based28 but generally fall into ligand- and structure-based
approaches, both of which are related to our approach. For
example, protein structure-based methods might infer ideal
ligand features from the coordinates of pocket protein
residues.29 The spirit of this approach is analogous to our
aggregation of ligands bound to high-scoring template matches
in a pocket, where the similarities of the features in the set of
co-complex templates emphasize the important components of
the underlying pocket structure.

In ligand-based pharmacophore models, known active�and
sometimes known inactive�compounds are often used to
make inferences or sometimes create training data to virtually
screen for new inhibitors.30,31 Some ligand-based pharmaco-
phores use clustering on known active and/or inactive
compounds to group training sets by similarity.32 Our
approach also forms clusters using a similarity metric; however,
a major difference arises between what is known about the
ligands being clustered. Pharmacophores leverage known
binders/nonbinders for clustering, where our approach clusters
known and hypothetical binders based on a pocket’s structure.
We cluster protein pockets featured by ligands from known
and predicted template matches. This creates a traversable
feature space of protein pocket clusters, while pharmacophore
models typically seek to create an in-depth characterization of
a particular protein pocket or group of ligands.33

Predicting Toxicity, Off-Target Interactions, and
Adverse Drug Reactions. A variety of in silico approaches
exist for toxicity, adverse drug reaction (ADR), and off-target
binding prediction; essentially, whether a candidate drug will
bind to proteins that are not the drug’s intended target and
what the consequences might be. Methods vary from relation
extraction from clinical notes34 to hybrid computational
pipelines using molecular docking and machine learning.35

Pharmacophore modeling is also used, where toxicity and off-
target concerns for specific receptors are modeled.36,37 ADR
and toxicity databases like SIDER,38 T3DB,39 and DrugBank,40

have enabled the development and evaluation of numerous
machine learning methods. A few notable approaches include
REMAP,41 ToxiM,42 TargeTox,43 and eToxPred.44 Recent
advances in the toxicity prediction space also include neural
fingerprinting,45 conformal prediction,46 and several others.47−

49 While our approach does not delve into predicting ADRs,
we expect that our simple, granular featurization approach will
be useful in multitarget and toxicity prediction.
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■ METHODS
Pocket Featurization. Our featurization begins with

human proteins from the AHA Atlas database,50 for which
high-confidence homology-based structural models have been
constructed. Of the 20,375 proteins comprising the human
proteome (reviewed reference set UniProt51 ver. 2020.08.19),
the AHA Atlas provides 11,681 structural models created by
the homology-based modeling system AS2TS.52 The Atlas
includes structural models based on matches to PDB templates
that meet criteria for sequence similarity to and coverage of the
reference sequences. In this regard, the AHA Atlas models
represent a conventional homology modeling approach; the
models do not rely on ab initio (e.g., Rosetta53) or AI-
informed (e.g., AlphaFold,54 ESMFold55) methods. Potential
binding cavities on these structures are identified by structural
matches to ligand binding sites in the whole of PDB56 using
the PDBspheres library11 (Figure 1). While binding sites for
individual proteins are sometimes known, many of the
structural models in the AHA Atlas do not have solved
structures from experiments (i.e., the exact structures or
complexes with ligands may not be deposited in the PDB). In
this work, we treat pockets identified by PDBspheres as
binding sites. Doing so allows for generalization of our
approach to any available structural models of a given protein:
experimentally solved protein structures, constructed homol-
ogy models, or structure predictions from methods like
AlphaFold.54

As mentioned above, the PDBspheres library of binding sites
is based on experimentally resolved structures of protein−
ligand co-complexes extracted from the PDB database. In this
work, we associate those ligands with the binding pockets
identified by protein structural matches between the Atlas
human proteome structures and the PDBspheres library
entries. This may associate multiple ligands with a particular
cavity; the matches depend only on protein−protein
comparisons; therefore, an Atlas structure cavity may match
multiple cavities from different PDB structures having different
ligands. We expect that structurally similar pockets will bind
similar ligands, which is a concept explored in our previous
work.11 As a corollary, our hypotheses are that (1) ligand
similarity provides additional information to characterize
pockets (that is, an indication of pocket properties such as
charge, hydrophilicity, hydrophobicity, polarity, etc.) and (2)
ligand similarity measures can provide a basis for grouping
pockets across proteins. We expect that basing our feature
vectors on bound ligands (i.e., not focusing on the pocket
structure similarity scores) will avoid possible discrepancies in
pocket−ligand clustering, which arise from imperfections in
the structural conformations of constructed models. Avoiding
such pitfalls yields a more reliable and robust model for protein
pocket−ligand clustering.

