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Abstract: Drug-induced liver injury (DILI) is a widespread and harmful disease, and is closely linked
to acute endoplasmic reticulum (ER) stress. Previous reports have shown that acute ER stress can
suppress hepatic gluconeogenesis and even leads to hypoglycemia. However, the mechanism is
still unclear. MAPK phosphatase 3 (MKP-3) is a positive regulator for gluconeogenesis. Thus, this
study was conducted to investigate the role of MKP-3 in the suppression of gluconeogenesis by
acute ER stress, as well as the regulatory role of acute ER stress on the expression of MKP-3. Results
showed that acute ER stress induced by tunicamycin significantly suppressed gluconeogenesis in
both hepatocytes and mouse liver, reduced glucose production level in hepatocytes, and decreased
fasting blood glucose level in mice. Additionally, the protein level of MKP-3 was reduced by acute
ER stress in both hepatocytes and mouse liver. Mkp-3 deficiency eliminated the inhibitory effect of
acute ER stress on gluconeogenesis in hepatocytes. Moreover, the reduction effect of acute ER stress
on blood glucose level and hepatic glucose 6-phosphatase (G6pc) expression was not observed in
the liver-specific Mkp-3 knockout mice. Furthermore, activation of protein kinase R-like ER kinase
(PERK) decreased the MKP-3 protein level, while inactivation of PERK abolished the reduction effect
of acute ER stress on the MKP-3 protein level in hepatocytes. Taken together, our study suggested
that acute ER stress could suppress hepatic gluconeogenesis by stimulating MKP-3 degradation via
PERK, at least partially. Thus, MKP-3 might be a therapeutic target for DILI-related hypoglycemia.

Keywords: DILI; ER stress; PERK; MKP-3; gluconeogenesis

1. Introduction

Drug-induced liver injury (DILI) is a widespread and harmful disease, which is usually
caused by drugs or their metabolites, such as nonsteroidal anti-inflammatory drugs, anti-
tuberculosis drugs, antiepileptic drugs and some traditional Chinese medicine (TCM) [1,2].
DILI is closely linked to endoplasmic reticulum (ER) stress [1,3]. ER stress can be classified
into three types: acute, periodic, and chronic ER stress. DILI-related ER stress belongs
to the acute type, which is typically induced by acute drugs and chemical treatments
(e.g., acetaminophen, isoniazid, valproic acid, tunicamycin, dithiothreitol, calcium
ionophores and saturated fatty acids) [4,5]. ER stress has three canonical signaling path-
ways; these are the protein kinase R-like ER kinase (PERK) pathway, the inositol-requiring
enzyme 1 (IRE1) pathway, and the activating transcription factor 6 (ATF6) pathway. PERK

Int. J. Mol. Sci. 2023, 24, 15561. https://doi.org/10.3390/ijms242115561 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms242115561
https://doi.org/10.3390/ijms242115561
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-4415-8542
https://orcid.org/0000-0002-8348-4199
https://orcid.org/0000-0001-6258-2729
https://doi.org/10.3390/ijms242115561
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms242115561?type=check_update&version=1


Int. J. Mol. Sci. 2023, 24, 15561 2 of 14

has kinase activity, which phosphorylates and activates the eukaryotic translation initiation
factor (eIF2α), and subsequently activates the expression of nuclear transcription factor
ATF4. IRE1 has both endoribonuclease activity and kinase activity, which splices the mRNA
of X-box binding protein 1 (sXBP1) and activates Jun N-terminal kinase (JNK), respectively.
ATF6 induces the expression of ER chaperone, including 78 kDa glucose regulatory protein
(GRP78) [6,7].

The liver is the main organ for the regulation of energy metabolism in the body,
including lipid metabolism and glucose homeostasis. The liver regulates blood glucose level
mainly through gluconeogenesis [8,9]. The process of gluconeogenesis involves a series
of enzymatic reactions, with glucose 6-phosphatase (G6PC) and phosphoenolpyruvate
carboxykinase (PEPCK) as the rate-limiting enzymes. The expression of these two genes
can be regulated by peroxisome proliferator-activated receptor gamma coactivator 1 alpha
(PGC1α) and forkhead box O1 (FOXO1) [9–11].

