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Abstract
Purpose: To construct and evaluate the performance of a machine learning-
based low dose computed tomography (LDCT)-derived parametric response
mapping (PRM) model for predicting pulmonary function test (PFT) results.
Materials and methods: A total of 615 subjects from a community-based
screening population (40–74 years old) with PFT parameters, including the
ratio of the first second forced expiratory volume to forced vital capacity
(FEV1/FVC), the percentage of forced expiratory volume in the one second
predicted (FEV1%), and registered inspiration-to-expiration chest CT scan-
ning were enrolled retrospectively. Subjects were classified into a normal,
high risk, and COPD group based on PFT. Data of 72 PRM-derived quan-
titative parameters were collected, including volume and volume percentage
of emphysema, functional-small airways disease, and normal lung tissue. A
machine-learning with random forest regression model and a multilayer per-
ceptron (MLP) model were constructed and tested on PFT prediction, which
was followed by evaluation of classification performance based on the PFT
predictions.
Results: The machine-learning model based on PRM parameters showed bet-
ter performance for predicting PFT than MLP,with a coefficient of determination
(R2) of 0.749 and 0.792 for FEV1/FVC and FEV1%, respectively. The Mean
Squared Errors (MSE) for FEV1/FVC and FEV1% are 0.0030 and 0.0097 for
the random forest model, respectively. The Root Mean Squared Errors (RMSE)
for FEV1/FVC and FEV1% are 0.055 and 0.098, respectively. The sensitivity,
specificity, and accuracy for differentiating between the normal group and high-
risk group were 34/40 (85%), 65/72 (90%), and 99/112 (88%), respectively. For
differentiating between the non-COPD group and COPD group, the sensitiv-
ity, specificity, and accuracy were 8/9 (89%), 112/112 (100%), 120/121 (99%),
respectively.
Conclusions: The machine learning-based random forest model predicts PFT
results in a community screening population based on PRM,and it identifies high
risk COPD from normal populations with high sensitivity and reliably predicts of
high-risk COPD.
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1 INTRODUCTION

In the current aging society, chronic non-communicable
diseases have become a major burden on healthcare.
Low dose chest CT screening has been widely pro-
moted in China. Chest CT images not only provides
information on pulmonary nodules,but also further eval-
uates Emphysema, coronary artery calcification, etc.
in community population. Occasional lesions in LDCT
lung cancer screening are not uncommon, and most of
these abnormal findings do not have significant clinical
significance and do not require further examination
and treatment.1 However, there are still some abnor-
mal manifestations indicating that the subjects have
potential health hazards, especially some noncommu-
nicable chronic disease (NCD) that are highly prevalent
in the aging society, which may be the main reason for
the decrease in all cause mortality (ACM) beyond lung
cancer. LDCT is superior to other organs in displaying
lung diseases and can be used to observe common
lung lesions such as chronic obstructive pulmonary dis-
ease (COPD). Pulmonary function tests (PFTs) are the
detection methods used to diagnose chronic obstructive
pulmonary disease (COPD). The diagnostic information
provided by PFTs is limited and cannot accurately
screen high-risk COPD patients. In fact, many articles
published in the American Journal of Respiratory and
Critical Care, Lancet, and Nature Outlook2–4 have
appealed to physicians to pay more attention to the role
of imaging in the early diagnosis of COPD.

Related studies have found that small airway
remodeling or vascular remodeling occurs before
the pulmonary parenchyma destruction.5,6 A certain
number of asymptomatic patients in the chest disease
screening population will have small airway diseases.
Therefore, early diagnosis of small airway abnormal-
ities is very important, particularly since functional
small airway disease (fSAD) is reversible. At this stage,
however, ability of the lung function tests to detect any
early abnormality is limited. Air trapping is the index
used most commonly to evaluate small airway disease.
However, it is difficult to differentiate the cause of air
trapping from emphysema or non-emphysema fSAD.
fSAD is a reversible transitional stage between normal
lung tissue and emphysema, which occurs earlier than
emphysema. Parametric response mapping (PRM), a
recently developed CT quantitative parameter, is based
on changes in voxel density between the paired inspi-
ratory and expiratory CT images.7 At present, studies
about PRM focus mostly on the quantitative evaluation
of functional small airway, correlation between PRM

and PFT tests,and matching of PRM with functional MR
imaging.8–11 Moreover, PRM has demonstrated good
sensitivity in the evaluation of disease progression.12