The PDBspheres library11 is a comprehensive dataset of all
experimentally solved protein−ligand co-complexes that can be
extracted from PDB. For this work, we start by excluding from
the PDB database (in this case from the PDBspheres library)
all entries that may not be relevant to noncovalent binding
(principally covalently bound branched oligosaccharides), may
not be biologically relevant (for example, surfactants used in
crystallization), or are antibody co-complexes. We filter out
nonrelevant ligands in three ways. Ligands that overwhelm-
ingly appear as crystallization buffers are outright removed (see
Supporting Information files for ignored antibody structures

and crystallization buffers). Covalently bound oligosaccharides
are identified using PDB metadata. Surfactants are identified as
ligands that are “surface-bound”, that is, not substantially
within a protein cavity. This is accomplished by constructing a
set of spheres tangent to the calculated protein surface57 to
identify the cavity around the ligand in the PDB biological
assembly of the structure used as a basis for the PDBspheres
library entry. After removing pockets based on nonrelevant

Figure 1. Protein pocket processing and featurization.
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ligands, each detected Atlas-protein pocket is associated with
one or more ligands; the full set includes 21,948 pockets from
the 11,681 proteins, where a single protein might have multiple
pockets, and 15,489 different ligands. For an individual protein
pocket, we retained a maximum of 20 ligands. In cases where
more than 20 template matches are found by PDBspheres, we
use a global distance calculation to select the best co-complex
matches.58 Consistent with our hypotheses mentioned above,
we use the collection of ligands associated with a pocket as a
feature vector or “profile”, characterizing that pocket. Figure 1
illustrates different ligand associations for two pockets on two
different proteins: retinoic acid receptor gamma (left) and
ubiquitin carboxyl-terminal hydrolase 7 (right).

As described below, we represent each pocket by a real-
valued feature vector derived from the list of ligands associated
with the pocket. This serves two purposes. First, we reduce the
high dimensionality of both the protein pocket’s structure and
properties, as well as its associated ligands’ structures and
properties, to a simple, one-dimensional vector. Second, in
characterizing pockets by the small molecules associated with
their template matches, our feature space represents a
combination of both the ligand binding and pocket structural
feature spaces for each entry. Of course, more detailed
chemical properties, geometric information, and descriptors
may prove beneficial, but we found this foundational method
to show significant predictive power on its own.

We assemble our set of pocket−ligand pairs in a 21,948 ×
15,489 indicator (binary-valued) matrix, B, as shown in Figure
2a. This is a sparse matrix where each row represents a human
protein pocket and each column is a PDB ligand ID. The
columns (15,489 PDB ligand IDs) are provided as a
Supporting Information file. Note that this matrix is
predominantly filled with zeros as 80% of individual pockets
are associated with five or fewer PDB ligand IDs.

Sparse feature matrices are known to be notoriously difficult
for modeling approaches�from logistic regression to deep
learning.59 Sparse PCA60 was the first approach we tried to
directly address starting with a binary-valued, sparse matrix.
However, due to the lack of an orthogonality constraint on the
fit components, the Scikit-learn61 implementation we used was
unable to provide an explained variance. Therefore, as
described in the following paragraphs, we substituted a real-
valued similarity measure for the zero-one binary values. The
real values are conducive to conventional PCA. The 112 most
significant components of these new, real-valued feature
vectors across proteins (that is, across the 21,948 vectors of
real values, each 15,489 × 1) explain 99% of the variance of the

feature vectors. These reduced-dimension (i.e., 112-compo-
nent) feature vectors are sorted in descending order of
explained variance and form the basis for clustering proteins
into groups (Figure 2e).

To create the real-valued similarity measure, we first
calculate the Tanimoto similarity, which is a [0, 1] continuous
value62 between all ligand pairs. Then, for each pocket (row),
for each matrix element in that row we use RDKit63 to
calculate the maximum similarity between that ligand and all
the ligands having a matrix element value of 1 in that row; that
is, the maximum similarity between that ligand and any of the
ligands that have been associated with that pocket, as eq 1
describes

f s k bmax( ), 1ij jk ik= { | = } (1)

where f ij is the real-valued feature [0,1] for pocket i and ligand
j. sjk is the Tanimoto similarity between ligand j and ligand k.
bik is the binary-valued indicator of whether ligand k is
associated with pocket i.