Studies have reported that chronic ER stress impairs insulin sensitivity, upregulates
the expression of gluconeogenic genes Pepck and G6pc, and increases hepatic glucose pro-
duction and blood glucose level in animals [12,13]. Conversely, acute ER stress can suppress
the expression of gluconeogenic genes [14]. Tunicamycin (TM), which can induce acute ER
stress in the liver, was proved to suppress gluconeogenesis and lead to hypoglycemia [15].
However, the mechanism by which acute ER stress suppresses gluconeogenesis is still
unclear.

Our previous study found that MAPK phosphatase-3 (MKP-3) can positively regulate
hepatic gluconeogenesis by dephosphorylating FOXO1 and promoting the expression of
Pgc1a [16]. In addition, the protein level of MKP-3 could be down-regulated by hormones,
such as insulin and leptin, in a phosphorylation–ubiquitination manner [17–19]. However,
it is unknown whether MKP-3 was involved in the regulation of hepatic gluconeogenesis
by acute ER stress. In the current study, we analyzed the effect of acute ER stress on
gluconeogenesis with both in vitro and in vivo studies, and investigated the role of MKP-3
in the suppression of gluconeogenesis by acute ER stress, as well as exploring how acute
ER stress regulated MKP-3 expression.

2. Results
2.1. Acute ER Stress Attenuated Hepatic Gluconeogenesis In Vitro

The effect of acute ER stress on gluconeogenesis was firstly investigated in hepatocytes.
Primary mouse hepatocytes and Hepa 1-6 cells were treated with TM to induce acute ER
stress. Results showed that TM treatment over 4 h significantly induced phosphorylation
levels of IRE1 and PERK, and protein levels of GRP78 and sXBP1 in primary hepatocytes,
compared to the control treatment (Figure 1A–E). TM treatment for 6 h increased the mRNA
levels of ER stress marker genes Grp78, Atf6 and Chop in primary hepatocytes, compared
with the control group (Figure 1F). Furthermore, glucose production and expression of
gluconeogenic genes Pepck1, G6pc, and their regulatory gene, Pgc1a, were suppressed
by TM treatment compared to the control group, in primary hepatocytes (Figure 1G,H).
Moreover, similar results were observed in Hepa 1-6 cells (Figure 1I–O). These data indicate
that acute ER stress can suppress gluconeogenesis in hepatocytes.
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Figure 1. Acute ER stress suppressed gluconeogenesis in hepatocytes. (A–E) Primary mouse hepato-

cytes were treated with 1 μg/mL TM for the indicated time. The protein levels of GRP78 and sXBP1 

and phosphorylation levels of IRE1 and PERK were detected using western blotting. (F–H) Primary 

mouse hepatocytes were treated with 1 μg/mL TM for 6 h; the mRNA levels of Grp78, Atf6 and Chop 

(F), glucose production (G) and gene expression levels of Pgc1a, G6pc and Pepck1 (H) were detected. 

(I–L) Hepa 1-6 cells were treated with 1 μg/mL TM for 6 h; the protein levels of GRP78 and sXBP1 

and phosphorylation levels of IRE1 and PERK were detected. (M–O) Hepa 1-6 cells were treated 

with 1 μg/mL TM for 6 h; the mRNA levels of Grp78, Atf6 and Chop (M), glucose production (N) and 

gene expression levels of Pgc1a, G6pc and Pepck1 (O) were detected. N = 3 per group. * p < 0.05, ** p 

< 0.01, *** p < 0.001 as compared with the control group. Results represent 1 of 3 independently 

performed experiments. TM, tunicamycin. 

2.2. Acute ER Stress Suppressed Hepatic Gluconeogenesis In Mice 

To further elucidate the effect of acute ER stress on in vivo hepatic gluconeogenesis, 

male C57BL/6N mice were injected intraperitoneally with 1 mg/kg TM or vehicle for 6 h. 

