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Abstract: The TCA cycle intermediate metabolite ‘succinate’ has been proposed as an inflammatory
mediator, influencing autoimmunity and allergic reactions, through ligation to its sensing receptor
SUCNR1/GPR91. Whether GPR91-mediated signalling influences the chronic inflammatory process
of atherosclerosis has never been investigated. The examination of publicly available datasets
revealed that the SUCNR1 gene is expressed in human atherosclerotic plaques, especially in vascular
smooth muscle cells. Using GPR91 knockout (Gpr91−/−) and wildtype (WT) littermates, made
hyperlipidaemic with the overexpression of the gain-of-function mutated Pcsk9 and Western diet
feeding, we showed that the full ablation of GPR91 did not accelerate atherosclerosis—lesions in the
aortic arch 2.18 ± 0.48% vs. 1.64 ± 0.31%, and in the aortic roots 10.06 ± 0.91% vs. 10.67 ± 1.53% for
Gpr91−/− and WT mice, respectively. In line with this, no differences between groups were observed
for macrophage and T-cell infiltration in the plaque, as well as the polarization towards M1- or M2-like
macrophages in the aorta, spleen and liver of Gpr91−/− and WT control mice. In conclusion, our
study indicates that the global ablation of GPR91 signalling does not influence vascular inflammation
or atherogenesis.
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1. Introduction

Atherosclerosis, the major cause of cardiovascular diseases (CVDs), including stroke
and myocardial infarction, is a chronic inflammatory process affecting large- and medium-
sized arteries [1]. This disease is initiated by the accumulation and modification of low-
density lipoprotein (LDL) within the artery wall which triggers maladaptive innate and
adaptive immune responses and drives the formation of atherosclerotic lesions [2]. As
part of the atherosclerotic process, a fibrous cap that separates the artery lumen from the
thrombogenic core of the plaque is usually formed. The rupture of this fibrous cap and
superimposed thrombosis drive the most lethal consequences of CVDs [3].

Novel insights into the cellular processes driving inflammation have revealed that
intrinsic cellular metabolism can reflect the activation, differentiation status and functional
role of immune cells [4–7]. Proinflammatory cells such as M1-like macrophages rely strongly
on aerobic glycolysis and lactate formation and have their tricarboxylic acid (TCA) cycle
disrupted at different steps, resulting in the accumulation of certain metabolites, especially
succinate [8]. Differently, anti-inflammatory cells such as M2-like macrophages display a

Cells 2023, 12, 2580. https://doi.org/10.3390/cells12212580 https://www.mdpi.com/journal/cells

https://doi.org/10.3390/cells12212580
https://doi.org/10.3390/cells12212580
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cells
https://www.mdpi.com
https://orcid.org/0000-0002-4256-2541
https://orcid.org/0009-0007-6585-4022
https://orcid.org/0000-0001-6353-4227
https://doi.org/10.3390/cells12212580
https://www.mdpi.com/journal/cells
https://www.mdpi.com/article/10.3390/cells12212580?type=check_update&version=2


Cells 2023, 12, 2580 2 of 14

distinct metabolic profile, characterized by a functional and intact TCA cycle, increased
oxidative phosphorylation (OXPHOS) and efficient ATP production [9].

While for many years, metabolites have been considered as merely building blocks
of energy production, recent research has revealed additional metabolite-mediated func-
tions, including major roles in post-translational modification, epigenetic alterations, and
receptor-dependent signalling functions [10–12]. A well-characterized example of a metabo-
lite affecting immune cell function is the intracellular accumulation of succinate on proin-
flammatory/activated macrophages, which has been shown to prevent hydroxylation
and stabilize hypoxia-inducible factor-1-alpha (HIF1α)-mediated signalling [8]. The sta-
bilization and translocation of HIF1α to the nucleus can influence both metabolic and
inflammatory functions, including the overexpression of glycolytic and interleukin-1 beta
(IL-1β) genes in macrophages [8].