Artificial intelligence (AI) has accelerated the progress
of COPD research, including in emphysema detec-
tion and subtype classification, early screening, and
diagnosis.13,14 PRM has been shown to correlate
positively with PFT parameters.10 In recent years,
many studies have used PRM to construct predictive
COPD/non COPD models,15,9 which have achieved
good results. However, studies about whether PFT
parameters can be predicted based on the PRM from
dual phase LDCT have not been retrieved to improve
our limited knowledge in the community population. An
AI algorithm that predicts PFT parameters based on
PRM from LDCT scanning would greatly increase the
value of one-stop CT scanning to extract more vital
information about the pulmonary function status.

1.1 Related work

Related work can be divided into two categories accord-
ing to the study purposes and approaches: one focuses
on finding the correlation between PRM parameters
and PFT parameters from a clinical perspective using
traditional statistical tools,16–19 such as the multivariate
linear regression model; the other focuses on computer-
aided diagnosis (CAD) of COPD, including patient
classification and scoring, based on AI techniques.

In terms of the clinical studies on the PRM-PFT
correlation, Bhatt et al.10 constructed multivariate linear
regression models and found an association between
the PRM parameters and FEV1 annual decline, claim-
ing that the association was of greater importance
for patients with mild COPD. Pompe et al.20 also used
the multivariate linear regression model, finding that
PRMfSAD was associated with total lung capacity (TLC),
alveolar volume (VA) and residual volume (RV). The
regression model in that study had an R2 of 0.69
for PRMfSAD prediction. In a similar study, Capaldi
et al.21 performed multivariate linear regression using
a reversed direction to regress PRM parameters with
PFT parameters, finding that PRM gas trapping was
predicted by FEV1/FVC, and that PRM emphysema
was predicted by carbon monoxide diffusion capacity
and ventilation defect percentage (VDP).

In terms of the studies on AI-based CAD for COPD,
researchers used AI models for emphysema detection,
differential diagnosis, and COPD assessments. Ho
et al.22 constructed a 3D-CNN deep learning network



ZHOU ET AL. 3 of 12

F IGURE 1 Study selection and baseline characteristics.

to distinguish COPD patients from non-COPD subjects
based on 2D or 3D PRM image input. The accuracy
and sensitivity of their classification model was 89.3%
and 88.3%, respectively. Besides the attempts to use
AI models to distinguish COPD and non-COPD cases,
Humphries et al.23 constructed a CT image-based
deep-learning model for emphysema scoring, which
corresponded well with visual scoring (κ = 0.60).
Besides, several studies attempted to construct regres-
sion models to predict PFT parameters directly from
CT images. Li et al.24 constructed a 3D deep learning
model to predict PFT parameters, with an R2 of 0.57
for FEV1 prediction and 0.66 for FEV1% prediction.
Schabdach et al.25 reported a non-parametric FEV1
regression method with an R2 of 0.55. Singla et al.26

proposed a novel method and reported the best regres-
sion performance to date, with an R2 of 0.68 for FEV1
and 0.71 for FEV1/FVC.

Inspired by these studies, we aimed to construct
PRM-based artificial intelligence algorithms, including
a random forest model and a multi-layer perceptron

model, to predict key PFT parameters and to evalu-
ate their performance in a community-based LDCT
screening population undergoing one-stop screening
for Big Three chest diseases (lung cancer, COPD, and
cardiovascular disease).