Figure 1. Acute ER stress suppressed gluconeogenesis in hepatocytes. (A–E) Primary mouse
hepatocytes were treated with 1 µg/mL TM for the indicated time. The protein levels of GRP78
and sXBP1 and phosphorylation levels of IRE1 and PERK were detected using western blotting.
(F–H) Primary mouse hepatocytes were treated with 1 µg/mL TM for 6 h; the mRNA levels of
Grp78, Atf6 and Chop (F), glucose production (G) and gene expression levels of Pgc1a, G6pc and
Pepck1 (H) were detected. (I–L) Hepa 1-6 cells were treated with 1 µg/mL TM for 6 h; the pro-
tein levels of GRP78 and sXBP1 and phosphorylation levels of IRE1 and PERK were detected.
(M–O) Hepa 1-6 cells were treated with 1 µg/mL TM for 6 h; the mRNA levels of Grp78, Atf6 and
Chop (M), glucose production (N) and gene expression levels of Pgc1a, G6pc and Pepck1 (O) were
detected. N = 3 per group. * p < 0.05, ** p < 0.01, *** p < 0.001 as compared with the control group.
Results represent 1 of 3 independently performed experiments. TM, tunicamycin.
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2.2. Acute ER Stress Suppressed Hepatic Gluconeogenesis In Mice

To further elucidate the effect of acute ER stress on in vivo hepatic gluconeogenesis,
male C57BL/6N mice were injected intraperitoneally with 1 mg/kg TM or vehicle for 6 h.
Results showed that TM administration induced ER stress in mouse liver (Figure 2A–H).
The fasting blood glucose level was much lower in the TM group than that in the control
group, though the body weight and liver weight were similar between the two groups
(Figure 2I–K). Furthermore, hepatic gene expression levels of Pgc1a, G6pc and Pepck1 were
significantly down-regulated by acute ER stress, as compared with the control group
(Figure 2L). These data suggest that acute ER stress can suppress hepatic gluconeogenesis
in vivo.
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Figure 2. Acute ER stress suppressed hepatic gluconeogenesis in mice. C57BL/6N mice were injected
intraperitoneally with 1 mg/kg TM or vehicle. (A–E) Phosphorylation levels of IRE1 and PERK, and
protein levels of GRP78 and sXBP1 in the liver. (F–H) The mRNA levels of Grp78 (F), Atf6 (G) and
Chop (H) in the liver. (I–K) Fasting blood glucose levels (I), body weight (J) and liver weight index (K)
of the mice. (L) The expression levels of gluconeogenic genes in the liver. N = 6 for each group.
* p < 0.05, ** p < 0.01, *** p < 0.001 as compared with the control group. TM, tunicamycin.

2.3. Acute ER Stress Decreased MKP-3 Protein Level in Both Hepatocytes and Mouse Liver

Our previous studies have shown that MKP-3 could promote hepatic gluconeogene-
sis, and its protein level can be down-regulated by insulin and leptin in a ubiquitination
manner [16–18]. Therefore, the expression of MKP-3 was determined in TM treated hepato-
cytes and mouse liver. Results showed that the protein level of MKP-3 was decreased by
TM administration for 2 h or longer in primary hepatocytes, compared with the control
group (Figure 3A). In addition, acute ER stress significantly decreased the MKP-3 protein
level in Hepa 1-6 cells (Figure 3B). Furthermore, TM administration resulted in a significant
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decrease in MKP-3 protein level in mouse liver, as compared to the control treatment
(Figure 3C,D). However, the mRNA level of MKP-3 was not changed by acute TM treat-
ment neither in hepatocytes nor in mouse liver (Figure 3E–G). These data indicate that
acute ER stress can decrease the protein level of MKP-3 in a post-transcriptional manner
both in vivo and in vitro.
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Figure 3. Acute ER stress decreased MKP-3 protein level in both hepatocytes and mouse liver.
(A) MKP-3 protein levels in 1 µg/mL TM or vehicle-treated primary mouse hepatocytes. (B) MKP-3
protein levels in 1 µg/mL TM or vehicle-treated Hepa 1-6 cells. (C,D) MKP-3 protein levels in
1 mg/kg TM or vehicle-treated C57BL/6N mouse liver. (E,F) MKP-3 mRNA levels in 1 µg/mL TM
or vehicle-treated primary mouse hepatocytes (E) and Hepa 1-6 cells (F). (G) MKP-3 mRNA levels
in 1 mg/kg TM or vehicle-treated C57BL/6N mouse liver. N = 3 per treatment for cell studies, and
N = 6 per group for mouse study. *** p < 0.001 as compared with the control group. Results for cell
studies represent 1 of 3 independently performed experiments. TM, Tunicamycin.