The conditions that drive succinate accumulation, for example, hypoxia or inflam-
mation, also increase its extracellular levels, allowing it to exert autocrine and paracrine
functions on its sensing receptor, the G-protein-coupled receptor 91 (GPR91 or SUCNR1).
Within the immune system, GPR91 is expressed in macrophages, immature dendritic cells
and mast cells [13–15], and has also been implicated in the modulation of IL-1 secretion [14].

Several immunomodulatory strategies have been proven to ameliorate CVD in animal
models and humans [16–19]. Thus, we and others have shown that the modulation of
the metabolism of immune cells can substantially influence vascular inflammation and
experimental atherosclerosis [20–27]. Several GPCRs have been identified to elicit signal
transduction when triggered by extracellular metabolites, including intermediate metabo-
lites of the TCA cycle, triglycerides, bile acids and amino acids [28]. Many of these GPCRs
have been linked with immunoregulation, including the fatty acid receptors GPR120,
GPR40, GPR84, GPR41 and GPR43; the receptors for 3-hydroxy-butyrate/niacin GPR109A;
the receptor for 3-hydroxy octanoate GPR109B; the receptor for lactate GPR81; the receptor
for kynurenic acid GPR35; and the succinate receptor GPR91 [29]. Despite this knowledge,
only a few of these receptors have been investigated in the context of atherosclerosis.

Triggering GPR91 signalling has been implicated in several inflammatory diseases
such as inflammatory bowel disease, rheumatoid arthritis and asthma [30,31]. Interestingly,
elevated plasma succinate levels have been linked to increased CVD risk in young individu-
als [32], and repeated injections of succinate have been shown to accelerate atherosclerosis in
Apoe−/− mice [33]. Despite this previous knowledge, whether GPR91-mediated signalling
plays a role in the pathophysiology of atherosclerosis remains unknown. In the present
study, the induction of hyperlipidaemia and atherosclerosis in Gpr91−/− and WT littermate
mice, with the injection of recombinant adeno-associated virus vector (AAV) encoding gain-
of-function mutant Pcsk9, showed that the overall ablation of GPR91-dependent signalling
does not influence vascular inflammation and atherogenesis.

2. Materials and Methods
2.1. GPR91 Expression in the Human Vasculature—Analyses of Public Datasets

GPR91 (SUCNR1) transcript levels in healthy post mortem tissue samples (heart
left ventricle (n = 432), heart atrial appendage (n = 429), tibial artery (n = 663), coronary
artery (n = 240), aorta (n = 432), liver (n = 226) and spleen (n = 241)) were obtained from
the Genotype-Tissue Expression (GTEx) portal V8 [34]. Cell-specific GPR91 (SUCNR1)
expression was obtained using publicly available single-cell RNA sequencing (scRNA-seq)
datasets from human carotid (GSE155512 [35], GSE159677 [36]) and coronary atherosclerotic
plaques (GSE131778 [37]). All datasets underwent QC analysis and exploration, which
were performed using the R package Seurat 4.3.0 [38]. Parameters used for filtering and
clustering are shown in the Supplementary Materials (Supplementary Table S2). Cell
clusters were identified using an optimized published pipeline [39]; cell clusters were
annotated using integration and reference-based approaches using the R package SingleR
and the reference datasets “BlueprintEncodeData” and “HumanPrimaryCellAtlasData”
from the celldex R package. Integration-based cluster annotation was performed using the
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Seurat package and the vasculature scRNAseq dataset from Tabula Sapiens [40]. Cluster
annotations were validated by manual differential expression analysis. The expression of
SUCNR1/GPR91 was shown across cell clusters for each dataset.