Equation 1 provides a fast, deterministic computation that
introduces more information into the feature matrix, such that
every column is no longer an independent feature. This
procedure can be thought of as “filling in missing values”. For
example, consider the (unrealistic) case where a ligand is
duplicated in the set of PDB ligand IDs, that is, the same ligand
with different IDs. Assume ligand “A” is associated with pocket
i�either because the protein i-ligand “A” complex is in PDB or
because a structurally matching pocket in another PDB protein
is in complex with ligand “A”. It could be the case that identical
ligand “B” is not associated with protein i because ID “B” is not
in co-complex with any matching pocket in PDB. In other
words, biA is 1 and biB is 0. Equation 1 sets TiB = TiA = 1.0 since
the Tanimoto similarity of a ligand to itself is the maximum
value, 1.0.

Using the maximum similarity value between a particular
ligand j and all ligands associated with a particular pocket i also
accounts for the case where, for example, two very different
ligands m and n nevertheless bind to the same pocket. If ligand
j is very similar to one or the other of m and n, then Tij will be
set to the greater of the two similarity values between ligand j
and ligands m and n.

Finally, if ligand j has very low similarity with any of the
ligands associated with pocket i, then Tij will be given a low
similarity value (albeit the greatest of its low similarities with
the associated ligands). This could be a “false negative”; it
could be the case that no ligand similar to ligand j has ever

Figure 2. Preparing pocket featurizations for input to clustering.
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been seen in a PDB co-complex having a pocket matching
pocket i, but nevertheless such a ligand would bind to pocket i.
The working assumption of PDBspheres is that the set of
pockets identified throughout PDB by proximity to a ligand
covers, at least with a high degree of similarity, the full universe
of protein binding pockets.

Each pocket has 15,489 (now real-valued) features; that is,
the similarities calculated using eq 1 yield the similarity matrix
S (Figure 2c). We implement feature reduction by performing
PCA on this matrix. This provides both the ability to make an
interpretable reduction in dimensionality and quantifies the
explained variance associated with each component produced.
While exploring the linear combinations of singular value
decompositions that make up each component is outside the
scope of this work, using PCA maintains the possibility of
doing so.

While the five most significant components explain 95% of
the variance among the original columns, we use the 112 most
significant components; these explain 99% of the variance. We
substitute the elements of these components for the original
15,489 features for each pocket. The resulting matrix is suitable
for clustering.
Pocket Clustering. Since we do not have pre-existing

estimates of the number of groups of pockets that will best
characterize the human proteome or the subset of the human
proteome in the AHA Atlas�we use clustering methods that
do not need a target number (prior) of groups to produce.
Density-based spatial clustering of applications with noise
(DBSCAN64) is a clustering algorithm that does not need a
number of clusters prior and does not constrain clusters to a
specific size. DBSCAN uses the concept of core samples
(dense areas) and a distance threshold to form clusters from
core samples and nearby noncore samples. The minimum
number of points forming a core sample defines how densely
populated a neighborhood must be and is a reflection of the
noise in the dataset. A distance threshold, the maximum
distance between cluster members and the core-sample area,
controls the size of clusters, therefore influencing the number
of clusters and how many points cannot be clustered within the
minimum-size constraint; such points are labeled “outliers”
(rather than, say, “monad clusters”). The simplicity of
DBSCAN is attractive for interpretability. DBSCAN retains
the concept of Euclidean distance between clusters and points,
which is captured by the eigenvalues of the principal
components. Therefore, the output of DBSCAN clustering
on our feature matrix of components can be analyzed in terms
of the 112-dimensional Euclidean distance in feature space. It
is important to note that by thresholding at 99% of the
explained variance, examining the distance between points in
our feature matrix is an approximation and is not numerically
exact.