2.4. MKP-3 Was Involved in the Suppression of Gluconeogenesis by Acute ER Stress in
Primary Hepatocytes

The role of MKP-3 in the suppression of gluconeogenesis by acute ER stress was
then investigated in Mkp-3 knockout (KO) primary mouse hepatocytes. Results showed
that though TM induced acute ER stress signaling and the mRNA level of Grp78 in both
wild-type (WT) and Mkp-3-deficient primary hepatocytes, the protein level of GRP78
was not changed by TM treatment in Mkp-3 KO hepatocytes, as compared to the control
treatment (Figure 4A–H). In addition, Mkp-3 deficiency blocked the suppression effect
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of acute ER stress on glucose production and gluconeogenic gene expression in primary
hepatocytes (Figure 4I–L). These data indicate that MKP-3 is involved in the suppression of
gluconeogenesis by acute ER stress in primary hepatocytes.
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Figure 4. MKP-3 was involved in the suppression of gluconeogenesis by acute ER stress in primary
mouse hepatocytes. Mkp-3-deficient primary mouse hepatocytes and wild-type primary mouse
hepatocytes were treated with 1 µg/mL TM or vehicle. (A–E) The protein levels of pPERK, GRP78,
sXBP1 and MKP-3 in the cells. (F–H) The gene expression levels of Grp78 (F), Atf6 (G), and Chop (H)
in the cells. (I–L) The glucose production level (I) and gene expression levels of Pgc1a (J), G6pc (K)
and Pepck1 (L) in the cells. N = 3 per group. * p < 0.05, ** p < 0.01, *** p < 0.001 as indicated. ns, no
significance. Results represent 1 of 3 independently performed experiments. TM, Tunicamycin.
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2.5. MKP-3 Was Involved in the Suppression of Hepatic Gluconeogenesis by Acute ER Stress
in Mouse

The role of MKP-3 in the suppression of hepatic gluconeogenesis by acute ER stress
was then investigated in mice. Results showed that although TM induced acute ER stress
in the liver of both WT and liver-specific Mkp-3 knockout (Mkp-3 LKO) mice (Figure 5A–E),
the reduction effect of TM on blood glucose level and gene expression of hepatic G6pc was
not observed in Mkp-3-deficient mice, while the expression of Pgc1a and Pepck1 were still
suppressed by TM in the liver of Mkp-3 LKO mice (Figure 5F–I). These data indicate that
MKP-3 might be involved in the suppression of hepatic gluconeogenesis by acute ER stress
in mice, at least partially.
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Figure 5. MKP-3 was involved in the suppression of hepatic gluconeogenesis by acute ER stress in
mice. Liver-specific Mkp-3 knockout (Mkp-3 LKO) mice and wild-type (WT) littermates were injected
intraperitoneally with 1 mg/kg TM or vehicle. (A–C) Phosphorylation level of PERK, and protein
levels of GRP78 and MKP-3 in the liver. (D,E) The mRNA levels of Grp78 (D) and Chop (E) in the liver.
(F) Fasting blood glucose levels of mice. (G–I) The mRNA levels of Pgc1a (G), G6pc (H) and Pepck1 (I)
in the liver. N = 4–6 per group. * p < 0.05, ** p < 0.01, *** p < 0.001 as indicated. ns, no significance.
TM, Tunicamycin.
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2.6. IRE1 Was Not Needed for the Reduction of MKP-3 Protein Level by Acute ER Stress