2.2. Animal Model and Experimental Design

Gpr91−/−mice, generated by the replacement of part of exon 2 (5′-GGCTACCTCTTCT
GCAT-3′) with a lacZ-neomycin cassette [13] and by 10 generations backcrossed with
C57BL6/J [11] (kindly provided by Amanda Littlewood-Evans, Novartis Institutes for
BioMedical Research, Basel, Switzerland), were established at the Department of Experi-
mental Medicine, University of Copenhagen, Denmark. Breeding colonies were maintained
as heterozygous (Gpr91+/−) for breeding to obtain littermate wildtype (WT) and Gpr91−/−
mice. At 10 weeks of age, male WT and Gpr91−/−mice were made hyperlipidaemic with
an intravenous injection of 1011 viral genomes of rAAV8-D377Y-mPcsk9 and concomitant
feeding with a Western-type diet (WTD, 21% fat, 0.21% cholesterol; D12079B, Research
Diets Inc., New Brunswick, NJ, USA) for 14 weeks, as previously described [41]. On every
second week, mice were weighed, and blood was harvested from the facial vein to monitor
plasma cholesterol levels. At the endpoint, mice were euthanized through exposure to
saturated isoflurane vapours. All animal experiments were conducted according to the
guidelines of Directive 2010/63/EU from the European Parliament on the protection of
animals used for scientific purposes and approved by the Danish Animal Experiments
Inspectorate (2018-15-0201-01424).

2.3. Tissue Collection and Analyses of Atherosclerotic Lesions

After sacrifice, blood from WT and Gpr91−/− was collected by cardiac puncture and
vascular perfusion was performed with phosphate-buffered saline (PBS). After perfusion,
the heart and aortic arch were dissected and saved for later lesion and immunohisto-
chemistry analyses. En face lipid accumulation was measured in 4% paraformaldehyde
(PFA)-fixed aortic arches using Sudan IV (Sigma-Aldrich, St. Louis, MO, USA) staining, as
previously described [25]. The lesion area was calculated as the sum of the total lesion area
in the aortic arch (excluding the branching vessels). Aortic root lesions were evaluated in
cryopreserved hearts that were serially sectioned from the proximal part of the aortic root
on a cryostat. Lesion size was measured from Oil Red O (ORO)- and haematoxylin-stained
PFA-fixed 10 µm sections, collected every 100 µm over an 800 µm segment of the aortic
root starting at the beginning of the cusps. The lesion size of the ORO-stained aortic root
sections was quantified as previously described [42]. Samples that were compromised
during processing were excluded from the study. The evaluation of lesions was performed
by trained personnel who were blinded to the mouse genotypes.

The cellular compositions of the aortic root lesions were evaluated by staining 10 µm
thick acetone-fixed sections serially taken from cryopreserved hearts. Primary antibodies
directed against the macrophage marker CD68 (Bio-Rad Laboratories, Hercules, CA, USA),
T-cell marker CD3 (Abcam, Cambridge, UK), the marker of activation VCAM-1 (BD Bio-
sciences, Franklin Lakes, NJ, USA), MHC class II marker I-Ab (BD Biosciences, Franklin
Lakes, NJ, USA) and vascular smooth muscle cell (VSMC) marker alpha-smooth muscle
actin (αSMA) (Abcam, Cambridge, UK) were used for visualization. Primary antibodies
were detected using biotinylated anti-rat IgG (Dako, Glostrup, Denmark) or anti-rabbit IgG
(Vector Laboratories, Burlingame, CA, USA). Staining reactions were developed using the
VEC-TASTAIN ABC kit (Vector Laboratories, Burlingame, CA, USA) and diaminobenzi-
dine (DAB) (Dako, Glostrup, Denmark). αSMA was detected using standard horseradish
peroxidase (HRP)-conjugated anti-rabbit antibody (Dako, Glostrup, Denmark) followed by
DAB (Dako, Glostrup, Denmark). Nuclei were counterstained with Mayer’s haematoxylin
(Sigma-Aldrich, St. Louis, MO, USA). Samples that were compromised during processing
were excluded from the study. The evaluation of lesions was performed by trained person-
nel who were blinded to the mouse genotypes using ImageJ software (National Institutes
of Health, Bethesda, MD, USA).
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2.4. Plasma Lipid Measurements

Plasma cholesterol and triglyceride levels were measured using enzymatic colourimet-
ric kits (CHOL2 and TRIGL, Roche, Basel, Switzerland), according to the manufacturer’s
instructions.