Our goal in choosing values for these hyperparameters was
to strike a balance between fewer large clusters, where some
very large clusters may be dominant, and more small clusters,
creating an unnecessarily large number of small clusters to
review. We set the minimum number of pockets necessary to
create a cluster in a local neighborhood of feature spaces to 10.
This helps ensure that clusters are sufficiently populated for the
examination and evaluation of their members’ characteristics.
The other major DBSCAN parameter, the core-to-member
maximum distance, has a significant impact on the DBSCAN
output; we experimented with a range of values for the distance
threshold, examining the results in terms of the number of

clusters, number of outliers, and largest cluster size, as shown
in Table 1. Between large and small distance thresholds,

DBSCAN marks pockets as outliers when they are far from
other pockets or in a feature-space region without the
minimum 10 nearby pockets necessary to form a cluster. It
should be noted that the DBSCAN algorithm allows the 10-
member minimum constraint to be violated in cases where the
core sample is sufficiently dense.

Table 1 displays the clustering results achieved by varying
the distance threshold from 1 to 2.5, which spans the extremes
of many clusters with many outliers to a few clusters with few
outliers. A plateau seems to appear in the 1.9−2.1 range where
most pockets are in-distribution, the largest cluster sizes are
around 4000, and the number of clusters is relatively steady at
approximately 160. While the percentage of outliers is larger
than desired, the 10-member minimum constraint and the fact
that the data are from a subsample of the human proteome
both contribute to pockets appearing anomalous. Focusing on
the core functionality of the approach and the possibility of
adding data in the future, a distance threshold of 2.0 was
selected as a reasonable balance among the various factors
considered.

■ RESULTS
The DBSCAN results with a distance threshold of 2.0 yield
167 clusters of 13,455 protein pockets; the remaining 8493
pockets are outliers. The first three principal components of
the feature space capture 93.4% of the variance across pockets.
Figure 3 visualizes these three components spatially, and the
size of each cluster is illustrated by the size of its scatter point.
The 167 clusters vary in size from seven to 3696 pockets and
as mentioned above, the 10-pocket lower bound discussed can
be violated in dense regions. The population of 167 clusters
has a median of 16 and a mean of 81 pockets per cluster, a
right-skewed distribution. As an initial check of the clustering,
we examined the clusters in terms of the unique proteins
(UniProt IDs) in each cluster. The statistics for unique
proteins are similar to those for pockets; the minimum number
of unique proteins in a cluster is six and the maximum number
of unique proteins in a cluster is 1768. This indicates that even
small clusters group different proteins; thus, small clusters are
not simply repeated instances of the same pocket from a single
protein biological assembly (as in a homodimer, for example).
On average, 52 different proteins make up a cluster, where the
median is 14 unique proteins, giving a skewness to the
population of pockets.

In accord with previous protein-based clustering efforts,11

we note several indications that the clusters form biologically
meaningful groups. First, we look at cluster members’ Enzyme
Commission (EC) numbers,65 which classify enzymes by the

Table 1. DBSCAN Cluster Results on 21,948 Protein
Pockets with Varying Maximum Core-to-Member Distance
Threshold

distance threshold # of clusters % of outliers (%) largest cluster size

1.0 194 55.4 1186
1.5 185 49.4 3370
1.9 178 41.1 3640
2.0 167 38.7 3696
2.1 152 33.9 3768
2.5 86 25.9 12,675
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type of reaction they catalyze. Of the 167 clusters, 54 (32%)
consist of proteins having the same major EC class. While
typically not all proteins in a cluster have an EC number,
nevertheless, a significant number of proteins share the same
major class in a significant number of clusters. Furthermore, 36
of the 54 single-major-number clusters consist of proteins also
sharing EC subclass and subsubclass numbers, despite the fact
that there is no cluster having fewer than six proteins. To
distinguish our clustering approach from a classification of
binding sites by sequence similarity, we also performed
intracluster similarity analysis using the amino acid sequences
from the PDB chain associated with each binding site. Clustal
Omega66 executed multiple sequence alignments in each
cluster and pairwise similarities between all cluster members
were measured with respect to sequence length. Across all
clusters, we observed a median of 21.3% intracluster similarity
with a range from 3.0 to 70.1%. Clearly, the median within-
cluster sequence similarity of 21.3% in our clusters is much
lower than one would expect if clusters were formed based on
sequence similarity. Thus, our clusters have a makeup
significantly different from what a sequence similarity method
would construct.