ER stress induces three canonical signaling pathways: the PERK/eIF2α pathway,
IRE1/sXBP1 pathway, and ATF6 pathway. Of them, ATF6 is a transcription factor, while
PERK is a kinase, and IRE1 has both endonuclease activity and kinase activity. Acute ER
stress only decreased the protein level of MKP-3, but not its mRNA level. And, previous
studies have reported that MKP-3 protein could be degraded in a phosphorylation–ubiquitination
manner. Thus, we investigated whether acute ER stress reduced the MKP-3 protein level
through the IRE1 pathway. Results showed that the reduction effect of acute ER stress on
MKP-3 could not be blocked by the IRE1 endonuclease inhibitor STF083010 or 4µ8C, but
was promoted by them (Figure 6A–F). In addition, knock-down of Xbp1 using its shRNA
in hepatocytes got similar results to the IRE1 inhibitor study (Figure 6G,H). Furthermore,
Kira6, the inhibitor for IRE1 kinase, decreased the MKP-3 protein level in hepatocytes
(Figure 6I). These results indicate that acute ER stress-promoted MKP-3 protein degradation
is likely independent of the IRE1 pathway.
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2.7. PERK Was Involved in the Reduction of MKP-3 Protein Level by Acute ER Stress

We then investigated whether PERK was involved in the reduction of the MKP-3
protein level by acute ER stress. Results showed that the MKP-3 protein level could
be suppressed by PERK activator CCT020312 (Figure 7A–C). Furthermore, the inhibitor
of PERK GSK2656157 restored the MKP-3 protein level that was reduced by acute TM
treatment (Figure 7D–F). These results suggest that acute ER stress might decrease MKP-3
protein level via PERK pathway in hepatocytes, at least partially.
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Figure 7. PERK was needed for the reduction of MKP-3 protein level by acute ER stress in hepatocytes.
(A–C) Primary mouse hepatocytes were treated with CCT020312 at the indicated doses for 2 h.
Phosphorylation level of PERK and the protein level of MKP-3 were detected. (D–F) Primary mouse
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MKP-3 were detected. N = 3 for each group. * p < 0.05, ** p < 0.01, *** p < 0.001 as indicated. ns, no
significance. Results represent 1 of 3 independently performed experiments. TM, Tunicamycin.

3. Discussion

Drug-induced liver injury, which is closely linked to acute endoplasmic reticulum (ER)
stress, is a widespread disease, and might induce hypoglycemia [1,20,21]. Here we showed
that activation of acute ER stress by tunicamycin suppressed gluconeogenesis in both
hepatocytes and mouse liver, as well as reducing glucose production in hepatocytes and
fasting blood level in mice. In addition, the protein level of MKP-3, a positive regulator for
gluconeogenesis, was decreased by acute ER stress both in vitro and in vivo. Furthermore,
Mkp-3 knockout abolished the suppression effect of acute ER stress on gluconeogenesis
both in hepatocytes and mouse liver. Thus, MKP-3 might be a potential therapeutic target
in drug-induced hypoglycemia.

ER stress can be classified into three types: acute, periodic, and chronic [5]. DILI-
related ER stress belongs to the acute one, which is typically induced by acute drugs
and chemical treatments [3]. TM, which has a potential therapeutic effect on cancer
treatment [22], was typically used to induce acute ER stress for both in vivo and in vitro
studies [23,24]. In the current study, our results showed that TM treatment significantly
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increased the mRNA levels of Grp78, Atf6 and Chop, and enhanced phosphorylation levels
of IRE1 and PERK and protein levels of sXBP1 and GRP78. These data suggest that acute
ER stress was induced in our study. It is interesting that the protein level of GRP78 was not
induced by TM in Mkp-3 KO hepatocytes, while the ER stress signaling and gene expression
of Grp78 was induced. GRP78 is an ER chaperone, which binds to unfolded or misfolded
polypeptide chains and/or unassembled multi-subunit proteins, leading to the release and,
consequently, the activation of the ER stress sensors [25]. Thus, our data suggest that MKP-
3 might be involved in the unfold protein response (UPR) in hepatocytes. Alternatively,
there might be a post-transcriptional regulation of GRP78 by MKP-3. However, the GRP78
protein level was induced by TM in the liver of Mkp-3 LKO mice. These might because the
regulatory effect MKP-3 on GRP78 was eliminated by some in vivo hormones. This will be
further elucidated in future studies.