2.5. Succinate Analysis

Succinate levels in plasma samples were evaluated using a classic colourimetric assay
(Sigma-Aldrich, St. Louis, MO, USA), following the manufacturer’s instructions.

2.6. RNA Isolation and Analysis

RNA from spleens and liver was isolated in TRIzol solution (Thermo Fisher Scientific,
Waltham, MA, USA) by homogenization using a tissue Lyser II and a 5 mm stainless steel
bead (Qiagen, Hilden, Germany), followed by RNA phase separation using chloroform and
RNA precipitation using isopropanol. RNA from the aortas was isolated using a total RNA
purification Kit (Norgen Biotek Corp., Thorold, ON, Canada) following the manufacturer’s
instructions. RNA quality was approved on a Nanophotometer (Implen GmbH, München,
Germany) followed by the reverse transcription of 1µg of total RNA using an iScriptTM
cDNA synthesis kit (Bio-Rad Laboratories, Hercules, CA, USA). Quantitative gene expres-
sion analyses were performed by quantitative real-time PCR using a TaqMan assay on
demand for Gpr91 (Thermo Fisher Scientific, Waltham, MA, USA); and specific primers
for Cd68, Tnf, Ccl2, Cxcl10, Ccr1, Nos2, Cd206, Arg1, Chil3 and Fizz1 using a SYBR-green
detection system (Bio-Rad Laboratories, Hercules, CA, USA). TATA-binding protein (Tbp)
and Transcription factor II B (TfIIb) mRNA were used as housekeeping genes. A full list
of primers used in the study is provided in Supplementary Table S1. Data were analysed
based on the relative expression method with the formula 2−∆∆ct, where ∆∆ct = ∆ct (sam-
ple) − ∆ct (calibrator = mean ct values of all samples within the WT group), and ∆ct is the
mean ct-value of the housekeeping gene subtracted from the ct-value of the target gene.

2.7. Analysis of Biomarkers of Liver Damage

The hepatocellular enzyme aspartate aminotransaminase (AST) that is released into
the blood upon hepatic cell damage was quantified using a colourimetric assay kit (Cayman
Chemical, Ann Arbor, MI, USA), following the manufacturer’s instructions. Transcript
levels of ATP Binding Cassette Subfamily C Member 6 (Abcc6) and G3BP Stress Granule
Assembly Factor 1 (G3bp1), which have been proposed as biomarkers of liver injury [43],
were quantified by qPCR in liver samples, as previously described.

2.8. Statistical Analysis

The results are presented as the mean ± standard error of the mean (SEM). The Mann–
Whitney U-test was used for two group comparisons, and a two-way ANOVA with a
Bonferroni post hoc test was applied to test differences between groups over time. In
all analyses, differences were considered significant at p-values < 0.05 (two-tailed). All
statistical analyses of in vivo and in vitro experiments were performed using GraphPad
Prism version 9.3.1 (GraphPad Software Inc., San Diego, CA, USA).