Next, we look at cluster members’ appearance in the
signaling pathways identified by the small molecule pathway
database (SMPDB67). There are 17 clusters in which all of the
members are associated with proteins in a single pathway;
seven of the 17 clusters have more than one protein associated
with that same pathway. The pathways associated with those
seven clusters are ubiquitin-proteasome, Rac 1 cell motility
signaling, and the GnRH signaling pathway. Notably, five of

these seven clusters are associated with the ubiquitin-
proteasome pathway, which consists of 28 different proteins.
In SMPDB, a single protein is often associated with multiple
pathways, which makes searching for homogeneous cluster−
pathway associations difficult. Filtering clusters for those with
multiple proteins associated with the same set of pathways
yields 12 clusters of interest. Cluster #29 is one such example;
it has 11 pockets from 10 different proteins. The proteins in
cluster #29 found in SMPDB are each associated with the same
three pathways: folate metabolism, methotrexate action, and
methylenetetrahydrofolate reductase deficiency. This associa-
tion makes sense as the leading PDB ligand IDs associated with
the pockets in cluster #29 are folic acid and methotrexate.
While observations such as these based on UniProt IDs, EC
numbers, and SMPDB associations are interesting, more
quantitative validation of the clusters can be achieved.
Comparison of Clustering with Known Protein−

Ligand Interactions in DrugBank. One method of judging
the accuracy and potential usefulness of our constructed
protein clusters is to use the associated data to see which
clusters are predicted to be associated with a given ligand and
to compare these predictions with known protein interactions
for that ligand. Here, we present a method for making such
predictions and compare the results with known interactions in
the DrugBank database.40 Our clustered protein set includes
proteins for which DrugBank shows interactions with 4827
compounds. Of these 4827 compounds having protein
interactions in DrugBank, 2232 were successfully clustered
and exist in our feature set (matrix B); that is, our approach
used these compounds as protein pocket features. The
remaining 2595 of the 4827 compounds are “novel” to our
method.

We first looked at the DrugBank compounds found in our
feature set. Since these compounds are part of the “training”
set (e.g., used in our featurization for unsupervised clustering),
they do not provide a basis for unbiased tests of the clustering.
Certainly, this is the case if the DrugBank interacting protein−
ligand pair appears in PDB as a co-complex. In cases where
that particular protein−ligand pair does not exist in PDB, it is
included in our feature set as a result of pocket similarities.
Therefore, the “training” compounds can help test our
approach.

We perform our comparison with DrugBank by treating the
“training set” compounds as novel ligands and predicting
which protein clusters these ligands would be associated with.
Our prediction method is this: (1) measure each DrugBank
ligand’s similarity with the 15,489 ligands in our feature vector;
(2) apply the prefit PCA to render 112 × 1 feature vectors
used for clustering; (3) calculate the feature-space distance
between each ligand and every DBSCAN core sample; and (4)
label each DrugBank compound with the number of that
nearest core sample’s cluster. This creates a projection of each
compound in the protein pocket feature space and allows for
the creation of an ordered list of the protein pocket clusters
nearest each compound.

Figure 3. Protein pocket cluster centers (core sample centroids) and
167 clusters visualized by their first three principal components and
size.

Table 2. DrugBank Compound Results Are for Known Interactions in Nearby Clusters

DrugBank one or more interactions in all known activity in:

set count 10 nearest 5 nearest nearest 10 nearest 5 nearest nearest

“train” 2232 1129 (51%) 983 (44%) 727 (33%) 726 (33%) 617 (28%) 456 (20%)
test 2595 839 (32%) 763 (29%) 642 (25%) 529 (20%) 423 (16%) 294 (11%)
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The first row of Table 2 shows the results for this “training”
group of ligands. Of the 2232 DrugBank compounds that are
in our feature set, 1129 (51%) have a known interaction with a
protein in one or more of the nearest 10 clusters from the field
of 167 clusters. Furthermore, 726 of those (33%) have all
known interactions within their 10 nearest clusters. These
results are positive and demonstrate significant predictive
power. Among the five nearest pocket clusters, 44% of the
compounds have a known interaction in one or more of the
nearest five clusters, and 28% have all known targets within
those five nearest clusters. Finally, 456 of the 2232 ligands in
this DrugBank subset (20%) are nearest to a cluster which
contains all their known interactions. The presence of a protein
known to interact with a ligand in the cluster nearest that
ligand is preliminary evidence that our approach is functioning
properly.