It has been reported that hepatic glucose homeostasis can be disrupted by ER stress,
which is one of the reasons for metabolic diseases [5,15]. Here, we showed that short-time
TM administration induced acute ER stress, decreased glucose production in primary
hepatocytes and blood glucose level in mice, and suppressed the expression of hepatic
gluconeogenic genes. Similarly, Seo et al. suggested that TM treatment for 16 h could
decrease blood glucose levels and the expression of Pepck and G6pc in mice [14]. Wang et al.
also suggested that TM treatment for 10 h decreased blood glucose level and suppressed
the expression of Pepck and G6pc in mice [15]. However, our previous study showed
that 24 h TM treatment decreased blood level, but did not change the expression and
activities of G6PC and PEPCK in mice [23]. This might be because different times of TM
treatment induced different types of ER stress. Though the effect of chronic ER stress on
gluconeogenesis has been studied in diet-induced obese mice [26], the effect of long-time
low-dose TM treatment will be investigated in future studies.

Here, we observed that the protein level of MKP-3 was decreased by short-time TM
treatment both in hepatocytes and mouse liver. MKP-3 is considered a novel molecular
for the regulation of hepatic glucose homeostasis. Previous reports have shown that
MKP-3 stimulates hepatic gluconeogenesis by promoting the expression of Pgc1a and
dephosphorylating FOXO1 [16,27]. We have previously shown that MKP-3 was involved
in the suppression of gluconeogenesis by hepatic leptin signaling [18]. Here, we found that
Mkp-3 deficiency eliminated the suppression effect of acute ER stress on gluconeogenesis
in primary hepatocytes. In the Mkp-3 LKO mice, TM did not change the blood glucose
level and expression of G6pc. These data suggest that MKP-3 might be also involved in the
suppression of gluconeogenesis by acute ER stress, at least partially. However, TM still
decreased the expression of Pgc1a and Pepck1 in the liver of Mkp-3 LKO mice. This might be
because there was a compensatory increase in any other phosphatases in Mkp-3 LKO mice,
like DUSP4 [28]. And these phosphatases regulated the expression of Pgc1a and Pepck1.
This hypothesis will be elucidated in future studies.

MKP-3 protein can be degraded by several hormones in a kinase–ubiquitination
manner [17,18,29,30]. Bermudez et al. suggested that serum growth factor induced the
degradation of MKP-3 through the mTOR pathway [29]. Feng et al. suggested that insulin,
the major hormone suppressing gluconeogenesis, promoted the degradation of MKP-3
protein through the ERK pathway in hepatocytes [17]. In addition, our previous report
showed that the adipokine leptin decreased the MKP-3 protein level through STAT3 in
hepatocytes [18]. The current study showed that the protein level of MKP-3 was decreased
by acute TM treatment, but no change in Mkp-3 mRNA level was observed. These data
suggested that acute ER stress might suppress MKP-3 expression in a post-translational
manner. Further study will be carried out to confirm whether Serine to Alanine mutation
of MKP-3 at Ser159 and Ser197 resists TM-induced degradation.

IRE1/sXBP1 and PERK/eIF2α are two typic pathways in ER stress. IRE1 has both
endoribonuclease activity and kinase activity [25]. Activated IRE1 can bind to the adaptor
protein tumor-necrosis factor-α (TNF-α)-receptor-associated factor 2 (TRAF2), and then
induce the phosphorylation and degradation of the inhibitor of NF-κB (IκB) [31,32]. PERK
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can be activated by ER stress-induced oligomerization, and subsequently phosphorylates
the eukaryotic translation initiation factor 2 (eIF2α) [25,33]. Thus, the roles of IRE1 and
PERK in the reduction of MKP-3 protein level by TM treatment were investigated. Our
data showed that inhibition of the endoribonuclease activity of IRE1 or knockdown of
XBP1 could not reverse the protein level of MKP-3 that was reduced by acute TM treatment.
Furthermore, the inhibitor for IRE1 kinase activity even decreased the protein level of
MKP-3. These results suggest that acute ER stress-induced MKP-3 degradation might be
independent of IRE1.