3. Results
3.1. SUCNR1/GPR91 Is Expressed in Vascular and Immune Cells from Human
Atherosclerotic Plaques

To gain insight into the role of GPR91 in CVDs, we explored whether the receptor
would be expressed in healthy cardiovascular and atherosclerotic disease tissues. Analysis
of the GTEx data of healthy tissues revealed that SUCNR1/GPR91 is more abundantly
expressed on the transcript level in the human coronary artery and the aorta, and to a
lesser extent in the tibial artery and heart muscle (Figure 1A). Notably, SUCNR1/GPR91
expression in the cardiovascular system seemed 4- to 5-fold lower than that found in human
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spleen (Figure 1A)—the latter signal is likely to be driven by SUCNR1/GPR91 expression
in macrophages within the organ (Supplementary Figure S1).
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Figure 1. The expression pattern of SUCNR1/GPR91 in human tissues and atherosclerosis. (A) Data
from the GTEx resource portal expressed as transcripts per million (TPM). (B–D) Dot plots depict
mRNA levels of SUCNR1/GPR91 in common vascular and immune cell populations. Dot size depicts
the percentage fraction of cells expressing a gene, and dot colour intensity depicts the degree of
expression of each gene. (B) Data from carotid plaques, n = 18; (C) data from carotid plaques, n = 3;
(D) data from coronary plaques, n = 4 [35–37]. SMC; smooth muscle cell, NK; natural killer cell; T, T
lymphocytes; B, B lymphocytes.

Next, we enquired whether SUCNR1/GPR91 is also expressed in human atheroscle-
rotic tissue, and by which cells. Analyses of three public datasets of scRNA-Seq [35–37]
suggest SUCNR1/GPR91 is expressed especially in VSMC populations, pericytes and
also by macrophages (Figure 1B–D). Notably, the SUCNR1/GPR91 signal is higher in the
vascular cells compared to the immune cells (Figure 1B–D).

3.2. Hyperlipidaemic WT and Gpr91−/−Mice Present Similar Plasma Lipid Levels and
Atherosclerosis Burden

Analyses of serially collected blood from Gpr91−/−mice and WT littermate controls,
which were injected with rAAV8-D377Y-mPcsk9 and fed a WTD for 14 weeks, confirmed
the expected development of hypercholesterolaemia–in both groups, an approximately
8-fold increase in plasma cholesterol and a 4-fold increase in triglycerides was observed
after 2 weeks of injection and diet, and 19-fold increased cholesterol and 8-fold increased
triglycerides levels were observed at the endpoint. Notably, the latter findings replicated
the seminal work describing the AAV-induced hyperlipidaemia model well [44]. Hence,
mice carrying the genetic deficiency on Gpr91 showed very similar kinetics of increases
in plasma lipids, and no difference against WT controls was observed (Figure 2A,B), and
no significant differences in the total body weight and liver-to-body weight ratio were
observed between the groups (Figure 2C,D). Surprisingly, succinate levels were found to
be decreased by approximately half in plasma from Gpr91−/− mice versus the control
(Figure 2E).
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Figure 2. Plasma lipid levels and atherosclerotic burden in hyperlipidaemic WT and Gpr91−/− mice.
Mice were injected with rAAV8-D377Y-mPcsk9 and fed a WTD for 14 weeks. (A) Cholesterol levels
and (B) triglyceride levels in the plasma of WT and Gpr91−/−mice (n = 7–12). (C) Total body weight,
(D) liver-to-body weight ratio at the end of the experiment and (E) plasma succinate levels in the
plasma of WT and Gpr91−/− mice (n = 7–12). Results are shown as mean ± SEM; graphs show
pooled data from two independent experiments. (A,B) Two-way ANOVA with Bonferroni post hoc
test; (C,D,E) Mann–Whitney U-test. **: p < 0.01.

Next, we used dissected aortic arches and sections from the aortic root to evaluate
the impact of GPR91 signalling in vascular inflammation and atherosclerotic burden. Hy-
percholesterolaemia induced by the injection of rAAV8-D377Y-mPcsk9 and WTD feeding
allowed both groups to develop advanced atherosclerotic lesions (Figure 3). However,
no significant difference in the burden of atherosclerosis was observed between groups,
including the percentage of lesions in the aortic arches (Figure 3A) and ORO-stained lesions
in the aortic root (Figure 3B).
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Figure 3. Effects of Gpr91 genetic ablation on atherosclerosis development. Mice were injected with
rAAV8-D377Y-mPcsk9 and fed a WTD for 14 weeks. (A) Quantification of en face Sudan IV-stained
aortic arches from WT and Gpr91−/−mice (n = 7–12); right panes show representative micrographs
of the atherosclerotic burden. (B) Quantification of atherosclerotic ORO-stained proximal aortic root
lesions shown as % lesion areas of total aortic root area (n = 7–12); right panes show representative
micrographs of the atherosclerotic burden. Results are shown as mean ± SEM; graphs show pooled
data from two independent experiments. No significant differences were observed. (A) Mann–
Whitney U-test; (B) two-way ANOVA with Bonferroni post hoc test.