2 MATERIALS AND METHODS

2.1 Patient population

From August 2018 to October 2018, a total of 861 con-
secutive community-based participants were screened
for the Big Three chest diseases in our hospital and
the PRM data of 615 participants were collected ret-
rospectively. The patient selection process is shown in
Figure 1. Inclusion criteria were as follows: participants
with complete questionnaire surveys, PFT test and
paired respiratory CT scanning. Exclusion criteria were:
(1) marked respiratory motion or metal artifact on CT
images; (2) without thin slice (1 mm) DICOM format
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images; (3) underlying lung diseases such as lung
cancer, severe pulmonary interstitial fibrosis, severe
pulmonary tuberculosis, asthma, massive pulmonary
infection, acute pulmonary embolism, or pulmonary
infarction; (4) thoracic deformity; (5) pleural effusion;
and (6) chest surgery history. Based on their PFT
parameter values, the participants were classified into
a normal group, high-risk group, and COPD group.
The normal group was defined as ratio of the first
second forced expiratory volume to forced vital capacity
(FEV1/FVC) > 0.7 and percentage of forced expiratory
volume in the one second predicted (FEV1% pre-
dicted value) ≥ 95%. The high-risk group was defined
as FEV1/FVC > 0.7 and 80% ≤ FEV1% predicted
value < 95%.27 Based on the GOLD criteria, the severity
of COPD was classified into GOLD I (FEV1/ FVC < 0.7
and FEV1% predicted≧80%), GOLD II (FEV1/
FVC < 0.7 and 50%≤FEV1% predicted value < 80%),
GOLD III (FEV1/FVC < 0.7 and 30% ≤ FEV1% pre-
dicted value < 50%), and GOLD IV (FEV1/FVC < 0.7
and FEV1% predicted value <30%). All participants
filled out the questionnaire before PFTs, then underwent
PFTs and chest CT scanning in the same day.

2.2 Pulmonary function tests

PFTs were performed for all patients using the Multifunc-
tion Spirometer (HI-801, CHESTGRAPH, CHEST. MI.
Omnia Inc., Japan). PFTs have 15 separate parameters,
including FVC, FEV1/FVC, FEV1% and other parame-
ters. FEV1/FVC and FEV1% were the key parameters
for analysis in the present study.

2.3 CT scanning

All patients underwent breath-hold training before scan-
ning, taking a supine position with arms above the head.
Non-contrast-enhanced volumetric chest CT scanning
was performed at the end of inspiration and expira-
tion using a 256-slice CT scanner (Brilliance-iCT, Philips
Healthcare,Cambridge,MA,USA) from the thoracic inlet
to diaphragm, respectively. The following CT scanning
parameters were used: collimation 128 × 0.625 mm,
tube energy 120 kV, Z-axial and 3D automatic tube
current modulation, Dose right on and reduced dose
level 3 (inspiratory/expiratory scanning), pitch 0.70,
slice thickness 1 mm, slice increment 1 mm, FOV
350 mm × 350 mm,matrix 512 × 512,high and standard
resolution algorithms.

2.4 PRM analysis

The raw Dicom data of CT images were transferred to
the workstation (A-VIEW, Suhai Information Technology

Ltd., Suzhou, China) for PRM analysis. First, a 20-year
experienced thoracic radiologist checked and redefined
the lobe segmentation slice- by-slice during the PRM
analysis, who was blinded to participants’ clinical infor-
mation and PFT results.Then, the expiratory CT images
were registered to the inspiratory CT images at the pixel
level. As described previously,11 the voxels are divided
into four categories according to CT values on paired
respiratory CT images: (1) Emphysema, voxels less
than or equal to −950HU on the inspiratory image and
less than −856HU on the expiratory image; (2) fSAD,
voxels greater than −950HU on the inspiratory image
and less than or equal to −856HU on the expiratory
image; (3) Normal lung, voxels greater than −950HU
on the inspiratory image and greater than −856HU
on the expiratory image; and (4) Uncategorized tissue,
voxels less than −950HU on the inspiratory image
and greater than −856HU on the expiratory image.
The volume as well as the volume percentage of
each voxel category (PRMEmph, PRMEmph%, PRMfSAD,
PRMfSAD%, PRMNormal, PRMNormal%, PRMUncategorized,
and PRMUncategorized%) were calculated at the level
of whole lung, left lung, right lung, and each lung
lobe, respectively. A total of 72 PRM parameters were
measured for each participant.