Further study showed that the activation of PERK decreased MKP-3 protein level
in hepatocytes, while the inhibition of PERK restored the MKP-3 protein level that was
decreased by acute TM treatment. This result indicates that acute ER stress might decrease
MKP-3 protein level through PERK, at least partly. PERK can phosphorylate heterogeneous
nuclear ribonucleoprotein A1 (HNRNPA1) at Thr51, causing it to be degraded by the
proteasome [34]. MKP-3 can be phosphorylated at Ser159 and Ser197, and then degraded
in a ubiquitination manner [30]. Thus, PERK might regulate the protein level of MKP-3
by inducing its phosphorylation Ser159 and Ser197. Further study will be conducted to
confirm this hypothesis.

4. Materials and Methods
4.1. Animal Studies

All animal procedures were reviewed and approved by the Animal Ethical and Wel-
fare Committee of Sichuan Agricultural University (20190122), and were carried out in
accordance with the Guide for the Care and Use of Laboratory Animals (National Research
Council, Bethesda, MD, USA). Four-week-old male mice (C57BL/6N) were obtained from
Vital River Laboratory Animal Technology Co. Ltd. (Beijing, China), and were kept in
a pathogen free room at 22 ◦C and a 60% stable temperature and humidity. When they
reached 8 weeks of age, twelve mice were randomly divided into two groups, and they
were injected intraperitoneally with 1 mg/kg tunicamycin (TM, Sigma, St. Louis, MO,
USA) or vehicle. The body weight and blood glucose level (blood glucose strips (5D-2)
were purchased from Beijingyicheng, Beijing, China) under fasted state were measured 6 h
after injection. The mice were then euthanized using carbon dioxide, followed by cervical
dislocation. Liver was collected for further analysis.

The liver-specific Mkp-3 knockout (Mkp-3 LKO) mice were generated by cross mat-
ing Mkp-3loxp/loxp mice (Cyagen Biosciences, Guangzhou, China) with albumin-Cre mice
(Jackson Laboratory, Bar Harbor, ME, USA). The Mkp-3loxp/loxp littermate mice were used
as the control group. Twelve-week-old male Mkp-3 LKO mice and their corresponding
control mice were injected intraperitoneally with 1 mg/kg TM or vehicle. Liver samples
were collected 6 h after injection under fasting state.

4.2. Cell Culture and Treatment

Hepa 1-6 hepatoma cells (provided by Dr. Gökhan Hotamisligil, Harvard School
of Public Health, Boston, MA, USA) and primary mouse hepatocytes were cultured in
Dulbecco’s modified Eagle medium (DMEM) containing 10% fetal bovine serum (FBS),
100 U/mL penicillin and 100 µg/mL streptomycin (Gibco, Shanghai, China) at 37 ◦C
with 5% CO2. Primary mouse hepatocytes were isolated by infusing mouse liver with
collagenase as previously reported [35].

Hepa 1-6 cells and primary mouse hepatocytes were seeded in a 12-well plate at a
density of 4 × 105 cells/well. Cells were treated with 1 µg/mL TM [36,37] or vehicle
for 6 h after an overnight incubation with serum-free DMEM. For the inhibitors study,
hepatocytes were pretreated with 50 µM STF083010 (inhibitor for IRE1, Selleck Chemical,
Houston, TX, USA), 5 µM 4µ8C (inhibitor for IRE1, Selleck Chemical, Houston, TX, USA)
or 1 µM GSK2656157 (inhibitor for PERK, Selleck Chemical, Houston, TX, USA) for 24 h,
followed by TM plus inhibitor treatment for 6 h. For PERK activation study, primary mouse
hepatocytes were treated with 1, 2, or 4 µM CCT020312 (Selleck Chemical, Houston, TX,
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USA) for 2 h. For IRE1 activation study, primary mouse hepatocytes were treated with 5
µM Kira6 (Selleck Chemical, Houston, TX, USA) or vehicle for 6 h.