Note that there are several reasons why a ligand may not be
projected near its known interacting proteins. First,
PDBspheres may not have identified a pocket, meaning it is
absent from the dataset in the first place. Second, even for all
identified pockets, their predicted template matches may be
inaccurate. Third, even if a pocket is identified and well-
characterized by the predicted templates, it can be poorly
captured by the PCA or, fourth, thrown out as an outlier by the
clustering method. Finally, ambiguity from the simple
featurization of that pocket may also lead to errors in ligand-
to-pocket associations. These possible failures may be
ameliorated as new PDB entries can substitute for homology
models and allow additional human proteins to be included in
the dataset.

The remaining 2595 compounds of the DrugBank subset are
not part of our feature set and therefore are not associated with
any pocket among our proteins’ clusters; thus, they are “novel”
to our method. We call these compounds the “test set”.

The second line of Table 2 shows the results of applying to
the “test” set the same procedure as that applied to the “train”
set compounds. Of these 2595 compounds, 839 (32%) are
placed with a known target in one or more of the nearest 10
clusters, and 20% have all known targets within the 10 nearest
clusters, among our global set of 167 possible clusters. For the
five nearest pockets, 763 (29%) of the compounds are placed
with one or more known targets and 16% include all known
targets. A final point of comparison between the two sets is
that 294 drugs are placed in a cluster, which includes all their
known targets. These percentages are lower across the board in
comparison with those of the “training” set of ligands in
DrugBank, which is to be expected. However, this set of
compounds is a fair test of the generalization of our method, as
the “test set” compounds on average have a maximum
similarity of 0.64 to any of the ligands used as features.
Illustration of Predicting Potential On- and Off-

Target Interactions. The comparison of predicted ligand−
cluster associations with known ligand−protein interactions in
DrugBank provides a macrolevel confirmation of the
featurization and clustering. Microlevel analysis is possible
with the Drug Repurposing Hub database.68 Of the 6550 Drug
Repurposing Hub compounds that are in the AHA Atlas, the
Drug Repurposing Hub indicates there are 2899 compounds
that have a known interaction with a protein present in one of
our clusters but are not included in the ligand feature matrix,
B. Thus, these compounds are “novel” to our method. Using
the criteria from the rightmost columns in Table 2, 405 (14%)
have all known interactions within the ten nearest clusters, 334

(12%) are within the nearest five clusters, and 255 (9%) have
all known interactions contained by their nearest cluster. The
AHA Atlas database provides machine learning (coherent
fusion2), molecular docking (AutoDock Vina69), and MM/
GBSA scores for many combinations of protein and ligand.3,70

Information from these scoring functions allows for a deeper
understanding of which ligands and pockets are well
represented and why. Among the results from the 9% of
compounds with any known activity exclusively in their nearest
cluster, we filtered the compounds to those predicted in the
smallest clusters to extract a list of five examples.

In the first example, two preclinical compounds (Figure 4,
molecules A71 and B72) are present in PDB as co-complexes
that match the same protein pocket (in the structural model of
UniProt ID Q93009) and were assigned to cluster #58. These
compounds are both ubiquitin-specific peptidases. Cluster #58
consists of 67 pockets from 52 different proteins; the most

Figure 4. Sample compounds (CID: PubChem compound identifier)
that are not in clustering feature matrix B (panel 1); their pose in the
protein structural model of the UniProt reference sequence included
in clusters #58 and #140�the poses are derived by alignment of the
PDB co-complex pockets that matched the structural model to the
structural model of the UniProt sequence (panel 2); and the
nearest�in feature space�ligands/structural models, again in poses
derived by aligning the PDB co-complex to the structural model
alignment (panel 3).
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common PDB ligand IDs that feature these pockets are N5S,
N6J, HBI, N5D, and A8O. The pocket included in cluster #58,
that matches the pocket of the structural model for UniProt
human proteome reference sequence Q93009, has three
PDBsphere-predicted ligands that featurize it: PDB ligand
IDs A8O,73 A8L,74 and A8F.75 Interestingly, molecules A71