2.5 AI model construction and
performance evaluation

Two different types of AI regression models were
constructed and trained for the PFT key parameter
regression tasks: (1) Random Forest, a machine learn-
ing regression model; and (2) Multilayer Perceptron
(MLP), which is also known as Artificial Neural Network
(ANN). A total of 76 features from each case, including
72 PRM parameters and four clinical features (age, sex,
height, and weight), were used as input for our regres-
sion models, and the FEV1/FVC or FEV1% were used
as the ground truth for regression model training. For
each type of AI model,one regression model was estab-
lished for the FEV1/FVC prediction task, and another
regression model was established for the FEV1% pre-
diction task. The dataset was divided into training and
validation dataset with the ratio of 4:1 randomly (494
cases for training and 121 cases for validation). The
specific method of constructing the models are shown
in Supplementary material.Meanwhile, the coefficient of
determination (R2) was also calculated as a parameter
indicating the proportion of variance in the dependent
variable that was predictable from the independent vari-
ables.The performance of the random forest regression
model was evaluated by calculating the Mean Absolute
Error (MAE), Mean Squared Error (MSE) and Root
Mean Squared Error (RMSE) between the predicted
PFT parameters and the PFT measured ground truth.
Lower MAE/MSE/RMSE indicates smaller differences
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TABLE 1 Demographic data and PFT parameters in normal, high risk, and COPD groups.

Total (n = 615) Normal group (n = 367)
High-risk COPD
group (n = 194)

COPD group
(n = 54) p

Age 68 (65–70) 68 (65–70) 68 (65–71) 67 (65–70) 0.129

Sex <0.0001

Male 289 (47%) 151 (41%) 91 (47%) 36 (67%) –

Female 326 (53%) 216 (59%) 103 (53%) 18 (33%) –

Height(cm) 164 (158–170) 162.98 ± 7.92 165 ± 8.08 166.97 ± 7.22 0.01

Weight(kg) 65 (57.5–72) 64 (56–71) 66 (59.8–75) 67.63 ± 10.96 0.025

FEV1/FVC 0.83 (0.76–0.88) 0.84 (0.80–0.89) 0.83 (0.77–0.88) 0.65 (0.60–0.68) <0.0001

FEV1% 82.87 (77.52–88.26) 107.32 (101.03–114.90) 85.03 (76.61–90.18) 67.7 ± 21.93 <0.0001

Note: Numbers are listed in median (IQR) or mean ± standard deviation.
Abbreviations: COPD, chronic obstructive pulmonary disease; FEV1%, percentage of forced expiratory volume in the one second predicted; FEV1/FVC, ratio of the
first second forced expiratory volume to forced vital capacity; PFT, pulmonary function test.

between the prediction and ground truth, which means
better regression performance. The Spearman corre-
lation was also calculated between the predicted value
of the model and the measured PFT value. The param-
eters FEV1/FVC and FEV1% predicted by the best AI
model was further used for the classification tasks.

In the evaluation process of the present study, clas-
sification performance on the validation dataset was
examined using confusion matrices. Five metrics were
calculated, including sensitivity, specificity, positive pre-
dictive value (PPV),negative predictive value (NPV),and
accuracy.

2.6 Statistical analysis

The datasets with normal distribution are expressed as
mean ± standard deviation, and the datasets that do
not follow normal distribution are presented as median
and interquartile range (IQR). Rank sum test or chi
square test (SPSS 26.0) was used for age, sex, height,
weight and PFT parameters. Other statistical analysis
was performed using the R language platform (Version
4.0.0, R Foundation for Statistical Computing, Vienna,
Austria). Statistical comparisons between groups were
performed using the analysis of variance (ANOVA) test.
ANOVA was used for the datasets with normal distribu-
tion and equal variance; non-parametric Kruskal–Wallis
Test was used for non-normally distributed variables.
Tukey HSD Test or Nemenyi Test was performed to com-
pare any two groups for datasets with normal distribution
and non-normal distribution, respectively.

3 RESULTS

3.1 Demographic data, PFT, and PRM
parameters of the three groups

Among the 615 participants included in this study,
367 were normal subjects (151 males, 216 females),

194 were high-risk subjects (102 males, 92 females),
and 54 subjects had COPD (36 males and 18
females). No significant differences were found in age
(p = 0.129 > 0.001) between the three groups.However,
significant differences were shown in sex, FEV1/FVC
and FEV1% between the three groups (p < 0.001)
(Table 1).

At the whole lung level, all PRM parameters were
different between normal, high-risk, and COPD groups
(p < 0.001) (Table 2).The mean values of PRMVEmph,
PRMVEmph%,PRMVfSAD,and PRMVfSAD% in the normal
group, high risk group and COPD group increased in
turn (Figures 2 and 3).Correlations between single PRM
and single PFT parameters were very weak (Table S1),
as shown in the Supplementary materials.