4.3. Glucose Output Assay

The glucose output assay was performed as previously reported [18]. Hepatocytes
were washed 3 times with phosphate-buffered saline (PBS) and were incubated in serum-
free DMEM containing 0.5 mM 8-bromo-cyclic adenosine monophosphate (cAMP, Sigma,
St. Louis, MO, USA) and 1 µg/mL TM or vehicle for 5 h. Cells were then incubated
in 0.5 mL/well of phenol red-free, glucose-free DMEM (Sigma, St. Louis, MO, USA)
containing 2 mM pyruvate (Sigma, St. Louis, MO, USA), 20 mM lactate (Sigma, St. Louis,
MO, USA), and 1 mM 8-bromo-cAMP, with 1 µg/mL TM or vehicle. Medium was collected
3 h later and subjected to glucose measurement using the Glucose Assay Kit (Sigma,
St. Louis, MO, USA). Cells were lysed and the protein concentration was measured. The
glucose production was normalized with cellular protein content.

4.4. RNA Extraction and Real-Time PCR

RNA extraction and real-time PCR were performed as previously reported [18]. RNA
was extract with Trizol Reagent (Sigma, St. Louis, MO, USA). cDNA was synthetized
with a reverse transcription PCR kit (Thermofisher Scientific, Shanghai, China). Real-time
PCR was performed on a quantitative-PCR machine (7900HT, ABI, Carlsbad, CA, USA)
with Power SYBR Green RT-PCR reagents (BioRad, Hercules, CA, USA). The sequence of
primers is listed in Table 1.

Table 1. Primers for Real-Time quantitative PCR.

Gene Name Forward Primer Reverse Primer

Gapdh AGGTCGGTGTGAACGGATTTG TGTAGACCATGTAGTTGAGGTCA
Pgc1a TATGGAGTGACATAGAGTGTGCT CCACTTCAATCCACCCAGAAAG
Pepck1 CGCTGGATGTCGGAAGAGG GGCGAGTCTGTCAGTTCAATAC
G6pc CGACTCGCTATCTCCAAGTGA GTTGAACCAGTCTCCGACCA
Grp78 ATCAGGGCAACCGCATCAC TGATGTCCTGCTGCACCGAA
Atf6 CGGTCCACAGACTCGTGTTC GCTGTCGCCATATAAGGAAAGG
Chop CACGCACATCCCAAAGCC GGGCACTGACCACTCTGTT
Mkp3 TGCGGGCGAGTTCAAATACA AGCAATGCACCAGGACACCA

4.5. Western Blot Analysis

Total proteins were extracted from liver tissues and hepatocytes using cell lysis buffer,
and the aim proteins were detected with western blotting using specific antibodies as
described previously [18]. The anti-MKP-3 (sc-377070) and anti-IRE1 (sc-390960) anti-
bodies were purchased from Santa Cruz Biotechnology (Santa Cruz, Dallas, TX, USA),
anti-phospho-IRE1 (Ser724, ab48187) antibody was from Abcam (Cambridge, MA, USA),
anti-sXBP1 (#83418), anti-phospho-PERK (Thr980, #3179s) and anti-PERK (#4970) anti-
bodies were purchased from Cell Signaling Technology (Danvers, MA, USA), anti-GRP78
(1157-1-AP) antibody was from proteintech (Wuhan, China), and anti-GAPDH (abs132994)
antibody was from Absin (Shanghai, China).

4.6. Statistical Analysis

Data were analyzed with SAS 9.3 software (Cary, NC, USA). An independent t-test
was used to compare the difference between two groups. The results were presented
as mean ± SE. Statistical significance was determined at p < 0.05. All cell studies were
repeated at least three times.
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5. Conclusions

Acute ER stress could suppress hepatic gluconeogenesis by stimulating MKP-3 degra-
dation via PERK, at least partially. Thus, MKP-3 is a potential therapeutic target for
DILI-related hypoglycemia.
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