and B72 (Figure 4) do not have high similarity to any of the
15,489 compounds in our dataset; the dataset compound
having the greatest similarity to these two is PDB ligand ID
D3U (“2-PCPA derivative”), which has Tanimoto similarities
of 0.41 and 0.43 to each, respectively. Cluster #58’s pockets
represent the most likely candidates with which these two
preclinical drugs have interactions. The protein pockets in that
cluster that are most similar to the “spheres” (PDB co-
complexes) from which molecules A and B were derived are
structural models of UniProt IDs (1) Q93008 (probable
ubiquitin carboxyl-terminal hydrolase FAF-X), (2) O00507
(probable ubiquitin carboxyl-terminal hydrolase FAF-Y), and
(3) Q9UPU5 (ubiquitin carboxyl-terminal hydrolase 24).
Among the receptors in cluster #58, our method highlights
these three ubiquitin carboxyl-terminal hydrolases as the most
likely proteins to interact with molecules A and B. This
information is more specific than finding similar proteins
through protein family associations. The proteins of the co-
complex pocket (Q93009) and all three potential interacting
pockets (Q93008, O00507, and Q9UPU5) belong to the
protein family (peptidase C19) and have the same EC
classification (3.4.19.12). The peptidase C19 family76 contains
133 different human proteins and there are 782 proteins under
the ubiquitinyl hydrolase 1 EC serial number (12), of the
omega peptidases subclass (19), in the peptidases subclass, of
the hydrolases EC class (3).77 Instead of generally associating
hundreds of proteins with the known target receptor, our
approach provides quantified, granular information about
similar receptors without limiting the results to ubiquitin
carboxyl-terminal hydrolases.

Another pair of preclinical compounds (Figure 4, molecules
C78 and D79) were assigned to cluster #140 but have known
activity with different proteins. Molecule C is a RARγ
antagonist of UniProt ID P13631 (retinoic acid receptor
gamma).80 Molecule D binds to UniProt ID Q03181
(peroxisome proliferator-activated receptor delta).81 Cluster
#140 consists of only 11 pockets from 10 unique proteins,
where the predicted co-complex pockets most common for
featurizing the cluster #140 pockets have PDB ligands ZHN
(pentyl (3,5-dihydroxy-2-nonanoylphenyl)acetate) and VIT
(vitamin e). Also in cluster #140 are pockets on UniProt IDs
P19793 (retinoic acid receptor RXR-alpha) and P48443

(retinoic acid receptor RXR-gamma). While our initial
knowledge of interactions shows molecule D having activity
only against Q03181, PubChem bioassay results indicate that
molecule D has activity against RARA and RXRA, with
potencies of 7.7 and 15.5 μM, respectively.79,81 This is a
significant finding that demonstrates a new use case, where
activity not previously in our dataset was found by looking at
activity for pockets in the same cluster. Both compounds were
most similar to PDB ligands in our feature matrix B that were
not used to characterize any of the pockets in this cluster.
Molecule D was most similar to the PDB ligand JNM
(Tanimoto similarity 0.66); molecule C was most similar to
E9T (Tanimoto similarity 0.81). The absence of JNM and
E9T as features in any of the cluster #140 pockets and the 39%
pairwise sequence similarity between their targets indicate the
predictive power of the information captured by this method
for pocket featurization.

As mentioned above, the AHA Protein Atlas includes
docking scores and coherent fusion2,82 machine learning scores
for 6550 compounds from the drug repurposing hub. This
allows for quantification of how pockets in the same cluster
might interact with a new compound. Using the same four-step
procedure described above with regard to placing DrugBank
compounds with their nearest cluster for all of the drug
repurposing hub compounds, PubChem compound
7152071783 (N-[[6-(hydroxyamino)-6-oxohexyl]oxy]-3,5-di-
methylbenzamide) is placed closest to cluster #117. Displayed
in Figure 5, compound 71520717 has two known interactions,
histone deacetylases 4 (P56524) and 5 (Q9UQL6), both of
which have a pocket in cluster #117.84 Cluster #117 is made up
of 10 total pockets from 9 different proteins, and every pocket
has PDB ligand ID B3N associated with its co-complex pocket
matches except for Q9UQL6, which is characterized by PDB
ligands SHH, 9Z8, and B3N. Compound 71520717, like
molecules A and B above, is significantly different from other
ligands in the feature vector, where its best match is PDB
ligand ID BHO (benzhydroxamic acid), having a Tanimoto
similarity of 0.44.