3.2 Performance of regression models

For the FEV1/FVC regression task on the test set, the
coefficient of determination (R2) of the random forest
model was 0.749, the MAE was 0.038, the MSE was
0.0030, and the RMSE was 0.055. In contrast, the R2,
MAE, MSE, and RMSE of the MLP model for the same
task are 0.022, 0.063, 0.0069, and 0.083, respectively.
For the FEV1% regression task on the test dataset,
the R2, MAE, MSE, and RMSE for the random forest
model were 0.792, 0.068, 0.0097, and 0.098, respec-
tively. Meanwhile, the R2, MAE, MSE, and RMSE of the
MLP model are −0.109, 0.142, 0.033, and 0.181 for
the same task, respectively. The random forest model
outperformed the MLP model in both regression tasks,
so we used the prediction results of the random forest
model for further classifications.

For COPD/non-COPD classification based on the pre-
diction results of the FEV1/FVC regression model, sen-
sitivity was 8/9 (89%), specificity was 112/112 (100%),
accuracy was 120/121 (99%), the PPV was 8/8 (100%),
and the NPV was 112/113 (99%). For the normal/high
risk classification of non-COPD patients based on the
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TABLE 2 PRM parameters in normal, high risk, and COPD groups.

PRM parameter Normal group (n = 367) High-risk COPD group (n = 194) COPD group (n = 54) p

LV 4252.18 (3657.11–5095.83)(a) 4091.36 ± 1079.23(b) 5174.57 ± 1162.40(c) <0.0001

PRMVEmph 62.48 (23.70–128.46)(a) 57.94 (24.17–143.90)(a) 188.25 (65.29–417.28)(b) <0.0001

PRMVfSAD 343.75 (151.68–676.94)(a) 373.16 (128.87–919.86)(a,b) 947.49 ± 756.34(b) <0.0001

PRMVNormal 3661.62 ± 952.56(a) 3302.39 ± 913.54(b) 3695.05 ± 870.24(a,b) <0.0001

PRMVUncategorized 75.12 (31.54–144.70)(a) 55.16 (18.10–107.56)(b) 107.03 (58.85–177.47)(a,b) <0.0001

PRMVEmph% 1.38 (0.62–2.67)(a) 1.48 (0.60–3.20)(a,b) 3.63 (1.61–8.39)(b) <0.0001

PRMVfSAD% 8.17 (3.84–14.81)(a) 8.96 (3.57–20.94)(a) 17.18 ± 10.99(a) 0.001

PRMVNormal% 87.72 (80.60–92.35)(a) 86.31 (74.18–93.89)(a,b) 73.70 ± 16.94(b) <0.0001

PRMVUncategorized% 1.78 (0.83–2.91)(a) 1.25 (0.55–2.32)(b) 2.30 (1.20–3.06)(a,b) <0.0001

Note: PRMVEmph and PRMVEmph% = the volume of voxels less than or equal to −950HU on the inspiratory image and less than −856HU on the expiratory image of
PRM and the volume percentage in whole lung; PRMVfSAD and PRMVfSAD% = the volume of voxels greater than −950HU on the inspiratory image and less than or
equal to −856HU on the expiratory image and the volume percentage in whole lung; PRMVNormal and PRMVNormal% = the volume of voxels greater than −950HU on
the inspiratory image and greater than −856HU on the expiratory image and the volume’ percentage in whole lung; PRMVUncategorized and PRMVUncategorized% = voxels
less than −950HU on the inspiratory image and greater than −856HU on the expiratory image and the volume percentage in whole lung.Numbers are listed in median
(IQR) or mean ± standard deviation. The letters a, b and c indicate statistical differences between groups, the letters with repetition indicate no significant statistical
differences between groups, and the letters without repetition indicate statistical differences between groups.
Abbreviation: LV, lung volume.