3.3. Genetic Ablation of GPR91-Mediated Signalling Does Not Influence Vascular Inflammation

Immunohistochemical staining of main inflammatory markers in the aortic root sec-
tions revealed that the global ablation of GPR91-mediated signalling did not impact the
percentage of infiltrating CD68+ macrophages, the number of infiltrating CD3+ T-cells, the
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percentage of adhesion molecule VCAM-1 expression and MHC-II IAb+ cells, as well as
the percentage of αSMA+ VSMCs compared to WT mice (Figure 4A–E).

Because our bioinformatic analysis of human plaques suggested that SUCNR1/GPR91
can be expressed by macrophages, we investigated transcript markers of macrophage
polarization in the aorta of our mice. In line with the previous data, the analysis of
aortic transcripts for Cd68 showed no difference between groups (Figure 5). Although
the M1-like marker Cxcl10 was found reduced and the M2-like marker Fizz1 increased in
Gpr91−/− mice (Figure 5), no clear polarization of macrophages seemed to occur upon the
ablation of GPR91-mediated signalling, and no other marker tested showed differences
between groups.
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Figure 4. Effects of Gpr91 genetic ablation on plaque inflammatory cell composition. Mice were
injected with rAAV8-D377Y-mPcsk9 and fed a WTD for 14 weeks. (A) Percentage of CD68+
macrophages, (B) the number of CD3+ T cells /mm2, (C) the percentage of VCAM-1+ stained
cells, (D) the percentage of IAb+ cells and (E) the percentage of α-smooth muscle cell actin (αSMA)
staining in aortic root lesions from WT and Gpr91−/−mice (n = 6–12). The right panels show repre-
sentative micrographs of stained sections from each group. Results are shown as mean± SEM; graphs
show pooled data from two independent experiments. No significant differences were observed;
Mann–Whitney U-test.
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Figure 5. Expression of macrophage polarization markers in the aorta of WT and Gpr91−/− mice.
Mice were injected with rAAV8-D377Y-mPcsk9 and fed a WTD for 14 weeks. Relative mRNA
expression of Sucnr1/Gpr91, Cd68, Tnf, Ccl2, Cxcl10, Ccr1, Nos2, Cd206, Arg1, Chil3 and Fizz1 in the
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3.4. Macrophage Polarization in the Spleen and Liver Is Not Clearly Affected by GPR91 Ablation

Considering our bioinformatic analysis indicated increased SUCNR1 expression in
the spleen compared to vascular tissues and liver, we decided to also investigate transcript
markers of macrophage polarization in these organs. Although we observed a trend
towards the increased splenic expression of Cd68 in Gpr91−/− mice versus controls, no
clear pattern towards M1- or M2-like polarization was seen between groups (Figure 6A).
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Figure 6. Expression of macrophage polarization markers in the spleen and liver of WT and Gpr91−/−
mice. Mice were injected with rAAV8-D377Y-mPcsk9 and fed a WTD for 14 weeks. Relative mRNA
expression of Gpr91, Cd68, Ccl2, Cxcl10, Ccr1, Cd206, Arg1, Chil3 and Fizz1 in (A) the spleen and (B) the
liver from WT and Gpr91−/− mice (n = 7–12). Results are shown as mean ± SEM; graphs show
pooled data from two independent experiments. * p < 0.5, ** p < 0.01, **** p < 0.0001. Mann–Whitney
U-test.