Among the 10 pockets that make up cluster #117, the AHA
Atlas’s coherent fusion machine learning model and AutoDock
Vina calculations highlight, with scores better than the Atlas’s
threshold for more detailed binding analyses, two different
proteins likely to interact with compound 71520717. UniProt
ID Q8WUI4 (histone deacetylase 7) has the best docking
score among the cluster’s pockets. PubChem’s bioassay results
report a 0.17 μ M “Active” result for compound 71520717.85

Activity at various levels is also shown for the other histone
deacetylases (2,6,8) in cluster #117. This evidence of cross-

Figure 5. Compound 71520717 in cluster #117 with known and top-predicted activity.
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sensitivities in the cluster is indicative of the similarity of the
pockets and the value of the information that they are grouped
together. The machine learning model’s leading prediction
highlights a pocket from the structural model of UniProt
Q8WUI4 (metastasis-associated protein MTA3) as likely to
interact with compound 71520717. Unlike the docking
prediction, the coherent fusion model’s prediction does not
have evidence in the literature or from PubChem. Instead,
assuming the biological relevance of the interaction, it
highlights a novel protein that might be examined for
interaction.

■ DISCUSSION
These use cases illustrate how our ligand-based featurization
and clustering approach may reveal useful information about
candidate drugs and protein pocket interactions in the human
proteome. While this simple approach is not perfect, it shows
promise as a powerful foundational approach to improving
algorithmically. As the number of solved structures in the PDB
continues to grow, template-based binding site identification
methods such as PDBspheres will become more accurate. The
4331 human proteins used in this work, which are provided in
a Supporting Information file, can also be expanded beyond
the AHA Atlas’s existing subset. Adding data points to this
approach will serve to improve the results in Table 2.
DrugBank compounds result in known interactions in nearby
clusters and increase granularity. In its current state, the
featurization/clustering often associates new compounds with
the larger clusters. Despite controlling for cluster size in
choosing the DBSCAN clustering parameters, a few clusters
stand out as dominant. Cluster #1 is made up of 1324 pockets
which are characterized by template matches to NHE, HEM,
1MK, ARG, and HEA. Cluster #3 contains 653 pockets which
are generally branched oligosaccharides made up of GLC,
BGC, GAL, and UMQ. Finally, cluster #5 contains 1547
pockets often associated with HEM, HEC, RLZ, JNI, and
FMN. While predicting ligands to be associated with these
clusters is not outright wrong, their sizes make analysis more
difficult. Additional data will naturally serve to reduce this
occurrence, but other clustering methods such as OPTICS86

may also provide an approach to keeping small clusters and
breaking up larger ones without creating unreasonable
numbers of divisions. In fact, early efforts in clustering data
from the AHA Atlas revealed some valuable subgroups in the
larger clusters.

Nevertheless, only a subset of the possible use cases for this
approach have been covered. The protein pocket clusters may
have uses spanning from high-throughput screening to better
understanding a proteome. In drug development, the feature
space created here can aid in ligand optimization, suggest other
pockets to target, and provide lead pockets for toxicity
concerns or assay prioritization. From a proteomic standpoint,
small-molecule pathways can be considered in the context of
the clusters in which their proteins and pockets are, and vice
versa. Because the feature space is traversable in terms of
coordinates and distance, measurements among pockets,
clusters, and regions might reveal similarities and differences
in a quantifiable way. Additionally, extending this method to
other proteomes might reveal the nearest analogs between
humans and animals, such as nonhuman primates, mice, rats,
etc. As a template-based method, recent advances in protein
structure prediction will have a significant effect on our

approach’s utility for proteins without known binding sites or
activities.

■ CONCLUSIONS
In this work, we describe and demonstrate a novel ligand-based
featurization of protein pockets and clustering. The latent
space captured shows strong evidence of accuracy by
nominating potential multitarget candidate pockets for either
designing multimodal drugs or testing in toxicity assays. The
straightforward, data-driven approach developed is able to
associate previously unseen drugs with their known target
proteins and pockets while also suggesting protein/ligand
interactions that are denoted as “Active” in PubChem. The
AHA Protein Atlas and binding affinity prediction methods
serve to confirm the validity of the clusters formed. Our
approach should have widespread utility, and in future work,
we plan to explore additional use cases, clustering approaches,
and improvements to pocket featurization.
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