F IGURE 2 Box plot of PRMVEmph, PRMVEmph%, PRMVfSAD, PRMVfSAD% of whole lung.

prediction results of the FEV1% regression model, sen-
sitivity was 34/40 (85%), specificity was 65/72 (90%),
the PPV was 34/41 (83%), the NPV was 65/71 (92%),
and accuracy was 99/112 (88%). In total, 13 participants
were in the validation dataset with inconsistent results

in classification by PFT and model prediction between
normal and high-risk participants. Among these, signifi-
cant differences were shown from the ground truth in six
participants, as shown in Table 3 and Figure 4 (marked
by red circle in the normal group and high-risk COPD
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F IGURE 3 PRM samples of normal, high risk and COPD cases. (a) A normal case, FEV1/FVC = 76.65%, FEV1% = 78.65%. (b) A high risk
case, FEV1/FVC = 76.21%, FEV1% = 68.11%. (c) A COPD case, FEV1/FVC = 68.70%, FEV1% = 107.66%.

group). Three cases with normal PFT were predicted as
the high-risk group, which showed greater PRMfSAD%
(Figure 5).

Accuracy was only 44% (4/9) for the GOLD
stratification of the COPD patients based on the
prediction result of the FEV1% regression model.

For all test set data, Spearman correlation was
calculated between the predicted value and the
measured PFT value. For FEV1/FVC, the Spear-
man correlation ρ was 0.813 (p < 0.001). For
FEV1%, the Spearman correlation ρ was 0.846
(p < 0.001).
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TABLE 3 Lung function of cases whose model classification is inconsistent with PFT in normal/high-risk COPD groups.

PRMVFSAD% PRMVEmph%
Classification
by PFT FEV1% FEV1/FVC

FEV1% of model
prediction

Classification
by model

1 11.3 3.67 High-risk 0.83 0.94 1.01 Normal

2 22.8 2.37 High-risk 0.81 0.75 0.97 Normal

3 9.9 0.57 High-risk 0.8 0.87 1.04 Normal

4 13.8 3.1 Normal 1.11 0.96 0.88 High-risk

5 69.9 4.85 Normal 1.25 0.96 0.92 High-risk

6 19.2 2.76 Normal 1.04 0.84 0.78 High-risk

Note: No.= Numbers of 6 cases; PRMVfSAD% = the volume percentage of voxels greater than −950HU on the inspiratory image and less than or equal to −856HU
on the expiratory image of PRM; PRMVEmph% = the volume percentage of voxels less than or equal to −950HU on the inspiratory image and less than −856HU on
the expiratory image of PRM.
Abbreviations: COPD, chronic obstructive pulmonary disease; FEV1%, percentage of forced expiratory volume in the one second predicted; FEV1/FVC, ratio of the
first second forced expiratory volume to forced vital capacity; PFT, pulmonary function test.

F IGURE 4 Model performance in the validation dataset. (a) Regression performance for FEV1/FVC prediction in validation dataset and
confusion matrix for regression prediction- based classification between COPD and non-COPD group. (b) Regression performance for FEV1%
prediction invalidation dataset (for non-COPD patients) and confusion matrix for the regression prediction-based classification between normal
and high-risk groups. (c) Regression performance for FEV1% prediction in validation dataset (for COPD patients) and confusion matrix for the
regression prediction-based classification between different GOLD levels.

4 DISCUSSION

In the present study, AI models, including random forest
models and MLP models, were established on the
basis of LDCT-derived PRM parameters to differentiate
the normal population from the high-risk population,
and to differentiate the COPD population from the
non-COPD population. These machine-learning-based
models enhance the clinical value of one-stop chest CT
scanning by predicting PFT results according to PRM
parameters.

Functional small airway disease may eventually
develop into chronic diseases such as COPD or
asthma.28,29 PRM is a good predictor for the fSAD. As
stated in our literature review, some studies16–19 have

focused on the correlation between PRM parameters
and PFT parameters using traditional statistical tools. In
our study, the correlation between PRM parameters and
PFT parameters was shown to be relatively weak,which
was similar to the weak PRM-PFT correlation in the non-
COPD group reported by Capaldi et al.21 Considering
that non-COPD patients outnumbered COPD patients
(n = 561 vs. n = 54) in our experiment, the observa-
tion was in accordance with the literature. We found that
the correlation between PFT and PRM parameters was
weak in screening subjects, so random forest and MLP
regression models were constructed to regress key PFT
parameters. The results showed that the random forest
regression model has a much higher performance than
the MLP model,which might be due to the lower demand
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F IGURE 5 PRM and pulmonary coronal pseudo-color images of three cases with inconsistent classification results by PFT and prediction
model. Three cases with normal PFT were predicted as high-risk group, which showed greater PRM fSAD%. (a) Male, 66 years old, smoking for
40 years, FEV1/FVC = 0.84, FEV1% = 104.2%. Model prediction results, FEV1% = 78.3%, fSAD% = 19.2%. (b) Female, 69 years old, no
smoking history, FEV1/FVC = 0.96, FEV1% = 124.6%. Model prediction results, FEV1% = 92.3%, fSAD% = 69.9%. (c) Male, 44 years old,
smoking for 30 years, FEV1/FVC = 0.96, FEV1% = 110.6%. Model prediction results, FEV1% = 87.9%, fSAD% = 13.8%.