Notably, the M1-like marker Cxcl10 and the M2-like marker Arg1 were found to be
increased in the spleen of Gpr91−/−mice (Figure 6A). Similar analyses in the liver revealed
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the M2-maker Arg1 to be downregulated in Gpr91−/− mice, while the expression of all the
other markers showed no difference between groups (Figure 6B). Of note, Sucnr1 expression
was confirmed to be neglectable in the aorta, spleen and liver from Gpr91−/− mice and
detected in WT mice (Figures 5 and 6). Moreover, no difference in plasma AST levels
and the transcript markers associated with liver damage, Abcc6 and G3bp1 [43], were seen
between groups (Supplementary Figure S2).

4. Discussion

Recent research indicates that intrinsic alterations in cellular metabolism coincide with
the exacerbation of vascular inflammation and increased risk of developing cerebrovascular
events [45]. In this context, it has been shown that plaques at a high risk of rupture present
a skewed metabolic signature with increased glycolysis, elevated amino acid utilization and
decreased FAO—a similar profile to that found in immune pro-inflammatory and cancer
cells [45,46]. Despite previous evidence indicating that increased succinate signalling in the
vascular wall could positively influence atherogenesis [27], in this study, we showed that
the ablation of signalling through the succinate receptor GPR91 does not influence vascular
inflammation and atherosclerotic plaque burden in hyperlipidaemic mice.

Atherogenesis involves complex crosstalk between different organs and cells through-
out the body. Hence, vascular inflammation, the development of atherosclerotic plaques,
and the potential progression into an unstable plaque phenotype are the result of the
intricate interplay between vascular and immune cells in the artery and paracrine and
endocrine “signals” from various cells and organs, including those involved in metabolic
regulation such as the gut, kidney, liver and adipose tissue [19]—all these organs have been
shown to express SUCNR1/GPR91 [47–49].

As mentioned earlier, succinate levels have been associated with an increased risk of
CVD [32]. In this study, analyses of public transcriptome datasets showed that SUCNR1/GPR91
is present in the vasculature of humans, being expressed particularly by VSMCs/pericytes
and to a lesser extent by macrophages within plaques, thus suggesting that in a paracrine
and/or endocrine manner, succinate-mediated GPR91 signalling could influence cellular
functions and disease. The fact that the succinate/GPR91 axis has been linked to pathologi-
cal cardiomyocyte hypertrophy through the regulation of intracellular Ca2+ release and
re-uptake by cardiomyocytes [50], as well as the control of blood pressure, via the regulation
of renin release from kidneys and the secretion of nitric oxide and prostaglandin-E2 from
endothelial cells [51], suggests that several parallel mechanisms that influence the course of
atherogenesis could be influenced by this signalling pathway. Given that SUCNR1/GPR91
expression could be more abundant and may play a greater role in organs other than
the vasculature, e.g., the intestine, liver and adipose tissue [28,52–54], the possibility that
succinate-mediated GPR91 signalling may influence CVD indirectly via the regulation of
immune and metabolic responses in these organs should not be disregarded.

Lukasova et al., 2011 showed that the lipid-lowering drug niacin has lipid-independent
inhibitory effects on atherosclerosis mediated by GPR109A on macrophages [55]. Pols et al.,
2011 showed that the activation of bile acid receptor TGR5 attenuates atherosclerosis, an
effect that is lost in Ldlr−/−Tgr5−/− mice [56]; notably, the protective effects of TGR5
ligation on atherosclerosis was shown to be enhanced by the combined ligation of FXR
in hyperglycaemic models [57]. Interestingly, while the former studies suggested that
the targeting of metabolite receptors could be used to regulate vascular inflammation
and prevent atherosclerosis, the ablation of GPR109A and TGR5 signalling alone, in the
absence of concomitant treatment with an excess of specific agonists, did not result in
the acceleration of disease [55,56]. Speculatively, these data suggest that the influence of
metabolite-sensing GPCRs in atherogenesis may also depend on the abundance or excess of
their specific metabolites, as well as the degree of their metabolism. The fact that we know
injections of succinate accelerate experimental atherosclerosis [33], as well as our discovery
of significantly lower levels of succinate in the plasma of hyperlipidemic Gpr91−/−mice
implies that lesions could be reduced later on under similar experimental conditions. It