to the quantity and quality of training data set of random
forest model than that of MLP.

Table 3 shows the inconsistent classification by
PFT and model prediction results between normal and
high-risk COPD groups. High-risk COPD predicted by

our random forest model showed higher PRMVfSAD%
and PRMVEmph%, suggesting that the model captured
functional information such as functional small airway
sensitivity, while PRM could not be detected by PFTs.
The model was also reliable in distinguishing normal
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from high-risk COPD groups. Previous study30 also
demonstrated that PRMEmph% cannot capture the infor-
mation of GOLD II ∼ IV, but it can distinguish between
normal and mild COPD. In our study, PRM parameters
were used to predict PFT, which further revealed the
clinical potential of PRM for the early management of
COPD.

AI has been used to detect emphysema, for differ-
ential diagnosis, and to assess the severity of COPD.
In our study, the COPD/non-COPD classification accu-
racy (99%) and sensitivity (89%) are higher than that
published by Ho et al.,22 which are 89.3% and 88.3%,
respectively.The better classification performance of the
present study can be explained by the explicit integration
of the PFT parameter-based COPD and high-risk defini-
tions in the classification process, while, in contrast, the
deep-learning based classification model implicitly
learned it in the training process, which has a high
demand on the quality and quantity of image data. We
used a simple but practical machine learning method to
exploit the clinical value of PRM in community screen-
ing of high-risk COPD patients. Our results indicated a
promising potential of this method in clinical practice.

Compared with the studies attempted to construct
regression models to predict PFT parameters directly
from CT images, the R2 values in our study were 0.749
and 0.792 for the FEV1/FVC and FEV1% random for-
est regression models, respectively,which outperformed
previous studies that used deep-learning approaches.
Most deep-learning approaches used CT images as
input, which contained very high dimensional informa-
tion about the spatial heterogeneity of the lung. In
contrast, our feature-based AI approaches, including
random forest models and MLP models,use information
extracted from pre-processed CT images.This may rep-
resent an advantage for solving complex issues such as
classification of COPD and non-COPD cases. However,
at the same time, the redundant information may also
interfere model performance when dealing with other sit-
uations such as PFT parameter regression, which was
a probable cause for the relatively better result in the
present study.

The main limitations of the present study include that
it was a single-center retrospective study without exter-
nal validation,which limits the extent to which results can
be generalized to other populations and cannot rule out
selection bias. Multi-center prospective research should
be performed in the future to validate generalization
of results. High-risk COPD was based on one of the
published results. As already well known, the criteria of
high-risk COPD are controversial. Therefore, the perfor-
mance of the machine-learning model to differentiate
normal from high risk may be affected due to the selec-
tion of high-risk criteria. Only PFT results were included
for classification, other common clinical history, such as
smoking history, was not considered in this study, which
may affect the classification of groups to some degree.

This study compared machine learning models and arti-
ficial neural network algorithm,but did not compare them
with deep learning algorithms that use images as inputs.
In future work, we need to add other models to further
validate the effectiveness of PRM derived from low-dose
chest CT in predicting lung function.All the above factors
must be considered as we draw a more accurate and
powerful model to predict PFT with PRM from chest CT.

In conclusion, machine-learning-based regression
models using LDCT-derived PRM parameters demon-
strate good performance in predicting reliable PFT
results and classifying normal/high risk patients as well
as COPD/non-COPD patients. More functional informa-
tion can be captured by this model than by pulmonary
function tests, and the prediction results are comple-
mentary to PFT under the current evaluation criteria of
pulmonary function. Results of the model play a warn-
ing role in evaluating the screening population for COPD,
which greatly improves the cost-effectiveness of LDCT.
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