Cells 2023, 12, 2580 10 of 14

will be interesting to explore in the future whether the potentially deleterious effects of an
excess of succinate (e.g., with injections) can be mitigated by the ablation of GPR91, which
could also shed light on the various mechanisms, both receptor dependent and receptor
independent, activated in the artery wall. Thus, future research should also attempt to
clarify how succinate secretion may be regulated by GPR91-dependent signalling.

It has been shown that the disruption of GPR120 or GPR35 signalling in bone marrow-
derived cells does not affect vascular inflammation and atherosclerosis in Ldlr−/−mice [58,59].
Hence, the fact that no substantial changes were observed in the arteries of our hyper-
lipidaemic Gpr91−/− mice compared to controls, in spite of the concomitant reduction
in plasma succinate levels, raises a few additional thoughts about the general role of
metabolite-sensing GPCRs in the context of cardiometabolic diseases. The most important
of them could be that GPR91 may play both pro- and anti-atherogenic roles depending on
the cell expression specificity.

Previous studies showed that the inflammatory response of macrophages and dendritic
cells from Gpr91−/− mice is substantially impaired [13,14], and so, succinate-signalling
through GPR91 on immune cells has been implicated with fibrotic responses in the liver [60]
and with the exacerbation of joint inflammation in the context of collagen-induced arthri-
tis in mice [14]. However, in the adipose tissue, the same signalling pathway has been
proposed to promote thermogenesis, improve tolerance to glucose and protect mice from
diet-induced obesity [61]. Despite the limitations of our multi-organ analysis of inflamma-
tion, which primarily involved the assessment of non-exclusive cellular transcript markers
of macrophage polarisation, and considering the multifactorial nature of the atherosclerotic
disease, we speculate that competing systemic and local vascular effects could be a reason
for the nearly null results observed in the vascular wall.

It has been suggested that GPR91 signalling has a “biphasic” role in adipose tissue,
promoting obesity and insulin resistance in the early stages and having protective effects in
the late stages of the disease [62]. Our experimental design evaluated the atherosclerotic
burden with fourteen weeks of WTD feeding, a relatively early time point for this hyper-
lipidaemic model. In this context, another potential explanation for no major phenotype
in our experiments with Gpr91−/−mice could be related to the stage of the disease, and
whether GPR91 may affect the late stages of atherosclerosis warrants future investiga-
tion. Notably, PCSK9, which was overexpressed in our mice following an AAV injection,
has been linked to both LDLR-dependent and -independent mechanisms that promote
pro-inflammatory macrophage responses [63–66]. Although both groups in our study
seemed to not exhibit exacerbated atherogenesis when compared to previous studies using
rAAV-mPcsk9 or Ldlr−/−mice [44], whether PCSK9 influences the succinate/GPR91 axis
warrants further investigation.

5. Conclusions

In conclusion, we showed that SUCNR1/GPR91 is expressed in healthy vasculature
as well as atherosclerotic plaques in humans. Using an animal model of disease, we
demonstrated that the ablation of GPR91 signalling does not significantly impact the
atherosclerotic burden. Taking into account the current knowledge that GPR91 may play
different cellular-specific roles in the spectrum of cardiometabolic diseases, future studies
targeting this receptor, through ablation or overexpression, specifically in metabolic, vascu-
lar or immune cells, as well as the evaluation of disease at different stages, will be needed to
provide definitive proof of the involvement of GPR91 signalling in the pathophysiological
process of atherosclerosis.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/cells12212580/s1, Table S1: List of primers used in the
study; Table S2: Filtering and parameters used for analyses of scRNAseq datasets; Figure S1:
SUCNR1(GPR91) is expressed mainly in macrophages in the human spleen; Figure S2: Liver
toxicity status.
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